Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Soft Robot ; 11(4): 550-560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39178400

RESUMEN

The top-down approach in designing and fabricating origami robots could achieve far more complicated functions with compliant and elegant designs than traditional robots. This study presents the design, fabrication, and testing of a reticular origami soft robotic gripper that could adapt to the shape of the grasping subject and grasp the subject within 80 ms from the trigger instance. A sensing mechanism consisting of the resistive pressure sensor array and flexible elongation sensor is designed to validate further the shape-adaptive grasping capability and model the rough shape and size of the subject. The grasping test on various objects with different shapes, surface textures, sizes, and living animals further validates the excellent grasping capabilities of the gripper. The gripper could be either actively triggered by actuation or passively triggered by a minimum of 0.0014 J disturbance energy. Such features make it particularly suitable for applications such as capturing underwater creatures and illegal drone control.

2.
Soft Robot ; 11(4): 585-595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38557238

RESUMEN

Microgrippers that incorporate soft actuators are appropriate for micromanipulation or microsurgery owing to their ability to grasp objects without causing damage. However, developing a microgripper with a large gripping range that can produce a large force with high speed remains challenging in soft actuation mechanisms. Herein, we introduce a compliant microgripper driven by a soft dielectric elastomer actuator (DEA) called a spiral flexure cone DEA (SFCDEA). The submillimeter-scale SFCDEA exhibited a controllable linear displacement over a high bandwidth and the capability of lifting 100.9 g, which was 670 times higher than its mass. Subsequently, we developed a compliant microgripper based on the SFCDEA using smart composite microstructure technology to fabricate three-dimensional gripper linkages. We demonstrated that the microgripper was able to grasp various millimeter-scale objects with different shapes, sizes, and weights without a complex feedback control owing to its compliance. We proved the versatility of our gripper in robotic manipulation by demonstrating adaptive grasping and releasing of small objects using vibrations owing to its high bandwidth.

3.
Soft Robot ; 11(4): 628-638, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38557239

RESUMEN

In recent years, soft robotic grippers have emerged as a promising solution for versatile and safe manipulation of objects in various fields. However, precise force control is critical, especially when handling delicate or fragile objects, to avoid excessive grip force application or to prevent object slippage. Herein, we propose a novel three-degree-of-freedom force sensor incorporated within a soft robotic gripper to realize stable grasping with force feedback. The proposed optical sensor employs lightweight and compact optical fibers, thereby allowing for cost-effective fabrication, and a robust sensing system that is immune to electromagnetic fields. By innervating the soft gripper with optical fibers, a durable system is achieved with the fibers functioning as a strengthening layer, thereby eliminating the need for embedding an external stiffening structure for efficient bending actuation. The innovative contact-based light loss sensing mechanism allows for a robust and stable sensing mechanism with low drift (<0.1% over 9000 cycles) that can be applied to soft pneumatic bending grippers. We used the developed sensor-incorporated soft gripper to grasp various objects, including magnetic materials, and achieved slip detection along with grip force feedback without any signal interference. Overall, this study proposes a robust measuring multi-degree-of-freedom force sensor that can be incorporated into grippers for improved grasping stability.

4.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37514748

RESUMEN

Soft robotic grippers offer great advantages over traditional rigid grippers with respect to grabbing objects with irregular or fragile shapes. Shape memory polymer composites are widely used as actuators and holding elements in soft robotic grippers owing to their finite strain, high specific strength, and high driving force. In this paper, a general 3D anisotropic thermomechanical model for woven fabric-reinforced shape memory polymer composites (SMPCs) is proposed based on Helmholtz free energy decomposition and the second law of thermodynamics. Furthermore, the rule of mixtures is modified to describe the stress distribution in the SMPCs, and stress concentration factors are introduced to account for the shearing interaction between the fabric and matrix and warp yarns and weft yarns. The developed model is implemented with a user material subroutine (UMAT) to simulate the shape memory behaivors of SMPCs. The good consistency between the simulation results and experimental validated the proposed model. Furthermore, a numerical investigation of the effects of yarn orientation on the shape memory behavior of the SMPC soft gripper was also performed.

5.
Soft Robot ; 10(4): 737-748, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36827310

RESUMEN

Soft robots have received much attention due to their impressive capabilities including high flexibility and inherent safety features for humans or unstructured environments compared with hard-bodied robots. Soft actuators are the crucial components of soft robotic systems. Soft robots require dexterous soft actuators to provide the desired deformation for different soft robotic applications. Most of the existing soft actuators have only one or two deformation modes. In this article, a new soft pneumatic actuator (SPA) is proposed taking inspiration from Kirigami. Kirigami-inspired cuts are applied to the actuator design, which enables the SPA to be equipped with multiple deformation modes. The proposed Kirigami-inspired soft pneumatic actuator (KiriSPA) is capable of producing bending motion, stretching motion, contraction motion, combined motion of bending and stretching, and combined motion of bending and contraction. The KiriSPA can be directly manufactured using 3D printers based on the fused deposition modeling technology. Finite element method is used to analyze and predict the deformation modes of the KiriSPA. We also investigated the step response, creep, hysteresis, actuation speed, stroke, workspace, stiffness, power density, and blocked force of the KiriSPA. Moreover, we demonstrated that KiriSPAs can be combined to expand the capabilities of various soft robotic systems including the soft robotic gripper for delicate object manipulation, the soft planar robotic manipulator for picking objects in the confined environment, the quadrupedal soft crawling robot, and the soft robot with the flipping locomotion.

6.
Soft Robot ; 10(3): 556-567, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36854140

RESUMEN

Robot grippers that lack physical compliance have a difficult time dealing with uncertainty, such as fragile objects that may not have well-defined shapes. Existing soft robotic grippers require a large empty workspace for their actuated fingers to curl around the objects of interest, limiting their performance in clutter. This article presents a three-dimensional structure that exhibits negative stiffness in every bending direction used as fingers in a class of soft robotic grippers. Our approach exploits a compliant mechanism in a conical shape such that a transverse external contact force causes the fingers to bend toward the contact, enabling passive conformation for an adaptive grasp, even in clutter. We show analytically and experimentally that the proposed fingers have a negative bending response and that they conform to objects of various diameters. We demonstrate a soft robotic gripper with three self-conforming fingers performing the following: (1) fingertip grasping, (2) power grasping, and (3) semipassive grasping in clutter. Grasping experiments focus on picking fruits, which exemplify delicate objects with unmodeled shapes with significant variation. The experimental results reveal the ability of the self-conforming structure to smoothly envelope a broad range of objects and demonstrate a 100% grasp success rate in the experiments performed. The proposed passively conforming fingers enable picking of complex and unknown geometries without disturbing nearby objects in clutter and without the need for complex grasping algorithms. The proposed structures can be tailored to deform in desired ways, enabling a robust strategy for the engineering of physical compliance for adaptive soft structures.


Asunto(s)
Robótica , Robótica/métodos , Diseño de Equipo , Dedos/fisiología , Fenómenos Mecánicos , Fuerza de la Mano/fisiología
7.
Bioinspir Biomim ; 17(6)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36174553

RESUMEN

Inspired by the twisting and hanging phenomenon of vines, this paper proposes and designs a passive variable stiffness soft robotic gripper to grasp an object in a simple and robust manner using the principle of jamming. This method has the characteristics of high reliability and good stability, which can achieve soft grasping and rigid load-bearing of the object. Firstly, according to two key issues, the design model of the gripper is proposed, the principle of the proposed gripper is analyzed, and the relationship between the stiffness of the gripper and the stiffness of the object is revealed. Secondly, the model of the robotic gripper is created using a conventional motor drive method, and the grasping process and deformation causes of the gripper are analyzed by using the principle of instability effect and large deformation principle. Finally, the experimental prototype is developed and the feasibility of the design principle and the grasping deformation process of the gripper are verified by gripping experiments.

8.
Sensors (Basel) ; 22(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35890901

RESUMEN

This investigation presents a novel soft-robotic pneumatic gripper that consists of three newly proposed soft actuators. The newly proposed soft actuators adopt a composite structure of two kinds of pneumatic networks which can work independently and play their respective roles in grasping. The design, analyses, and fabrication of the proposed soft actuators are introduced systematically, and then an experimental system is built to examine the output characteristics of the soft actuator. Compared with the conventional single pneumatic network-based soft actuator, the newly proposed one combines the advantages of the two pneumatic networks, and it employs a larger output force and retains desired bending deformation ability at the same time. The grasping performance test results show that the new soft gripper constituted by the proposed soft actuators has high reliability and stability whether in pinching or in enveloping grasping, and it is also competent for grasping heavier or irregular objects, demonstrating the feasibility and effectiveness of the newly proposed soft actuator, and giving it a good and wide application prospect.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Diseño de Equipo , Fuerza de la Mano , Reproducibilidad de los Resultados , Robótica/métodos
9.
Nanomaterials (Basel) ; 12(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458025

RESUMEN

High compliance and muscle-alike soft robotic grippers have shown promising performance in addressing the challenges in traditional rigid grippers. Nevertheless, a lack of control feedback (gasping speed and contact force) in a grasping operation can result in undetectable slipping and false positioning. In this study, a pneumatically driven and self-powered soft robotic gripper that can recognize the grabbed object is reported. We integrated pressure (P-TENG) and bend (B-TENG) triboelectric sensors into a soft robotic gripper to transduce the features of gripped objects in a pick-and-place operation. Both the P-TENG and B-TENG sensors are fabricated using a porous structure made of soft Ecoflex and Euthethic Gallium-Indium nanocomposite (Eco-EGaIn). The output voltage of this porous setup has been improved by 63%, as compared to the non-porous structure. The developed soft gripper successfully recognizes three different objects, cylinder, cuboid, and pyramid prism, with a good accuracy of 91.67% and has shown its potential to be beneficial in the assembly lines, sorting, VR/AR application, and education training.

10.
ACS Nano ; 16(2): 3008-3016, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35128922

RESUMEN

In smart logistics, traditional manual sorting and sorting systems based on rigid manipulators limit the warehousing development and damage the goods. Here, a nondestructive sorting method based on bionic soft fingers is proposed. This method is implemented by the soft robotic gripper (SRG) for grasping of the breakable objects, the triboelectric sensor (TES) for size sorting of the objects, and the signal processing module. In the fabrication of SRG, the silicon rubber is prepared by controlling the material synthesis process, and its Young's modulus is 600.91 kPa, which is comparable to the Young's modulus of skin tissue. Also, the maximum input pressure of SRG is 71.4 kPa. The TES has a linear relationship between pulse number and sliding displacement, and its resolution is 3 mm. It induces pulse signal sequences to quantify the SRG bending state and thus realize the size sorting of objects. Additionally, a nondestructive sorting system based on TES and SRG has been developed for fruit sorting (e.g., apples, oranges), enabling nondestructive grasping and accurate sorting. Its sorting range is 70-120 mm, and the sorting accuracy rate is up to 95%. This work also provides a way for the application of SRG and triboelectric sensors in the sorting field.


Asunto(s)
Robótica , Módulo de Elasticidad , Diseño de Equipo , Fuerza de la Mano , Silicio
11.
Micromachines (Basel) ; 12(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34683194

RESUMEN

Soft robotic grippers are able to carry out many tasks that traditional rigid-bodied grippers cannot perform but often have many limitations in terms of control and feedback. In this study, a Fin Ray effect inspired soft robotic gripper is proposed with its whole body directly 3D printed using soft material without the need of assembly. As a result, the soft gripper has a light weight, simple structure, is enabled with high compliance and conformability, and is able to grasp objects with arbitrary geometry. A force sensor is embedded in the inner side of the gripper, which allows the contact force required to grip the object to be measured in order to guarantee successful grasping and to provide the most suitable gripping force. In addition, it enables control and data monitoring of the gripper's operating state at all times. Characterization and grasping demonstration of the gripper are given in the Experiment section. Results show that the gripper can be used in a wide range of scenarios and applications, such as the service robot and food industry.

12.
Front Robot AI ; 8: 631371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113655

RESUMEN

Soft robotic grippers are increasingly desired in applications that involve grasping of complex and deformable objects. However, their flexible nature and non-linear dynamics makes the modelling and control difficult. Numerical techniques such as Finite Element Analysis (FEA) present an accurate way of modelling complex deformations. However, FEA approaches are computationally expensive and consequently challenging to employ for real-time control tasks. Existing analytical techniques simplify the modelling by approximating the deformed gripper geometry. Although this approach is less computationally demanding, it is limited in design scope and can lead to larger estimation errors. In this paper, we present a learning based framework that is able to predict contact forces as well as stress distribution from soft Fin Ray Effect (FRE) finger images in real-time. These images are used to learn internal representations for deformations using a deep neural encoder, which are further decoded to contact forces and stress maps using separate branches. The entire network is jointly learned in an end-to-end fashion. In order to address the challenge of having sufficient labelled data for training, we employ FEA to generate simulated images to supervise our framework. This leads to an accurate prediction, faster inference and availability of large and diverse data for better generalisability. Furthermore, our approach is able to predict a detailed stress distribution that can guide grasp planning, which would be particularly useful for delicate objects. Our proposed approach is validated by comparing the predicted contact forces to the computed ground-truth forces from FEA as well as real force sensor. We rigorously evaluate the performance of our approach under variations in contact point, object material, object shape, viewing angle, and level of occlusion.

13.
Soft Robot ; 5(5): 567-575, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29924683

RESUMEN

The past decade has witnessed tremendous progress in soft robotics. Unlike most pneumatic-based methods, we present a new approach to soft robot design based on precharged pneumatics (PCP). We propose a PCP soft bending actuator, which is actuated by precharged air pressure and retracted by inextensible tendons. By pulling or releasing the tendons, the air pressure in the soft actuator is modulated, and hence, its bending angle. The tendons serve in a way similar to pressure-regulating valves that are used in typical pneumatic systems. The linear motion of tendons is transduced into complex motion via the prepressurized bent soft actuator. Furthermore, since a PCP actuator does not need any gas supply, complicated pneumatic control systems used in traditional soft robotics are eliminated. This facilitates the development of compact untethered autonomous soft robots for various applications. Both theoretical modeling and experimental validation have been conducted on a sample PCP soft actuator design. A fully untethered autonomous quadrupedal soft robot and a soft gripper have been developed to demonstrate the superiority of the proposed approach over traditional pneumatic-driven soft robots.

14.
Soft Robot ; 5(1): 24-35, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29412079

RESUMEN

In this article, we have established an analytical model to estimate the quasi-static bending displacement (i.e., angle) of the pneumatic actuators made of two different elastomeric silicones (Elastosil M4601 with a bulk modulus of elasticity of 262 kPa and Translucent Soft silicone with a bulk modulus of elasticity of 48 kPa-both experimentally determined) and of discrete chambers, partially separated from each other with a gap in between the chambers to increase the magnitude of their bending angle. The numerical bending angle results from the proposed gray-box model, and the corresponding experimental results match well that the model is accurate enough to predict the bending behavior of this class of pneumatic soft actuators. Further, by using the experimental bending angle results and blocking force results, the effective modulus of elasticity of the actuators is estimated from a blocking force model. The numerical and experimental results presented show that the bending angle and blocking force models are valid for this class of pneumatic actuators. Another contribution of this study is to incorporate a bistable flexible thin metal typified by a tape measure into the topology of the actuators to prevent the deflection of the actuators under their own weight when operating in the vertical plane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA