Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 11(10): 5736-5752, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37823130

RESUMEN

Consumers have recently preferred food that is easy to make and of excellent quality, as well as food that is safe, natural, and minimally processed, but has a longer shelf life. Food deteriorates over time as a result of microbiological, chemical, or physical changes. Phytochemicals derived from medicinal and food plants have long been recognized for their biological activity to protect plants. These bioactivities are designed to increase the shelf life of food while inhibiting the growth of microorganisms. The use of natural plant food preservatives containing bioactive compounds as health-promoting agents is particularly intriguing. Furthermore, due to their effectiveness against food spoilage and foodborne pathogens, natural plant-origin antimicrobial compounds have been investigated as alternatives to synthetic antimicrobial compounds for preserving food quality. This review focused on the plant composition and properties that can be utilized as a natural food preservative, as well as the possibilities of using Mongolian medicinal plants.

2.
Molecules ; 28(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37049931

RESUMEN

The peels from three pumpkin genotypes cultivated in Greece were assessed for their phenolic content and bioactive properties to obtain extracts with a high preservative capacity. The optimization of the extraction was performed through response surface methodology (RSM) based on a Box-Behnken experimental design after applying two extraction techniques: heat-assisted (HAE) and ultrasound-assisted (UAE) extraction. The implemented independent variables were time, solvent concentration, and temperature/power (for HAE/UAE), while as dependent variables the dry residue (DR), reducing power (RP), and total phenolic content (TP) were considered. In general, HAE was the most effective technique for 'TL' (75 min; 30 °C; 24% ethanol) and 'Voutirato' (15 min; 30 °C; 10% ethanol), while UAE was more effective for 'Leuka Melitis' (5 min; 400 W; 0% ethanol). The extracts obtained in the global optimum conditions for each genotype peel were then assessed for their phenolic profile, by HPLC-DAD-ESI/MS, and bioactive potential. Seven phenolic compounds were detected, including four flavonoids, two phenolic acids, and one flavan-3-ol. The extracts presented high antioxidant, antibacterial, and antifungal potential, with no cytotoxicity for non-tumor cells. The optimized conditions for the extraction of preservative compounds from bioresidues were defined, allowing the acquisition of antioxidant and antimicrobial extracts and proving their potential for food application.


Asunto(s)
Antioxidantes , Cucurbita , Antioxidantes/farmacología , Calor , Fenoles/química , Etanol/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
3.
Antibiotics (Basel) ; 12(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978352

RESUMEN

Nowadays, the wide spread of foodborne illness and the growing concerns about the use of synthetic food additives have shifted the focus of researchers towards essential oils (EOs) as possible antimicrobials and preservatives of natural origin. Thanks to their antimicrobial properties against pathogenic and food spoilage microorganisms, EOs have shown good potential for use as alternative food additives, also to counteract biofilm-forming bacterial strains, the spread of which is considered to be among the main causes of the increase in foodborne illness outbreaks. In this context, the aim of this study has been to define the antibacterial and antibiofilm profile of thyme (Thymus vulgaris L.) essential oil (TEO) against widespread foodborne pathogens, Salmonella enterica subsp. enterica serovar Typhimurium and Bacillus cereus. TEO chemical composition was analyzed through gas chromatography-mass spectrometry (GC-MS). Preliminary in vitro antibacterial tests allowed to qualitatively verify TEO efficacy against the tested foodborne pathogens. The subsequent determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values allowed to quantitatively define the bacteriostatic and bactericidal effects of TEO. To evaluate the ability of essential oils to inhibit biofilm formation, a microplate assay was performed for the bacterial biofilm biomass measurement. Results suggest that TEO, rich in bioactive compounds, is able to inhibit the growth of tested foodborne bacteria. In addition, the highlighted in vitro anti-biofilm properties of TEO suggest the use of this natural agent as a promising food preservative to counteract biofilm-related infections in the food industry.

4.
Microorganisms ; 10(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557699

RESUMEN

Foodborne diseases continue to represent an important public health issue. The control of food spoilage and pathogenic microorganisms is achieved mainly by synthetic chemicals, unfortunately associated to several undesirable aspects. The growing requirement for new and safe alternative strategies has resulted in the research of agents from natural sources with antimicrobial properties, such as essential oils (EOs). This study's purpose was to define the antibacterial profile of thyme (Thymus vulgaris) and cloves (Syzygium aromaticum) essential oils against both Gram-positive and Gram-negative important foodborne pathogenic bacteria. Gas chromatography mass spectrometry analysis was performed for EOs' chemical composition. Qualitative in vitro antimicrobial assays (i.e., agar well diffusion method and disk-volatilization method) allowed for verification of the efficacy of EOs, used individually and in binary combination and both in liquid and vapor phase, against Staphylococcus aureus and Escherichia coli food isolates. Minimal inhibitory concentrations and minimal bactericidal concentration values have been used to quantitatively measure the antibacterial activity of EOs, while the fractional inhibitory concentration index has been considered as a predictor of in vitro antibacterial synergistic effects. The microbiological tests suggest that thyme and cloves EOs, rich in bioactive compounds, are able to inhibit the growth of tested foodborne bacteria, especially in vapor phase, also with synergistic effects. Results provide evidence to consider the tested essential oils as promising sources for development of new, broad-spectrum, green food preservatives.

5.
Front Microbiol ; 13: 1035894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36560942

RESUMEN

Food safety and health are the themes of today's society. As a class of foodborne pathogens, Salmonella enteritidis has become one of the common zoonotic pathogens. Because chemical preservatives have certain harmfulness and have been questioned, it is particularly important to find green and safe natural preservatives. The advantages of plant essential oils (EOs) are that they are green and safe, have a wide range of antibacterials, and are not easy to form drug resistance. In recent years, studies have found that EOs have excellent antibacterial activity, but their antibacterial mechanism has not been conclusive, which has certain limitations in their application in the food field. Cinnamon essential oil (CEO) extracted from dried cinnamon is a secondary metabolite of cells and a very important natural food flavor. More importantly, it is non-toxic to the human body and has been proven to have a good antibacterial effect, but its antibacterial mechanism is still unclear. Therefore, it was of great practical significance to carry out the research on the antibacterial mechanism of CEO on S. enteritidis. In this work, S. enteritidis was used as the test bacteria, and CEO was selected as the antibacterial agent to study the antibacterial mechanisms. By studying the physiological metabolism of S. enteritidis cells by CEO, the influence of CEO on the bacteriostatic mechanism of S. enteritidis was systematically elucidated. The study found that CEO treatment would reduce the activity of bacterial metabolism. It is mainly reflected in the following three aspects: first, the activity of key enzymes in TCA circulation is inhibited, thus affecting the respiration of S. enteritidis. Second, it affects the level of energy metabolism by inhibiting the content of adenosine triphosphate (ATP) and the activity of ATPase. Finally, it can affect the physiological metabolism of bacteria by inhibiting the metabolism of proteins and other substances. Therefore, this article was expected to provide a theoretical basis for the development of new natural food preservatives and the prevention and control of S. enteritidis.

6.
J Agric Food Chem ; 70(32): 9990-9999, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35924350

RESUMEN

Bacteriocins are bacterial-derived peptides that exhibit antimicrobial activity and can be used as food preservatives. Here, using the indicator strain Bacillus cereus CMCC63301, we screened and identified a Bacillus thuringiensis LX43 strain that exhibits potent antimicrobial activity and harbors a putative leaderless bacteriocin gene cluster (thn gene cluster). Five novel leaderless bacteriocins, thuricin A1, A2, A3, A4, and A5, encoded by the thn gene cluster, were purified and identified. Thuricin A5 was regarded as a representative and showed remarkable antimicrobial activity against foodborne pathogens B. cereus, Clostridium perfringens, Listeria monocytogenes, and Staphylococcus aureus, likely by damaging their cell envelope. Moreover, thuricin A5 displayed good thermal and pH stability, with no hemolytic activity and cytotoxicity, indicating its wide applicability and biosafety. Furthermore, thuricin A5 effectively inhibited or eradicated foodborne pathogens in skim milk at 25 °C in a dose-dependent manner, affirming its potential for use as a novel biopreservative in foods.


Asunto(s)
Antiinfecciosos , Bacillus thuringiensis , Bacteriocinas , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacillus cereus/genética , Bacteriocinas/genética , Bacteriocinas/farmacología
7.
Polymers (Basel) ; 14(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012189

RESUMEN

Plant-derived essential oils (EOs) represent a green alternative to conventional antimicrobial agents in food preservation. Due to their volatility and instability, their application is dependent on the development of efficient encapsulation strategies allowing their protection and release control. Encapsulation in Polyhydroxyalkanoate (PHA)-based nanoparticles (NPs) addresses this challenge, providing a biodegradable and biobased material whose delivery properties can be tuned by varying polymer composition. In this work, EO from Mexican oregano was efficiently encapsulated in Polyhydroxybutyrate (PHB) and Poly-3-hydroxybutyrate-co-hydroxyhexanoate (PHB-HHx)-based NPs by solvent evaporation technique achieving high encapsulation efficiency, (>60%) and loading capacity, (about 50%). The obtained NPs displayed a regular distribution with a size range of 150-210 nm. In vitro release studies in food simulant media were fitted with the Korsmeyer-Peppas model, indicating diffusion as the main factor controlling the release. The cumulative release was affected by the polymer composition, possibly related to the more amorphous nature of the copolymer, as confirmed by WAXS and DSC analyses. Both the EO-loaded nanosystems displayed antimicrobial activity against Micrococcus luteus, with PHB-HHx-based NPs being even more effective than the pure EO. The results open the way to the effective exploitation of the developed nanosystems in active packaging.

8.
Molecules ; 26(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34279395

RESUMEN

The use of natural compounds with biocidal activity to fight the growth of bacteria responsible for foodborne illness is one of the main research challenges in the food sector. This study reports the preparation and physicochemical characterization of chitosan nanoparticles loaded with Thymus capitatus (Th-CNPs) and Origanum vulgare (Or-CNPs) essential oils. The nanosystems were obtained by ionotropic gelation technique with high encapsulation efficiency (80-83%) and loading capacity (26-27%). Nanoparticles showed a spherical shape, bimodal particle size distribution, and good stability (zeta potential values > 40 mV). The treatment of the nanosuspensions at different temperatures (4 and 40 °C) and storage times (7, 15, 21, and 30 days) did not affect their physicochemical parameters and highlights their reservoir ability for essential oils also under stressful conditions. Both Or-CNPs and Th-CNPs exhibited an enhanced bactericidal activity against foodborne pathogens (S. aureus, E. coli, L. monocytogenes) than pure essential oils. These ecofriendly nanosystems could represent a valid alternative to synthetic preservatives and be of interest for health and food safety.


Asunto(s)
Antiinfecciosos/farmacología , Nanopartículas/química , Aceites Volátiles/farmacología , Origanum/química , Aceites de Plantas/farmacología , Thymus (Planta)/química , Antiinfecciosos/administración & dosificación , Quitosano/química , Listeria monocytogenes/efectos de los fármacos , Aceites Volátiles/administración & dosificación , Aceites de Plantas/administración & dosificación , Staphylococcus aureus/efectos de los fármacos
9.
Environ Sci Pollut Res Int ; 28(1): 1131-1140, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32833171

RESUMEN

This study aimed to evaluate possible synergistic interactions on antimicrobial and antioxidant efficacy of clove and cinnamon oil components in combination and characterization of compounds responsible for synergistic interactions using TLC bioautography followed by checkerboard titration, isobologram analysis, and spectrometric characterization. Among the combinations tested, cinnamaldehyde from cinnamon oil and eugenol from clove oil in combination showed a synergistic antimicrobial interaction against foodborne microbes Listeria monocytogenes (fractional inhibitory concentration index (FICI): 0.31), Salmonella typhimurium (FICI: 0.41), and Aspergillus niger (FICI: 0.48), and synergistic antioxidant efficacy (combination index: 0.78) in in vitro model. Cinnamaldehyde/eugenol blend did not show any cytotoxic effect (IC50 > 1000 µg/ml) in human normal keratinocyte cell line. The results provide evidence that the cinnamaldehyde/eugenol blend may help in designing a more potent novel natural antimicrobial and antioxidant agent in food and pharmaceutical industries.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Syzygium , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cinnamomum zeylanicum , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología
10.
Molecules ; 25(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255155

RESUMEN

Leptospermum petersonii (family Myrtaceae) is often cultivated for ornamental purposes but also serves as a rich source of bioactive essential oils. While several studies focused on the activities of the essential oils, this study analysed the potential of spent L. petersonii leaves as a natural food preservative. METHOD: We investigated the in vitro antioxidant and antimicrobial activities of crude L. petersonii extracts against activities of the purified isolated flavonoid, 6-methyltectochrysin, which was characterized using spectroscopic methods. The antioxidant assays followed ORAC, FRAP and TEAC tests. The antimicrobial activities of the extract and purified flavonoid were analysed against six multi-drug resistant microbial strains in broth dilution assays. RESULT: The results revealed that both the crude extracts and isolated 6-methyltectochrysin exhibited positive radical ion scavenging antioxidant potential, however the crude extract was about 6-fold more potent antioxidant than the purified 6-methyltectochrysin. The crude extract also showed strong antimicrobial activities against Bacillus cereus, and even more potent antimicrobial agent than the reference ampicillin antibiotic against Klebsiella pneumoniae subsp. pneumoniae. A higher resistance was observed for the tested Gram-negative strains than for the Gram-positive ones. 6-methyltectochrysin was generally inactive in the antimicrobial assays. CONCLUSION: The crude methanolic extract showed significant bioactivity which validates the medicinal relevance of the plant. The observed biological activities, especially against a notorious strain of B. cereus, suggest that L. petersonii could be a promising natural source of food preservatives.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacología , Leptospermum/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier
11.
Lett Appl Microbiol ; 71(2): 195-202, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32357268

RESUMEN

The aim of this study was to examine whether the process of initial colonization and the formation of mature biofilm structure of foodborne bacterial pathogens Listeria monocytogenes and Salmonella typhimurium can be impeded by active essential oil components ß-caryophyllene, cinnamaldehyde and eugenol at their individual and combined effects. Among the essential oil components tested, cinnamaldehyde and eugenol at their individual effect showed >50% degradation in biofilm biomass against preformed (matured) biofilms of both the studied bacteria, whereas ß-caryophyllene failed to do so. In combination, cinnamaldehyde/eugenol blend showed synergistic antibiofilm efficacy against preformed biofilms of both the studied bacteria L. monocytogenes (FICI: 0·24) and S. typhimurium (FICI: 0·40), whereas other tested combinations showed additive antibiofilm efficacy with FICI ranged from 2·02 to 2·35. Essential oil components alone and in combination also showed much higher inhibition effect on biofilm formation at the initial stage compared to their inhibition effect on preformed biofilms. The results provide evidence that cinnamaldehyde/eugenol combination may help in designing a more potent novel, natural antibiofilm blend at sufficiently low concentrations in the food and pharmaceutical industries. SIGNIFICANCE AND IMPACT OF THE STUDY: In the present work, synergistic antibiofilm efficacy of cinnamaldehyde/eugenol combination against established biofilms of foodborne bacterial pathogens Listeria monocytogenes and Salmonella typhimurium has been reported. These synergistic interactions may help in designing a more potent, safe and effective novel natural antibiofilm agent in food and pharmaceutical industries. Besides, this combination will also be helpful in reducing concentration of individual components, thereby minimizing the undesirable impact on sensory properties of food. To our knowledge, this is the first time, synergistic antibiofilm efficacy of cinnamaldehyde/eugenol blend against established biofilms of foodborne bacterial pathogens has been reported.


Asunto(s)
Acroleína/análogos & derivados , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Listeria monocytogenes/efectos de los fármacos , Sesquiterpenos Policíclicos/farmacología , Salmonella typhimurium/efectos de los fármacos , Acroleína/farmacología , Eugenol/farmacología , Listeria monocytogenes/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Salmonella typhimurium/crecimiento & desarrollo
12.
Arch Microbiol ; 202(6): 1439-1448, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32185411

RESUMEN

The present investigation aimed to evaluate antibacterial, antifungal and antioxidant efficacy of essential oils of three commonly used spices (black pepper, cinnamon and clove) in combination along with chemical characterization and toxicity evaluation. Among the possible combinations tested, cinnamon/clove oil combination showed synergistic antibacterial activity against foodborne bacteria Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium and Pseudomonas aeruginosa and synergistic antifungal activity against Aspergillus niger as well as synergistic antioxidant potential in DPPH radical scavenging model system. GC-HRMS analysis revealed that out of thirteen identified components from clove oil, eugenol was found to be the main constituent of the oil; whereas out of twenty one identified constituents from cinnamon oil, the main component was cinnamaldehyde. Cinnamon/clove oil combination did not show any cytotoxic potential at recommended dosage level (IC50 > 2000 µg/ml). The results provide evidence that cinnamon/clove oil combination might indeed be used as a potential source of safe and effective novel natural antibacterial, antifungal and antioxidant blend in the food and pharmaceutical industries. To the best of our knowledge, this is the first time a combination of essential oils has been tested as natural preservatives to prevent both microbial proliferation and oxidative deterioration at sufficiently low concentrations.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antioxidantes/farmacología , Aceite de Clavo/farmacología , Sinergismo Farmacológico , Aceites Volátiles/farmacología , Acroleína/análogos & derivados , Acroleína/farmacología , Aspergillus niger/efectos de los fármacos , Cinnamomum zeylanicum/química , Aceite de Clavo/química , Eugenol/farmacología , Listeria monocytogenes/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Piper nigrum/química , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Syzygium/química
13.
Food Res Int ; 119: 499-509, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884682

RESUMEN

The current study aimed obtaining antimicrobial sachets that could be used as preservatives for foods. Basil (BEO) and Pimenta dioica (PDEO) essential oils (EOs) were analyzed by GC-FID and GC-MS and tested against the foodborne bacteria S. aureus, E. coli, L. monocytogenes, P. aeruginosa, S. Enteritidis, and the food-spoilage mold B. nivea. Then, inclusion complexes (ICs) with EOs and ß-cyclodextrin (ß-CD) were prepared as a strategy to reduce volatility and increase the release time of EOs. Eight ICs were prepared by kneading and freeze-drying methods, in two molar ratios, and have been characterized by complementary methods: FT-IR, thermal analysis (DSC and TG/DTG), powder XRD, and solid state 13C NMR. In vitro antimicrobial activities of ICs, both dispersed in agar and loaded in sachets, have also been investigated. Complexation was confirmed for all samples. PDEO-based ICs prepared by kneading method, at both molar ratios, displayed better in vitro antimicrobial activity. The obtained results strongly suggest a potential application of these ICs as natural antimicrobials.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología , Brasil , Escherichia coli/efectos de los fármacos , Conservación de Alimentos/métodos , Liofilización , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Ocimum basilicum/química , Pimenta/química , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X
14.
Environ Sci Pollut Res Int ; 25(1): 388-398, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29039041

RESUMEN

The aim of this study was to evaluate and compare the antioxidant potential of essential oils of some commonly used Indian spices (black pepper, cinnamon, clove, coriander and cumin) in various in vitro models and in food supplements enriched with omega-6 and omega-3 fatty acids. In vitro antioxidant potential was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and Fe2+ ion-chelating methods and lipid oxidation stabilisation potential was evaluated in bulk soybean oil-fish oil mixture and their oil-in-water emulsions using peroxide value (PV), p-anisidine value (p-AV) and total oxidation value as indicators of oxidation. Combination effects using DPPH radical scavenging and Briggs-Rauscher oscillating reaction methods were also evaluated. Test essential oils showed varying degrees of radical scavenging and Fe2+ ion-chelating efficacy. Clove and coriander oils showed significantly higher (P < 0.05) radical scavenging and Fe2+ ion-chelating potential over other tested essential oils as well as BHT and ∞-tocopherol. The anti-lipid peroxidative potential of test essential oils was found in the following decreasing order: clove > coriander > BHT > cinnamon > α-tocopherol > cumin > black pepper. Furthermore, clove and coriander oils showed synergistic antioxidant activity in combination both in DPPH radical scavenging and Briggs-Rauscher oscillating reaction methods whereas other possible combinations showed additive effects. Strong radical scavenging and Fe2+-chelating as well as anti-lipid peroxidative activities of clove and coriander oils provide evidence that clove and coriander oils may serve as a potential source of natural antioxidants for retarding lipid oxidation of food supplements enriched with omega-6 and omega-3 fatty acids.


Asunto(s)
Antioxidantes/química , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-6/química , Aceites Volátiles/química , Aceites de Plantas/química , Especias , Compuestos de Bifenilo/química , Suplementos Dietéticos , Radicales Libres/química , Peroxidación de Lípido , Modelos Teóricos , Oxidación-Reducción , Picratos/química
15.
Lett Appl Microbiol ; 65(5): 366-372, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28815637

RESUMEN

The aim of the study was to evaluate possible antibacterial and antibiofilm efficacy of a bacteriocin, nisin with two essential oil components linalool and p-coumaric acid in combination against food-borne bacteria Bacillus cereus and Salmonella typhimurium. Their inhibition effects on planktonic cells and preformed biofilms were evaluated using microbroth dilution and checkerboard titration methods. Nisin/p-coumaric acid combination showed synergistic effects against planktonic cells of both the studied bacteria, whereas nisin/linalool combination showed synergistic activity against B. cereus and additive effect against S. typhimurium. In preformed biofilms, nisin by itself failed to show >50% antibiofilm efficacy against both the studied bacteria, but in combination with linalool and p-coumaric acid, it exerted >50% antibiofilm efficacy. On the basis of fractional inhibitory concentration indices values, nisin/p-coumaric acid combination exhibited synergistic antibiofilm activity, whereas nisin/linalool combination showed additive effects against preformed biofilms of studied bacteria. The results provide evidence that p-coumaric acid due to its synergistic interactions with nisin against planktonic cells and biofilms of both Gram-positive and Gram-negative food-borne bacteria enhanced the antibacterial spectrum of nisin, which subsequently may facilitate their use in the food industry. SIGNIFICANCE AND IMPACT OF THE STUDY: In the present work, synergistic interactions between a bacteriocin, nisin and essential oil component p-coumaric acid on planktonic cells as well as on biofilms of Gram-positive and Gram-negative food-borne bacteria have been reported. The results of this study provide evidence that nisin/p-coumaric acid combination can be considered as a promising source for development of more potent broad spectrum antimicrobial blend for food preservation, which subsequently may facilitate their use in the food industry. To the best of our knowledge, this is the first report of the antibacterial and antibiofilm efficacy of nisin in combination with essential oil components against food-borne bacteria.


Asunto(s)
Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Biopelículas/efectos de los fármacos , Nisina/farmacología , Propionatos/farmacología , Salmonella typhimurium/efectos de los fármacos , Bacillus cereus/fisiología , Ácidos Cumáricos , Sinergismo Farmacológico , Microbiología de Alimentos , Conservación de Alimentos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Salmonella typhimurium/fisiología
16.
Food Microbiol ; 49: 166-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25846927

RESUMEN

The identification of novel, effective, and non-thermal decontamination methods is imperative for the preservation of unpasteurized and fresh vegetable juices. The aim of this study was to examine the bactericidal effects of caprylic acid + citric acid against the virulent pathogen Escherichia coli O157:H7 and the endogenous microflora in unpasteurized fresh carrot juice. Carrot juice was treated with either caprylic acid, citric acid, or a combination of caprylic acid + citric acid at mild heating temperature (45 °C or 50 °C). The color of the treated carrot juice as well as microbial survival was examined over time. Combined treatment was more effective than individual treatment in terms of both color and microbial survival. Caprylic acid + citric acid treatment (each at 5.0 mM) at 50 °C for 5 min resulted in 7.46 and 3.07 log CFU/ml reductions in the E. coli O157:H7 and endogenous microflora populations, respectively. By contrast, there was no apparent reduction in either population following individual treatment. A validation assay using a low-density E. coli O157:H7 inoculum (3.31 log CFU/ml) showed that combined treatment with caprylic acid (5.0 mM) + citric acid (2.5 mM) at 50 °C for >5 min or with caprylic acid + citric acid (both at 5.0 mM) at either 45 °C or 50 °C for >5 min completely destroyed the bacteria. Combined treatment also increased the redness of the juice, which is a perceived indication of quality. Taken together, these results indicate that combined treatment with low concentrations of caprylic acid and citric acid, which are of biotic origin, can eliminate microorganisms from unpasteurized carrot juice.


Asunto(s)
Bebidas/microbiología , Caprilatos/farmacología , Ácido Cítrico/farmacología , Daucus carota/microbiología , Escherichia coli O157/efectos de los fármacos , Aditivos Alimentarios/farmacología , Microbiota/efectos de los fármacos , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Daucus carota/química , Sinergismo Farmacológico , Escherichia coli O157/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA