Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39272529

RESUMO

Capsaicin, carotenoids, and phenolic compounds from cumari-do-Pará peppers (Capsicum chinense Jacq.) harvested from two different locations in Pará, Brazil, and at different ripening stages were extracted by employing green methodologies as an alternative to organic solvents. Edible vegetable oils from soybeans (Glycine max), Brazilian nuts (Bertholettia excelsa H.B.), and palm olein were used in combination with ultrasonic-assisted extraction (UAE). The proximate composition of the pepper extracts and vitamin C were determined through AOAC methods, total phenolics and carotenoids were assessed by UV/Vis spectrophotometry, and capsaicin by high-performance liquid chromatography. Antioxidant cumari-do-Pará extract activities were evaluated by the ABTS radical scavenging and ß-carotene/linoleic acid assays. The vegetable oils were suitable for extracting and preserving bioactive pepper compounds, especially mature ones harvested from Igarapé-Açu. Bioactive compound content and antioxidant activity varied with harvesting location and ripening stage. Soybean oil was the most effective in extracting bioactive pepper compounds, particularly carotenoids, with 69% recovery. Soybean oil extracts enriched in capsaicin, carotenoids, and phenolics obtained from cumari-do-Pará can be used as spices in foodstuffs and/or as additives in pharmaceutical and nutraceutical formulations. Edible vegetable oils combined with UAE are promising for bioactive compound extraction, representing an environmentally friendly, safe, low-cost, versatile, and fast alternative.

2.
MethodsX ; 13: 102892, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39221014

RESUMO

Waste from the fishing industry is disposed of in soils and oceans, causing environmental damage. However, it is also a source of valuable compounds such as chitin. Although chitin is the second most abundant polymer in nature, its use in industry is limited due to the lack of standardized and scalable extraction methods and its poor solubility. The deacetylation process increases its potential applications by enabling the recovery of chitosan, which is soluble in dilute acidic solutions. Chitosan is a polymer of great importance due to its biocompatible and bioactive properties, which include antimicrobial and antioxidant capabilities. Chitin extraction and its deacetylation to obtain chitosan are typically performed using chemical processes that involve large amounts of strongly acidic and alkaline solutions. To reduce the environmental impact of this process, extraction methods based on biotechnological tools, such as fermentation and chitin deacetylase, as well as emerging technologies, have been proposed. These extraction methods have demonstrated the potential to reduce or even avoid using strong solvents and shorten extraction time, thereby reducing costs. Nevertheless, it is important to address existing gaps in this area, such as the requirements for large-scale implementation and the determination of the stoichiometric ratios for each process. This review highlights the use of biotechnological tools and emerging technologies for chitin extraction and chitosan production. These approaches truly minimize environmental impact, reduce the use of strong solvents, and shorten extraction time. They are a reliable alternative to fishery waste valorization, lowering costs; however, addressing the critical gaps for their large-scale implementation remains challenging.

3.
Plants (Basel) ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339535

RESUMO

The peel represents a significant portion of the araticum fruit (about 40%), which becomes waste after its consumption or processing. Previous studies have shown that the araticum peel is rich in phenolic compounds; however, little is known about the ideal conditions for recovering these compounds. Therefore, response surface methodology, using a central composite rotatable design, was employed to optimize the extraction process to maximize the total phenolic compounds (TPCs) and enhance the Trolox equivalent antioxidant capacity (TEAC) from araticum peel. The variables optimized were ethanol concentration (EC; 20-80%, v/v), extraction time (ET; 5-45 min), and solid-solvent ratio (SSR; 10-100 mg/mL). Additionally, condensed tannins, antioxidant capacity against synthetic free radicals (TEAC and FRAP) and reactive oxygen species (ROS), and the phenolic compounds profile, were evaluated. Optimum extraction conditions were 50% (v/v) ethanol concentration, 5 min of extraction time, and 10 mg/mL solid-solvent ratio. Under these conditions, experimental TPCs and TEAC values were 70.16 mg GAE/g dw and 667.22 µmol TE/g dw, respectively, comparable with predicted models (68.47 mg GAE/g dw for TPCs and 677.04 µmol TE/g dw for TEAC). A high condensed tannins content (76.49 mg CE/g dw) was also observed and 12 phenolic compounds were identified, predominantly flavonoids (97.77%), including procyanidin B2, epicatechin, and catechin as the major compounds. Moreover, a potent antioxidant activity was observed against synthetic free radicals and ROS, especially in scavenging peroxyl and hydroxyl radicals. From this study, we obtained the ideal conditions for recovering phenolic compounds from araticum peel using a simple, fast, sustainable, and effective method, offering a promising opportunity for the management of this plant byproduct.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39164803

RESUMO

The objective of this work was to optimize the application of an enzymatic blend produced by Aspergillus niger ATCC 1004 on the Pimenta dioica fruits for essential oil extraction. The enzyme blend was obtained from the fermentation of cocoa bean shells, an agro-industrial residue. The effects of the enzymatic pre-treatment on the extraction yield, the chemical composition of the oil through gas chromatography, and the fruit structure through scanning electron microscopy (SEM) were assessed. A Doehlert design was used to optimize the process conditions, resulting in an extraction with 117 mL of enzyme during 77 min, which increased the extraction yield by 387.5%. The chemical composition was not altered, which proves that the enzyme blend preserves the quality of the essential oil extracted. The content of eugenol (70%), the major compound in the P. dioica essential oil, had a great increase in its concentration (560%). The enzyme activity analyses showed the presence of endoglucanase (0.4 U/mL), exoglucanase (0.25 U/mL), ß-glucosidase (0.19 U/mL), and invertase (135.08 U/mL). The microscopy analyses revealed changes in the morphology of fruit surface due to the enzymatic action. These results demonstrate the great potential of using enzyme blends produced by filamentous fungi from agro-industrial residues for the essential oils extraction of interest for the pharmaceutical and food industries.

5.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065006

RESUMO

Inulin is a carbohydrate that belongs to fructans; due to its health benefits, it is widely used in the food and pharmaceutical industries. In this research, cabuya (Agave americana) was employed to obtain inulin by pulsed electric field-assisted extraction (PEFAE) and FTIR analysis confirmed its presence. The influence of PEFAE operating parameters, namely, electric field strength (1, 3 and 5 kV/cm), pulse duration (0.1, 0.2 and 0.5 ms), number of pulses (10,000, 20,000 and 40,000) and work cycle (20, 50 and 80%) on the permeabilization index and energy expenditure were tested. Also, once the operating conditions for PEFAE were set, the temperature for conventional extraction (CE) and PEFAE were defined by comparing extraction kinetics. The cabuya meristem slices were exposed to PEFAE to obtain extracts that were quantified, purified and concentrated. The inulin was isolated by fractional precipitation with ethanol to be characterized. The highest permeabilization index and the lowest energy consumption were reached at 5 kV/cm, 0.5 ms, 10,000 pulses and 20%. The same extraction yield and approximately the same amount of inulin were obtained by PEFAE at 60 °C compared to CE at 80 °C. Despite, the lower amount of inulin obtained by PEFAE in comparison to CE, its quality was better because it is mainly constituted of inulin of high average polymerization degree with more than 38 fructose units. In addition, TGA analyses showed that inulin obtained by PEFAE has a lower thermal degradation rate than the obtained by CE and to the standard.


Assuntos
Agave , Inulina , Inulina/química , Inulina/isolamento & purificação , Agave/química , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade , Temperatura
6.
Plants (Basel) ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732429

RESUMO

Alternative solvents are being tested as green solvents to replace the traditional organic solvents used in both academy and industry. Some of these are already available, such as ethyl lactate, cyrene, limonene, glycerol, and others. This alternative explores eco-friendly processes for extracting secondary metabolites from nature, thus increasing the number of unconventional extraction methods with lower environmental impact over conventional methods. In this context, the Peruvian Ambrosia arborescens was our model while exploring a microwave-assisted extraction (MAE) approach over maceration. The objective of this study was to perform a phytochemical study including UHPLC-ESI-MS/MS and the antioxidant activity of Ambrosia arborescens, using sustainable strategies by mixing both microwaves and ethyl lactate as a green solvent. The results showed that ethyl lactate/MAE (15.07%) achieved a higher extraction yield than methanol/maceration (12.6%). In the case of the isolation of psilostachyin, it was similar to ethyl lactate (0.44%) when compared to methanol (0.40%). Regarding UHPLC-ESI-MS/MS studies, the results were similar. Twenty-eight compounds were identified in the ethyl lactate/MAE and methanol/maceration extracts, except for the tentative identification of two additional amino acids (peaks 4 and 6) in the MeOH extract. In relation to the antioxidant assay, the activity of the ethyl lactate extract was a little higher than the methanol extract in terms of ORAC (715.38 ± 3.2) and DPPH (263.04 ± 2.8). This study on A. arborescens demonstrated that the unconventional techniques, such as MAE related to ethyl lactate, could replace maceration/MeOH for the extraction and isolation of metabolites from diverse sources. This finding showed the potential of unconventional methods with green solvents to provide eco-friendly methods based on green chemistry.

7.
Foods ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38790775

RESUMO

This study represents a pioneering investigation and comparative analysis of lipid extracts from four different colors of peach palm (Bactris gasipaes Kunt) fruits-red, yellow, green, and white-by employing a green method based on ethanolic ultrasound-assisted extraction. This study examined the extraction yield, physico-chemical-quality attributes, chromatographic profiles (GC), color measurements, total carotenoid content, differential thermogravimetry (TG/DTA), and infrared spectroscopy (FTIR). The obtained lipid extracts displayed a high quality, considering the physico-chemical parameters of the Codex Alimentarius, and a fatty acids profile characterized by unsaturated fatty acids, notably omegas (ω-3, ω-6, and ω-9). The indices of atherogenicity (A.I.), thrombogenicity (I.T.), and hypocholesterolemic and hypercholesterolemic ratios revealed superior outcomes for the red peach palm lipid extract (approximately 0.35, 0.52, and 2.75, respectively), along with higher levels of ß-carotene (748.36 µg of ß-carotene per 100 g-1 of lipid extract) compared to the yellow, green, and white counterparts. Consequently, this research successfully demonstrates the efficacy of using a green extraction method in preserving the lipid's quality, which can display cardiovascular functionality and thermal stability. These findings underscore the considerable potential of peach palm lipid extract as a valuable raw material for diverse industrial applications across various sectors. The results support its utilization in the production of functional food products and nutraceuticals due to its favorable fatty acid composition, potent antioxidant properties exhibited by its high ß-carotene content, and notable cardiovascular functionality indices.

8.
Food Res Int ; 182: 114160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519185

RESUMO

Aqueous enzymatic extraction (AEE) of macauba pulp oil (MPO) was performed in this study with five commercial enzymatic pools. The chemical, nutritional, and thermal properties of the oils with high oil efficiency by AEE were evaluated and compared with mechanical pressing (MP) and organic solvent extraction (SE). Among the AEE processes, the pectinase pool (at pH 5.5 and 50 °C) exhibited the highest process efficiency (88.6 %). The oils presented low acidity values (0.4-3.1 %) and low molar absorptivities, indicating minimal oil degradation. Bioactive compounds, such as carotenoids, were found in MPO. The iodine index and the fatty acid profile of the oils revealed a high content of unsaturated fatty acids, particularly oleic and linoleic acids, with excellent nutritional scores, as evidenced by anti-atherogenicity and anti-thrombogenicity indices. These findings emphasized that AEE is an eco-friendly approach for extracting high-quality MPO with beneficial health compounds for food products.


Assuntos
Ácidos Graxos , Óleos de Plantas , Óleos de Plantas/química , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Antioxidantes/análise , Sementes/química , Água/análise
9.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540952

RESUMO

Food residues are a promising resource for obtaining natural pigments, which may replace artificial dyes in the industry. However, their use still presents challenges due to the lack of suitable sources and the low stability of these natural compounds when exposed to environmental variations. In this scenario, the present study aims to identify different food residues (such as peels, stalks, and leaves) as potential candidates for obtaining natural colorants through eco-friendly extractions, identify the colorimetric profile of natural pigments using the RGB color model, and develop alternatives using nanotechnology (e.g., liposomes, micelles, and polymeric nanoparticles) to increase their stability. The results showed that extractive solution and residue concentration influenced the RGB color profile of the pigments. Furthermore, the external leaves of Brassica oleracea L. var. capitata f. rubra, the peels of Cucurbita maxima, Cucurbita maxima x Cucurbita moschata, and Beta vulgaris L. proved to be excellent resources for obtaining natural pigments. Finally, the use of nanotechnology proved to be a viable alternative for increasing the stability of natural colorants over storage time.

10.
Food Chem ; 442: 138530, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271911

RESUMO

Orange peels contain a considerable number of bioactive compounds such as carotenoids, that can be used as ingredients in high-value products. The aim of this study was to compare orange peel extracts obtained with different green solvents (vegetable oils, fatty acids, and deep eutectic solvents (DES)). In addition, the chemical characterization of a new hydrophobic DES formed by octanoic acid and l-proline (C8:Pro) was performed. The extracts were compared in terms of carotenoid extraction, antioxidant activity by three methods, color, and environmental impact. The results confirmed that the mixture of C8:Pro is a DES and showed the highest carotenoid extraction (46.01 µg/g) compared to hexane (39.28 µg/g). The antioxidant activity was also the highest in C8:Pro (2438.8 µM TE/mL). Finally, two assessment models were used to evaluate the greenness and sustainability of the proposed extractions. These results demonstrated the potential use of orange peels in the circular economy and industry.


Assuntos
Antioxidantes , Citrus sinensis , Solventes/química , Antioxidantes/química , Citrus sinensis/química , Carotenoides/química , Extratos Vegetais/química
11.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067479

RESUMO

Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.


Assuntos
Antocianinas , Polifenóis , Flavonoides , Extratos Vegetais/química , Solventes/química
12.
Foods ; 12(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38002140

RESUMO

The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and ß-carotene), along with microalgal Dunaliella ß-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora ß-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.

13.
Food Res Int ; 173(Pt 1): 113220, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803538

RESUMO

Grape pomace is the main solid residue of wine industry, containing high amounts of phenolic compounds. Considering its high potential, an extraction procedure was optimized for maximal recovery of anthocyanins from grape pomace (Vitis vinifera L.) using citric acid as a generally recognized as safe (GRAS) acidulant in water. Volume of solvent (3.2-36.8 mL), time (14.4-165.6 min) and pH of solvent (1.12-4.48) were the studied variables. Furthermore, the best condition to obtain extract rich in anthocyanins was submitted to the gravitational block freeze concentration process. The performance of the process was evaluated and cryoconcentrated and ice fractions were analyzed for physicochemical properties, bioactive compounds content, and antioxidant activity. Interaction, linear, and quadratic effects for volume and pH of solvent were significant by analysis of variance (ANOVA). The experimental design allowed the prediction for maximal recovery of anthocyanins (10 mL of solvent at pH 1.8). The bioactive composition of the optimized grape pomace extract was influenced by the cryoconcentration process. After three cycles using gravitational block freeze concentration, the total phenolics and monomeric anthocyanins were approximately 4 and 5 times higher than the initial condition of the extract, respectively. Consequently, an increase in antioxidant activity was observed. The increase in the concentration of bioactive compounds reached a process efficiency of 93% (stage 1) for phenolic compounds and 91% (stage 2) for anthocyanins. Therefore, the final water-based optimized method is safe and has a low cost and the concentrated extract certainly showed higher concentrations of total phenolics and anthocyanins, compared to the initial extract. The proposed clean extraction method and cryoconcentration technique can be considered important strategies for recovering and valuing grape pomace components, improving the approach to the circular economy concept in the wine industry.


Assuntos
Vitis , Vinho , Antocianinas/análise , Vinho/análise , Antioxidantes/análise , Vitis/química , Fenóis/análise , Extratos Vegetais/química , Solventes/análise , Água/análise
14.
Food Res Int ; 173(Pt 1): 113332, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803643

RESUMO

This study evaluated the use of a semi-continuous high-pressure hydrothermal process for the recovery of value-added products from pitaya peel. The process was carried out at 15 MPa, a water flow rate of 2 mL/min, a solvent-to-feed ratio of 60 g water/g pitaya peel, and temperatures ranging from 40 to 210 °C. The results show that extraction temperatures (between 40 and 80 °C) promoted the recovery of betacyanin (1.52 mg/g), malic acid (25.6 mg/g), and citric acid (25.98 mg/g). The major phenolic compounds obtained were p-coumaric acid (144.63 ± 0.42 µg/g), protocatechuic acid (91.43 ± 0.32 µg/g), and piperonylic acid (74.2 ± 0.31 µg/g). The hydrolysis temperatures (between 150 and 210 °C) could produce sugars (18.09 mg/g). However, the hydrolysis process at temperatures above 180 °C generated Maillard reaction products, which increased the total phenolic compounds and antioxidant activity of the hydrolysates. Finally, the use of semi-continuous high-pressure hydrothermal process can be a sustainable and promising approach for the recovery of value-added compounds from pitaya peel, advocating a circular economy approach in the agri-food industry.


Assuntos
Cactaceae , Fenóis , Antioxidantes , Solventes , Extratos Vegetais , Água
15.
Foods ; 12(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893645

RESUMO

The integration of green technologies such as microwave- and enzyme-assisted extraction (MEAE) has been shown to improve the extraction efficiency of bioactive compounds while reducing processing time and costs. MEAE using tannase alone (MEAE-Tan), or in combination with cellulase and pectinase (MEAE-Tan-Cel-Pec), was optimized to produce enriched phenolic and antioxidant extracts from olive pomace. The individual and integrated impact of enzyme concentration, temperature, and pomace/water ratio were determined using a central composite rotatable design. Optimal extraction conditions for MEAE-Tan (60 °C, 15 min, 2.34% of enzyme (w/w), and 1:15 pomace/water ratio) and MEAE-Tan-Cel-Pec (46 °C, 15 min, 2% of enzymes (w/w), in the proportion of 1:1:1, and 1:20 pomace/water ratio) resulted in extracts containing 7110.6 and 2938.25 mg GAE/kg, respectively. The antioxidant activity of the extracts was correlated with phenolic acid release, which was enzyme-dependent, as determined with HPLC-DAD analysis. Enzyme selection had a significant impact on the phenolic profile of extracts, with tannase releasing high concentrations of chlorogenic acid and the combined use of enzymes releasing high concentrations of hydroxytyrosol and chlorogenic and ferulic acids. The novelty of this study relies on the integration and optimization of two green technologies (microwave- and enzyme-assisted extraction) to improve the extraction efficiency of bioactive phenolics from olive pomace while reducing processing time and costs. While these techniques have been evaluated isolated, the benefits of using both processing strategies simultaneously remain largely unexplored. This study demonstrates the effectiveness of the integration and processing optimization of two environmentally friendly technologies as a promising alternative to treat agro-industrial byproducts.

16.
Foods ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627988

RESUMO

Ultrasound-assisted extraction (UAE) is an efficient and sustainable method for extracting bioactive compounds from agro-industrial by-products. Moreover, it has been reported that ultraviolet A (UVA) radiation can induce the biosynthesis and accumulation of bioactive phenolic compounds. This study optimized the efficiency of ultrasound-assisted extraction (UAE) for recovering ultraviolet A (UVA)-induced phenolic compounds in strawberry by-products (RF-N). The impact of three factors (solid-liquid ratio, ethanol concentration, and ultrasound power) on total phenolic compound (TPC) kinetics using Peleg's model was investigated. The developed model showed a suitable fit for both RF-N and strawberry by-products treated with UVA (RF-E). The optimal UAE conditions obtained were of a 1:30 ratio, 46% ethanol, and 100% ultrasound power, resulting in an average yield of 13 g total phenolics kg-1. The bioaccessibility of phenolic compounds during in-vitro digestion was 36.5%, with agrimoniin being the predominant compound. UAE combined with UVA treatment increased the bioactivity of RF extracts, displaying significant anti-proliferative effects on HT29 and Caco-2 cancer cell lines, as well as anti-inflammatory potential and cellular antioxidant activity. The ultrasound proved to be a sustainable and effective technique for extracting phenolic compounds from RF, contributing to the valorization of strawberry agro-industrial by-products, and maximizing their nutraceutical potential.

17.
Sci Total Environ ; 898: 165465, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451461

RESUMO

Polycyclic aromatic sulfur heterocycles (PASHs), such as benzothiophenes (BT), dibenzothiophenes (DBT) and benzonapthothiophenes (BNT), can be emitted from vehicular traffic and deposited in fine particles matter (PM2.5). The presence of these compounds in PM2.5 is an environmental concern due to air pollution and its toxic properties. In this study, a green microscale solid-liquid extraction method was developed to determine twenty-three PASHs in PM2.5. A simplex-centroid mixture design was applied to optimize the extraction solvent. A full factorial design was used for preliminary evaluation of the factors that influence the extraction process (extraction time, sample size, and solvent volume) and then a Doehlert design for the significant parameters. The optimal extraction conditions based on the experimental design were: sample size, 4.15 cm2; 450 µL of toluene:dichloromethane (80:20,v/v); and extraction duration, 24 min. High sensitivity (LOD < 0.66pg m-3 and LOQ < 2.21 pg m-3) and acceptable recovery (82.8-120 %), and precision (RSD 3.6-14.0 %) were obtained. The greenness of the method was demonstrated using the Analytical GREEnness (AGREE) tool. The method was applied for analyzing PASHs in PM2.5 samples collected in three time intervals per day from years with different sulfur contents in the diesel: S-500 (≤500 ppm sulfur) and S-50 (≤50 ppm sulfur). Fourteen PASHs were quantified with the highest concentrations observed for 2,8-DMDBT and 4,6-DMDBT, which are recalcitrant compounds. The ANOVA test indicated significant differences between sampling periods during the day. The reduction of diesel S-500 to S-50 corresponded to a 28 % decrease in the total sum of PASHs (∑PASHs) evaluated. Spearman's rank correlations allowed for verifying that BTs and DBTs were highly correlated, suggesting that they were derived from similar sources. A weak correlation of 2,1-BNT and 2,3-BNT with BTs and DBTs indicates that these compounds are a chemical proxy for the emission of diesel engines during the combustion process.

18.
Molecules ; 28(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513459

RESUMO

Gastric cancer is one of the most frequent types of neoplasms worldwide, usually presenting as aggressive and difficult-to-manage tumors. The search for new structures with anticancer potential encompasses a vast research field in which natural products arise as promising alternatives. In this scenario, piperine, an alkaloid of the Piper species, has received attention due to its biological activity, including anticancer attributes. The present work proposes three heating-independent, reliable, low-cost, and selective methods for obtaining piperine from Piper nigrum L. (Black pepper). Electronic (SEM) and optical microscopies, X-ray diffraction, nuclear magnetic resonance spectroscopies (13C and 1H NMR), and optical spectroscopies (UV-Vis, photoluminescence, and FTIR) confirm the obtention of piperine crystals. The MTT assay reveals that the piperine samples exhibit good cytotoxic activity against primary and metastasis models of gastric cancer cell lines from the Brazilian Amazon. The samples showed selective cytotoxicity on the evaluated models, revealing higher effectiveness in cells bearing a higher degree of aggressiveness. Moreover, the investigated piperine crystals demonstrated the ability to act as a good cytotoxicity enhancer when combined with traditional chemotherapeutics (5-FU and GEM), allowing the drugs to achieve the same cytotoxic effect in cells employing lower concentrations. These results establish piperine as a promising molecule for therapy investigations in aggressive gastric cancer, both in its isolated form or as a bioenhancer.


Assuntos
Alcaloides , Antineoplásicos , Piper nigrum , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Alcaloides/química , Benzodioxóis/química , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Piper nigrum/química , Antineoplásicos/farmacologia
19.
Food Chem ; 404(Pt B): 134629, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283308

RESUMO

Xanthohumol, a chalcone unique to hops, has attracted attention from researchers due to its several pharmacological effects on humans. In industry, hops are almost exclusively used in beer production, generating tons of solid waste - hot trub from the boiling step and spent hops from the dry hopping - rich in biocompounds, among them xanthohumol, that could be recovered and used for several nutritional purposes. The literature is extensive on extraction processes of xanthohumol directly from hops, but only a few studies present its recovery from brewery solid waste. We focus on presenting the xanthohumol characteristics and benefits for human consumption, and discuss the main extraction techniques, their advantages and limitations, to prospect strategies to recover this high-value compound from brewing solid waste. Recent extraction processes represent promising approaches to overcome the limitations of conventional methods, but further studies are still needed to understand xanthohumol extraction and purification and induce industrial upscaling.


Assuntos
Produtos Biológicos , Humulus , Propiofenonas , Humanos , Resíduos Sólidos , Flavonoides/análise
20.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234823

RESUMO

The detection of analytes in complex organic matrices requires a series of analytical steps to obtain a reliable analysis. Sample preparation can be the most time-consuming, prolonged, and error-prone step, reducing the reliability of the investigation. This review aims to discuss the advantages and limitations of extracting bioactive compounds, sample preparation techniques, automation, and coupling with on-line detection. This review also evaluates all publications on this topic through a longitudinal bibliometric analysis, applying statistical and mathematical methods to analyze the trends, perspectives, and hot topics of this research area. Furthermore, state-of-the-art green extraction techniques for complex samples from vegetable matrices coupled with analysis systems are presented. Among the extraction techniques for liquid samples, solid-phase extraction was the most common for combined systems in the scientific literature. In contrast, for on-line extraction systems applied for solid samples, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and pressurized liquid extraction were the most frequent green extraction techniques.


Assuntos
Cromatografia com Fluido Supercrítico , Verduras , Micro-Ondas , Reprodutibilidade dos Testes , Extração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA