Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1407028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988854

RESUMO

Introduction: Cashew nut contains bioactive compounds that modulate satiety and food intake, but its effects on body fat during energy restriction remains unknown. This study aimed to assess the effects of cashew nut and cashew nut oil on body fat (primary outcome) as well as adiposity, cardiometabolic and liver function markers (secondary outcomes). Materials and methods: An eight-week (8-wk) randomized controlled-feeding study involved 68 adults with overweight/obesity (40 women, BMI: 33 ± 4 kg/m2). Participants were randomly assigned to one of the energy-restricted (-500 kcal/d) groups: control (CT, free-nuts), cashew nut (CN, 30 g/d), or cashew nut oil (OL, 30 mL/d). Body weight, body composition, and blood collection were assessed at the baseline and endpoint of the study. Results: After 8-wk, all groups reduced significantly body fat (CT: -3.1 ± 2.8 kg; CN: -3.3 ± 2.7 kg; OL: -1.8 ± 2.6 kg), body weight (CT: -4.2 ± 3.8 kg; CN: -3.9 ± 3.1 kg; OL: -3.4 ± 2.4 kg), waist (CT: -5.1 ± 4.6 cm; CN: -3.9 ± 3.9 cm; OL: -3.7 ± 5.3 cm) and hip circumferences (CT: -2.9 ± 3.0 cm; CN: -2.7 ± 3.1 cm; OL: -2.9 ± 2.3 cm). CN-group reduced liver enzymes (AST: -3.1 ± 5.3 U/L; ALT: -6.0 ± 9.9 U/L), while the OL-group reduced LDL-c (-11.5 ± 21.8 mg/dL) and atherogenic index (-0.2 ± 0.5). Both intervention groups decreased neck circumference (CN: -1.0 ± 1.2 cm; OL: -0.5 ± 1.2 cm) and apo B (CN: -6.6 ± 10.7 mg/dL; OL: -7.0 ± 15.3 mg/dL). Conclusion: After an 8-wk energy-restricted intervention, all groups reduced body fat (kg), weight, and some others adiposity indicators, with no different effect of cashew nut or cashew nut oil. However, participants in the intervention groups experienced additional reductions in atherogenic marker, liver function biomarkers, and cardiovascular risk factors (neck circumference and apo B levels), with these effects observed across the OL group, CN group, and both intervention groups, respectively.Clinical trial registration:https://ensaiosclinicos.gov.br/rg/RBR-8xzkyp2, identifier 8xzkyp2.

2.
Food Funct ; 14(16): 7457-7468, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37486027

RESUMO

Chia is a functional food because of its positive impact on reducing the risk of metabolic diseases. These benefits are due to its nutritional composition as a source of dietary fiber and bioactive compounds. In our previous study, chia consumption increased the richness of the microbiota and the production of short chain fatty acids (SCFAs) when consumed by male Wistar rats, so, the objective of this study was to assess the effects of the consumption of chia with a high fat diet on gut health in female Wistar rats. 32 adult female Wistar rats were allocated into four groups and received one of the following diets: standard diet (SD), standard diet + chia (SDC), high fat diet (HFD) or high fat diet + chia (HFDC) for 8 weeks. At the end of the study, the intestinal microbiota, SCFA content, cecum content pH, immunoglobulin A (IgA) quantification and brush border membrane functionality were evaluated. There was no difference in the relative abundance of the gut microbiota, but chia consumption increased the microbial richness and diversity, increased the production of acetic and butyric acids in the SDC group and propionic acid in the HFD group, and decreased the pH of cecal content. The HFDC group demonstrated a lower IgA concentration compared to the HFD group. The SDC group increased SI and AP gene expression and decreased SGLT1 and PepT1 compared to the SD group. The consumption of chia can be beneficial for the functionality of the microbiota, improving SCFAs and intestinal pH, and the effects of chia in the microbiota can be more pronounced in HFD.


Assuntos
Dieta Hiperlipídica , Propionatos , Animais , Feminino , Masculino , Ratos , Ácidos Graxos Voláteis/metabolismo , Farinha , Fígado/metabolismo , Propionatos/metabolismo , Ratos Wistar
3.
Nutrients ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904250

RESUMO

Macauba is a palm tree native to Brazil, which fruits are rich in oil. Macauba pulp oil has high contents of oleic acid, carotenoids, and tocopherol, but its effect on health is unknown. We hypothesized that macauba pulp oil would prevent adipogenesis and inflammation in mice. Thus, the purpose of this study was to evaluate the effects of macauba pulp oil on the metabolic changes in C57Bl/6 mice fed a high-fat diet. Three experimental groups were used (n = 10): control diet (CD), high-fat diet (HFD), and high-fat diet with macauba pulp oil (HFM). The HFM reduced malondialdehyde and increased SOD activity and antioxidant capacity (TAC), showing high positive correlations between total tocopherol, oleic acid, and carotenoid intakes and SOD activity (r = 0.9642, r = 0.8770, and r = 0.8585, respectively). The animals fed the HFM had lower levels of PPAR-γ and NF-κB, which were negatively correlated with oleic acid intake (r = -0.7809 and r = -0.7831, respectively). Moreover, the consumption of macauba pulp oil reduced inflammatory infiltrate, adipocyte number and length, (mRNA) TNF-α, and (mRNA) SREBP-1c in the adipose tissue, and it increased (mRNA) Adiponectin. Therefore, macauba pulp oil prevents oxidative stress, inflammation, and adipogenesis and increases antioxidant capacity; these results highlight its potential against metabolic changes induced by an HFD.


Assuntos
Antioxidantes , Dieta Hiperlipídica , Animais , Camundongos , Antioxidantes/farmacologia , Adipogenia , Ácido Oleico/farmacologia , Inflamação , Estresse Oxidativo , Tocoferóis , Carotenoides/farmacologia , Superóxido Dismutase , Camundongos Endogâmicos C57BL
4.
Crit Rev Food Sci Nutr ; 63(21): 4966-4978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34847784

RESUMO

Biofortified foods are a new approach to increase minerals in the diet, and evidence suggests that zinc (Zn) biofortification can improve Zn physiological status in humans. This systematic review aimed to answer the question: "What are the effects of the consumption of Zn biofortified foods on Zn status in humans?". This review was conducted according to PRISMA guidelines and registered in PROSPERO (CRD42021250566). PubMed, Cochrane, Scopus and Science Direct databases were searched for studies that evaluated the effects of Zn biofortified foods on Zn absorption. Of 4282 articles identified, nine remained after inclusion/exclusion criteria were applied. Limitations in study quality, external and internal validity (bias/confounding), and study power were evaluated. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. Of the nine articles included, five observed an increase in total Zn absorption, and one showed that Zn participated in the conversion of linoleic acid to dihomo-γ-linolenic acid. By increasing the amount of Zn in the food, Zn biofortification can reduce the phytate:Zn molar ratio and improve Zn absorption in humans. More studies are needed to clarify what portion of Zn biofortified foods/day is needed to achieve a significant effect on Zn status.


Assuntos
Alimentos Fortificados , Zinco , Humanos , Produtos Agrícolas , Biofortificação , Dieta
5.
Nutrients ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432591

RESUMO

(1) Background: Exhaustive exercise can induce muscle damage. The consumption of nutritional compounds with the ability to positively influence the oxidative balance and an exacerbated inflammatory process has been previously studied. However, little is known about the nutritional value of curcumin (CCM) when mixed with whey protein concentrate (WPC). This study was developed to evaluate the effect of CCM-added WPC on inflammatory and oxidative process control and histopathological consequences in muscle tissue submitted to an exhaustive swimming test (ET). (2) Methods: 48 animals were randomly allocated to six groups (n = 8). An ET was performed 4 weeks after the start of the diet and animals were euthanized 24 h post ET. (3) Results: WPC + CCM and CCM groups reduced IL-6 and increased IL-10 expression in muscle tissue. CCM reduced carbonyl protein after ET compared to standard AIN-93M ET and WPC + CCM ET diets. Higher nitric oxide concentrations were observed in animals that consumed WPC + CCM and CCM. Consumption of WPC + CCM or isolated CCM reduced areas of inflammatory infiltrate and fibrotic tissue in the muscle. (4) Conclusions: WPC + CCM and isolated CCM contribute to the reduction in inflammation and oxidative damage caused by the exhaustive swimming test.


Assuntos
Curcumina , Animais , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Estresse Oxidativo , Músculo Esquelético/metabolismo , Inflamação/metabolismo
6.
Nutrients ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432610

RESUMO

A direct correlation has been reported between excessive fat intake and the development and progression of various enteropathies. Plant foods may contain bioactive compounds and non-digestible dietary fiber, with potential to improve intestinal health. Chia is a good source of dietary fiber and bioactive compounds. Our study evaluated the role of chia flour associated with a high-fat diet (HFD) on colon histomorphometry, intestinal functionality and intestinal microbiome composition and function in Wistar rats. The study used 32 young male rats separated into four groups to receive a standard diet (SD) or HFD, with or without chia, for 35 days. At the end of the study, the cecum, cecal content and duodenum were collected. The consumption of chia increased the production of short-chain fatty acids and improved fecal moisture. Chia consumption improved the circular muscle layer in the SD group. The diversity and abundance of intestinal bacteria were not affected, but increased richness was observed in the microbiome of the SD+chia group. Moreover, chia consumption decreased the expression of proteins involved in intestinal functionality. Chia consumption improved intestinal morphology and functionality in young Wistar rats but was insufficient to promote significant changes in the intestinal microbiome in a short term of 35 days.


Assuntos
Dieta Hiperlipídica , Salvia , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Salvia hispanica , Sementes/química , Fibras na Dieta/farmacologia , Fibras na Dieta/análise
7.
Nutrients ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364942

RESUMO

Black corn has been attracting attention to investigate its biological properties due to its anthocyanin composition, mainly cyanidin-3-glucoside. Our study evaluated the effects of black corn extract (BCE) on intestinal morphology, gene expression, and the cecal microbiome. The BCE intra-amniotic administration was evaluated by an animal model in Gallus gallus. The eggs (n = 8 per group) were divided into: (1) no injection; (2) 18 MΩ H2O; (3) 5% black corn extract (BCE); and (4) 0.38% cyanidin-3-glucoside (C3G). A total of 1 mL of each component was injected intra-amniotic on day 17 of incubation. On day 21, the animals were euthanized after hatching, and the duodenum and cecum content were collected. The cecal microbiome changes were attributed to BCE administration, increasing the population of Bifidobacterium and Clostridium, and decreasing E. coli. The BCE did not change the gene expression of intestinal inflammation and functionality. The BCE administration maintained the villi height, Paneth cell number, and goblet cell diameter (in the villi and crypt), similar to the H2O injection but smaller than the C3G. Moreover, a positive correlation was observed between Bifidobacterium, Clostridium, E. coli, and villi GC diameter. The BCE promoted positive changes in the cecum microbiome and maintained intestinal morphology and functionality.


Assuntos
Galinhas , Zea mays , Animais , Galinhas/metabolismo , Zea mays/metabolismo , Antocianinas/farmacologia , Antocianinas/metabolismo , Escherichia coli/metabolismo , Ceco/metabolismo , Bifidobacterium/metabolismo , Clostridium , Extratos Vegetais/farmacologia
8.
Nutr Res ; 108: 60-72, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403535

RESUMO

High-fat diets are associated with intestinal dysbiosis and leaky gut leading to intestinal inflammation. Bioactive components, including phenolic compounds, isolated or in their original food matrix, have alleviated intestinal impairments promoted by a high-fat diet. Black corn (Zea mays L.) is a colored corn in which anthocyanins are the most abundant bioactive compound. Thus, we hypothesized that black corn flour may have preventive effects on poor intestinal health in mice fed a high-fat diet. To study this, 30 C57BL/6 mice were randomly divided into 3 experimental groups receiving the following diets for 8 weeks: normal control (fed a normal diet); high-fat (fed a high-fat diet: 60% of calories from fat); high-fat corn (fed a high-fat diet added with 20% of black corn whole flour). The cecal microbiota analyzed by 16S ribosomal RNA sequencing showed that black corn flour intake increased the relative abundance of Ruminococcus, Roseburia, and Prevotellaceae_UCG-001, and decreased Bacteroides and Faecalibaculum. No difference was observed in the cecal short-chain fatty acids and fecal pH among the experimental groups (P > .05). Further, the consumption of black corn flour improved cecal morphology by increasing the number of goblet cells but with no difference in the crypt depth and width. These findings suggest that black corn flour as a source of anthocyanins could have preventive effects on gut dysbiosis resulting from a high-fat diet. SCFA, short chain fatty acids.


Assuntos
Dieta Hiperlipídica , Zea mays , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Células Caliciformes , Antocianinas/farmacologia , Camundongos Endogâmicos C57BL , Disbiose/prevenção & controle , Ácidos Graxos Voláteis , Proliferação de Células
9.
Food Funct ; 12(18): 8738-8746, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34369542

RESUMO

This study aimed to evaluate the effect of dry heated sorghum BRS 305 hybrid flour, as a rich source of resistant starch and tannins, on inflammation and oxidative stress in animals fed with a high-fat high-fructose diet. Phase 1 (8 weeks): male Wistar rats were divided into a group fed with an AIN-93 M diet (n = 10) and a group fed with a high-fat (35%) high-fructose (20%) (HFHF) diet (n = 20). Phase 2 (intervention 10 weeks): the control group was continued with the AIN-93 M diet (n = 10) and the HFHF group was divided into HFHF (n = 10) and sorghum flour (n = 10) groups. Sorghum flour decreased the NO, Akt, p65-NFκB, TLR4, and lipid peroxidation in the liver. Furthermore, sorghum flour improved SOD and CAT activities and the total antioxidant capacity of plasma. The phenolic compounds found in sorghum flour interacted in silico with AKT and p65-NFκB, mainly quercetin-3-rutinoside that showed the highest interaction with AKT (EFE -8.0) and procyanidins B1 and B2 that showed the highest interaction with p65-NFκB (EFE -8.9). The consumption of BRS 305 sorghum with a high tannin and resistant starch content improved inflammation and oxidative stress by inhibition of p65-NFκB activation in rats fed a high-fat high-fructose diet.


Assuntos
Dieta Hiperlipídica , Frutose , Inflamação/dietoterapia , Estresse Oxidativo , Amido Resistente , Sorghum , Taninos , Adiposidade , Animais , Antioxidantes/análise , Citocinas/metabolismo , Carboidratos da Dieta , Ingestão de Alimentos , Fígado/metabolismo , Masculino , Simulação de Acoplamento Molecular , Fenóis/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Amido Resistente/análise , Sorghum/química , Taninos/análise , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
10.
Food Funct ; 12(14): 6157-6166, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34079965

RESUMO

The intra-amniotic administration approach has been used to evaluate the effects of plant origin prebiotics on intestinal health and on brush border membrane functionality and morphology. Prebiotics are fermentable dietary fibers, which can positively affect the host by selectively stimulating the growth and activity of colon bacteria, thus improving intestinal health. The consumption of prebiotics increases digestive tract motility, which leads to hyperplasia and/or hypertrophy of intestinal cells, increasing nutrient digestive and absorptive surface area. This review collates information about the effects and relationship between prebiotic consumption on small intestinal brush border membrane functionality and morphology by utilizing the intra-amniotic administration approach. To date, research has shown that the intra-amniotic administration of prebiotics affects the expression of key brush border membrane functional proteins, intestinal surface area (villi height/width), and goblet cell number/size. These effects may improve brush border membrane functionality and digestive/absorptive capabilities.


Assuntos
Galinhas , Mucosa Intestinal/efeitos dos fármacos , Microvilosidades/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prebióticos/administração & dosagem , Animais , Colo/microbiologia , Fibras na Dieta/administração & dosagem , Digestão , Duodeno/metabolismo , Duodeno/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Microvilosidades/metabolismo
11.
Nutrients ; 13(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920564

RESUMO

Intestinal health relies on the association between the mucosal immune system, intestinal barrier and gut microbiota. Bioactive components that affect the gut microbiota composition, epithelial physical barrier and intestinal morphology were previously studied. The current systematic review evaluated evidence of anthocyanin effects and the ability to improve gut microbiota composition, their metabolites and parameters of the physical barrier; this was conducted in order to answer the question: "Does food source or extract of anthocyanin promote changes on intestinal parameters?". The data analysis was conducted following the PRISMA guidelines with the search performed at PubMed, Cochrane and Scopus databases for experimental studies, and the risk of bias was assessed by the SYRCLE tool. Twenty-seven studies performed in animal models were included, and evaluated for limitations in heterogeneity, methodologies, absence of information regarding allocation process and investigators' blinding. The data were analyzed, and the anthocyanin supplementation demonstrated positive effects on intestinal health. The main results identified were an increase of Bacteroidetes and a decrease of Firmicutes, an increase of short chain fatty acids production, a decrease of intestinal pH and intestinal permeability, an increase of the number of goblet cells and tight junction proteins and villi improvement in length or height. Thus, the anthocyanin supplementation has a potential effect to improve the intestinal health. PROSPERO (CRD42020204835).


Assuntos
Antocianinas/farmacocinética , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Bacteroidetes/metabolismo , Disponibilidade Biológica , Ácidos Graxos Voláteis/biossíntese , Firmicutes/metabolismo , Células Caliciformes/metabolismo , Humanos , Microvilosidades/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos
12.
Nutrients ; 13(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435398

RESUMO

Dietary iron and zinc deficiencies are a global health concern. Bacteria that colonize the gastrointestinal tract depend on minerals to maintain their activities; thus, recent evidence suggests that biofortified foods can modulate the host's beneficial bacterial taxa. The current review analyzed the research data that linked between iron and zinc biofortified foods and gut microbiota modulation. The data analysis was based on the PRISMA guidelines and the data search was performed at PubMed, Web of Science, Science Direct, and Scopus databases for experimental studies published from January 2010 until December 2020. The five selected studies were conducted in an experimental in vivo model (Gallus gallus). The identified and discussed research showed positive effects of biofortified foods on the composition and function of the gut microbiota. Further, an increase in short chain fatty acids producing bacterial populations as Lactobacillus and Ruminococcus, and a decrease in potentially pathogenic bacteria as Streptococcus, Escherichia, and Enterobacter was identified due to the consumption of biofortified foods. In conclusion, biofortified foods may contribute to improved gut health without increasing the colonization of pathogenic bacteria. The dietary inclusion of approximately 50% of iron/zinc biofortified foods has a significant beneficial effect on the gut microbiota. Additional studies in humans and animal models are warranted to further establish the suggested effects on the intestinal microbiome. PROSPERO (CRD42020184221).


Assuntos
Alimentos Fortificados , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro da Dieta/farmacologia , Ferro/farmacologia , Zinco/farmacologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Biodiversidade , Galinhas , Dieta , Ácidos Graxos Voláteis , Trato Gastrointestinal/microbiologia , Humanos
13.
Nutrients ; 11(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615146

RESUMO

This study assessed and compared the effects of the intra-amniotic administration of various concentrations of soluble extracts from chia seed (Salvia hispanica L.) on the Fe and Zn status, brush border membrane functionality, intestinal morphology, and intestinal bacterial populations, in vivo. The hypothesis was that chia seed soluble extracts will affect the intestinal morphology, functionality and intestinal bacterial populations. By using the Gallus gallus model and the intra-amniotic administration approach, seven treatment groups (non-injected, 18 Ω H2O, 40 mg/mL inulin, non-injected, 5 mg/mL, 10 mg/mL, 25 mg/mL and 50 mg/mL of chia seed soluble extracts) were utilized. At hatch, the cecum, duodenum, liver, pectoral muscle and blood samples were collected for assessment of the relative abundance of the gut microflora, relative expression of Fe- and Zn-related genes and brush border membrane functionality and morphology, relative expression of lipids-related genes, glycogen, and hemoglobin levels, respectively. This study demonstrated that the intra-amniotic administration of chia seed soluble extracts increased (p < 0.05) the villus surface area, villus length, villus width and the number of goblet cells. Further, we observed an increase (p < 0.05) in zinc transporter 1 (ZnT1) and duodenal cytochrome b (Dcytb) proteins gene expression. Our results suggest that the dietary consumption of chia seeds may improve intestinal health and functionality and may indirectly improve iron and zinc intestinal absorption.


Assuntos
Galinhas , Extratos Vegetais/farmacologia , Salvia/química , Sementes/química , Animais , Embrião de Galinha , Fibras na Dieta/análise , Regulação da Expressão Gênica , Hemoglobinas , Injeções , Ferro/sangue , Ferro/química , Fígado/química , Óvulo , Ácido Fítico , Extratos Vegetais/química , Zinco/sangue , Zinco/química
14.
Nutrients ; 10(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551574

RESUMO

Biofortification aims to improve the micronutrient concentration and bioavailability in staple food crops. Unlike other strategies utilized to alleviate Fe deficiency, studies of the gut microbiota in the context of Fe biofortification are scarce. In this study, we performed a 6-week feeding trial in Gallus gallus (n = 15), aimed to investigate the Fe status and the alterations in the gut microbiome following the administration of Fe-biofortified carioca bean based diet (BC) versus a Fe-standard carioca bean based diet (SC). The tested diets were designed based on the Brazilian food consumption survey. Two primary outcomes were observed: (1) a significant increase in total body Hb-Fe values in the group receiving the Fe-biofortified carioca bean based diet; and (2) changes in the gut microbiome composition and function were observed, specifically, significant changes in phylogenetic diversity between treatment groups, as there was increased abundance of bacteria linked to phenolic catabolism, and increased abundance of beneficial SCFA-producing bacteria in the BC group. The BC group also presented a higher intestinal villi height compared to the SC group. Our results demonstrate that the Fe-biofortified carioca bean variety was able to moderately improve Fe status and to positively affect the intestinal functionality and bacterial populations.


Assuntos
Ração Animal/análise , Biofortificação , Dieta , Alimentos Fortificados , Ferro/administração & dosagem , Phaseolus/química , Fenômenos Fisiológicos da Nutrição Animal , Animais , Brasil , Células CACO-2 , Galinhas , Fibras na Dieta/análise , Proteínas Alimentares/análise , Feminino , Ferritinas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Ferro/química , Masculino , Ácido Fítico/análise , Polifenóis/análise
15.
Crit Rev Food Sci Nutr ; 58(13): 2136-2146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28414527

RESUMO

Biofortification aims to improve the micronutrient concentration of staple food crops through the best practices of breeding and modern biotechnology. However, increased zinc and iron concentrations in food crops may not always translate into proportional increases in absorbed zinc (Zn) and iron (Fe). Therefore, assessing iron and zinc bioavailability in biofortified crops is imperative to evaluate the efficacy of breeding programs. This review aimed to investigate the advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness. In vitro, animal and isotopic human studies have shown high iron and zinc bioavailability in biofortified staple food crops. Human studies provide direct knowledge regarding the effectiveness of biofortification, however, human studies are time consuming and are more expensive than in vitro and animal studies. Moreover, in vitro studies may be a useful preliminary screening method to identify promising plant cultivars, however, these studies cannot provide data that are directly applicable to humans. None of these methods provides complete information regarding mineral bioavailability, thus, a combination of these methods should be the most appropriate strategy to investigate the effectiveness of zinc and iron biofortification programs.


Assuntos
Biofortificação , Alimentos Fortificados , Ferro/farmacocinética , Avaliação de Programas e Projetos de Saúde , Zinco/farmacocinética , Disponibilidade Biológica , Humanos
16.
Sci Rep ; 6: 19792, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26806528

RESUMO

More than two billion people are micronutrient deficient. Polished grains of popular rice varieties have concentration of approximately 2 µg g(-1) iron (Fe) and 16 µg g(-1) zinc (Zn). The HarvestPlus breeding programs for biofortified rice target 13 µg g(-1) Fe and 28 µg g(-1) Zn to reach approximately 30% of the estimated average requirement (EAR). Reports on engineering Fe content in rice have shown an increase up to 18 µg g(-1) in glasshouse settings; in contrast, under field conditions, 4 µg g(-1) was the highest reported concentration. Here, we report on selected transgenic events, field evaluated in two countries, showing 15 µg g(-1) Fe and 45.7 µg g(-1) Zn in polished grain. Rigorous selection was applied to 1,689 IR64 transgenic events for insert cleanliness and, trait and agronomic performances. Event NASFer-274 containing rice nicotianamine synthase (OsNAS2) and soybean ferritin (SferH-1) genes showed a single locus insertion without a yield penalty or altered grain quality. Endosperm Fe and Zn enrichment was visualized by X-ray fluorescence imaging. The Caco-2 cell assay indicated that Fe is bioavailable. No harmful heavy metals were detected in the grain. The trait remained stable in different genotype backgrounds.


Assuntos
Alimentos Fortificados , Ferro , Micronutrientes , Oryza/química , Zinco , Colômbia , Grão Comestível/química , Endosperma/química , Expressão Gênica , Genótipo , Metais Pesados/química , Oryza/genética , Filipinas , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável , Sementes , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA