Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 79(3): 700-706, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096440

RESUMO

The brassicas have the potential to prevent chronic non-communicable diseases and it is proposed to evaluate the chemical composition, antioxidant and antimicrobial potential of broccoli, cabbage and extracts. The extracts were prepared and characterized and the antioxidant potential was evaluated against three radicals while the antimicrobial potential was analyzed using three techniques against four bacteria. The extracts have glucosinolates and phenolic compounds in their composition, and effectively inhibit the 2,2-diphenyl-1-picrylhydrazyl radical. The extracts of broccoli and cauliflower showed an inhibitory effect against hydroxyl radicals and nitric oxide. Disk diffusion showed that broccoli and cauliflower extract were active against three bacteria, while kale extract showed active halos for Gram-negative bacteria. Kale extract had an inhibitory effect Gram-positive bacteria, cauliflower extract inhibited the growth of Staphylococcus aureus. The cauliflower extract thus had a higher concentration of phenols, a strong antioxidant activity and promising results at a concentration of 100 mg/mL against S. aureus.


Assuntos
Antioxidantes , Brassica , Glucosinolatos , Fenóis , Extratos Vegetais , Staphylococcus aureus , Antioxidantes/farmacologia , Antioxidantes/análise , Brassica/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/análise , Fenóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Glucosinolatos/análise , Glucosinolatos/farmacologia , Compostos de Bifenilo , Bactérias Gram-Positivas/efeitos dos fármacos , Radical Hidroxila , Antibacterianos/farmacologia , Antibacterianos/análise , Óxido Nítrico , Picratos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
2.
Food Res Int ; 193: 114812, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160037

RESUMO

Microgreens, also called superfoods, emerge because of their high levels of nutrients, diverse flavour profiles, and sustainable cultivation methods, which make them culinary delights and valuable to a healthy and flavorful diet. The present study investigated Brassicaceae family microgreens, proposing a novel system (quality indices) that allows scoring among them. Fourteen Brassica microgreen species were morphological, phytochemical, and sensorial investigated. The morphological assessment revealed that radish microgreens exhibited the highest leaf area (p < 0.05), while red mizuna demonstrated superior yield. Cauliflower microgreens contained the highest concentrations of ascorbic acid (HPLC-DAD) and total phenolic content (p < 0.05). Phytochemical analysis using HPLC-MS/MS identified over 18 glucosinolates and phenolic compounds. Red mustard and red cabbage showed the highest glucosinolate content (p < 0.05). Watercress exhibited the highest phenolic compound content (p < 0.05), primarily flavonoids, while broccoli and radish contained the highest isothiocyanate levels. Cauliflower microgreens resulted in the most consumer-accepted variety. Appling quality indices scoring system identified radish, cauliflower, and broccoli microgreens as the most promising species. This study underscores the potential of Brassica microgreens as an excellent source of health-promoting phytochemicals with favorable market acceptance, providing valuable insights for both nutritional research and commercial applications.


Assuntos
Brassicaceae , Glucosinolatos , Fenóis , Compostos Fitoquímicos , Paladar , Compostos Fitoquímicos/análise , Glucosinolatos/análise , Fenóis/análise , Brassicaceae/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Humanos , Ácido Ascórbico/análise , Flavonoides/análise , Brassica/química , Folhas de Planta/química , Isotiocianatos/análise , Raphanus/química
3.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063186

RESUMO

The present study investigates the interactions between eight glucosinolate hydrolysis products (GHPs) sourced from broccoli by-products and the detoxifying enzymes of Botrytis cinerea, namely eburicol 14-alpha-demethylase (CYP51) and glutathione-S-transferase (GST), through in silico analysis. Additionally, in vitro assays were conducted to explore the impact of these compounds on fungal growth. Our findings reveal that GHPs exhibit greater efficacy in inhibiting conidia germination compared to mycelium growth. Furthermore, the results demonstrate the antifungal activity of glucosinolate hydrolysis products derived from various parts of the broccoli plant, including inflorescences, leaves, and stems, against B. cinerea. Importantly, the results suggest that these hydrolysis products interact with the detoxifying enzymes of the fungus, potentially contributing to their antifungal properties. Extracts rich in GHPs, particularly iberin and indole-GHPs, derived from broccoli by-products emerge as promising candidates for biofungicidal applications, offering a sustainable and novel approach to plant protection by harnessing bioactive compounds from agricultural residues.


Assuntos
Antifúngicos , Botrytis , Brassica , Glucosinolatos , Botrytis/efeitos dos fármacos , Glucosinolatos/química , Glucosinolatos/farmacologia , Glucosinolatos/metabolismo , Brassica/microbiologia , Hidrólise , Antifúngicos/farmacologia , Antifúngicos/química , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana
4.
Nutrients ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398854

RESUMO

Maca (Lepidium meyenii, Lepidium peruvianum) is part of the Brassicaceae family and grows at high altitudes in the Peruvian Andes mountain range (3500-5000 m). Historically, it has been used as a nutrient-dense food and for its medicinal properties, primarily in enhancing energy and fertility. Scientific research has validated these traditional uses and other clinical applications by elucidating maca's mechanisms of action, nutrition, and phytochemical content. However, research over the last twenty years has identified up to seventeen different colors (phenotypes) of maca. The color, hypocotyl size, growing location, cultivation, and post-harvest processing methods can have a significant effect on the nutrition content, phytochemical profile, and clinical application. Yet, research differentiating the colors of maca and clinical applications remains limited. In this review, research on the nutrition, phytochemicals, and various colors of maca, including black, red, yellow (predominant colors), purple, gray (lesser-known colors), and any combination of colors, including proprietary formulations, will be discussed based on available preclinical and clinical trials. The gaps, deficiencies, and conflicts in the studies will be detailed, along with quality, safety, and efficacy criteria, highlighting the need for future research to specify all these factors of the maca used in publications.


Assuntos
Lepidium , Extratos Vegetais , Extratos Vegetais/farmacologia , Fertilidade , Estado Nutricional , Peru
5.
Trop Anim Health Prod ; 55(6): 417, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996566

RESUMO

Crambe meal (CM) is a potential dietary protein source for ruminant, but its effects in diets for lactating dairy cows remains unknown. We evaluated the effects of inclusion of the low-glucosinolates (GIs) CM (450 mg GIs/kg DM) in partial total mixed ration (pTMR) on performance, efficiency of nutrient utilization, and hepatic function of crossbred Holstein × Zebu and Jersey cows. Eight crossbred Holstein × Zebu cows and four Jersey cows were blocked by breed and days in milk, and randomly assigned in a replicated 4 × 4 Latin square design, and distributed in one of four isonitrogenous TMRs (130 g CP/kg DM): 0, 45, 90, and 135 g CM/kg DM pTMR. Crambe meal was included in pTMR replacing soybean meal (SBM) and ground corn grain (GCG). The pTMRs were offered ad libitum between 7:00 a.m. and 5:00 p.m. Cows were kept on pasture of Panicum maximum cv. Mombaça (90.4 g CP/kg DM) between 6:00 p.m. and 6:30 a.m. Pasture intake was measured from external and internal fecal excretion marker. Inclusion of CM did not affect (P ≤ 0.05) the DM intakes of pTMR and pasture, apparent total-tract digestibilities of organic matter, CP and NDF, ruminal outflow microbial protein, milk yield, milk composition, urinary N excretion, milk N efficiency, and level of plasm hepatic enzymes. The effects of CM inclusion in pTMR were independent of breed. Low-glucosinolates CM can be incorporated up to 135 g/kg DM in pTMR in replacement of SBM and GCG without affecting performance, efficiency of nutrient utilization, and hepatic function of crossbred Holstein × Zebu and Jersey cows.


Assuntos
Crambe (Planta) , Lactação , Feminino , Bovinos , Animais , Glucosinolatos/metabolismo , Melhoramento Vegetal , Dieta/veterinária , Leite/metabolismo , Nutrientes , Zea mays , Rúmen/metabolismo , Digestão , Silagem/análise
6.
Curr Res Food Sci ; 6: 100480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969565

RESUMO

Microgreens are novel foods with high concentrations of bioactive compounds and can be grown easily and sustainably. Among all the microgreens genera produced, Brassicaceae stand out because of the wide evidence about their beneficial effects on human health attributed to phenolic compounds, vitamins, and particularly glucosinolates and their breakdown products, isothiocyanates and indoles. The phytochemical profile of each species is affected by the growing conditions in a different manner. The agronomic practices that involve these factors can be used as tools to modulate and enhance the concentration of certain compounds of interest. In this sense, the present review summarizes the impact of substrates, artificial lighting, and fertilization on bioactive compound profiles among species. Since Brassicaceae microgreens, rich in bioactive compounds, can be considered functional foods, we also included a discussion about the health benefits associated with microgreens' consumption reported in the literature, as well as their bioaccessibility and human absorption. Therefore, the present review aimed to analyze and systematize cultivation conditions of microgreens, in terms of their effects on phytochemical profiles, to provide possible strategies to enhance the functionality and health benefits of Brassicaceae microgreens.

7.
Plant Physiol Biochem ; 195: 322-329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669347

RESUMO

Broccoli is a vegetable appreciated by consumers for its nutritional properties, particularly for its high glucosinolate (GLS) content. However, broccoli shows a high rate of senescence during postharvest and the GLS content in inflorescences decreases sharply. Usually, postharvest studies on broccoli focus on inflorescences, ignoring the other tissues harvested such as the stems and main stalk. In this work, GLS metabolism in whole heads of broccoli (including inflorescences, small stems and stalk) was analysed during postharvest senescence. The content of GLS content, expression of GLS metabolic genes, and expression of GLS transport-associated genes were measured in the three parts of harvested broccoli. A marked decrease in the content of all GLSs was detected in inflorescences, but an increase in the stems and stalk. Also, decreased expressions of GLS biosynthesis and degradation genes were detected in all tissues analysed. On the other hand, an increase in the expression of one of the genes involved in GLS transport was observed. These results suggest that GLSs would be transported from inflorescences to stems during postharvest senescence. From a commercial point of view, broccoli stems are usually discarded and not used as food. However, the accumulation of GLSs in the stems is an important factor to consider when contemplating potential commercial use of this part of the plant.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Glucosinolatos/metabolismo , Inflorescência , Verduras , Metabolismo Secundário
8.
Plants (Basel) ; 11(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35567272

RESUMO

Kale sprouts contain health-promoting compounds that could be increased by applying plant nutrients or exogenous phytohormones during pre-harvest. The effects of selenium (Se), sulfur (S), and methyl jasmonate (MeJA) on lutein, glucosinolate, and phenolic accumulation were assessed in kale sprouts. Red Russian and Dwarf Green kale were chamber-grown using different treatment concentrations of Se (10, 20, 40 mg/L), S (30, 60, 120 mg/L), and MeJA (25, 50, 100 µM). Sprouts were harvested every 24 h for 7 days to identify and quantify phytochemicals. The highest lutein accumulation occurred 7 days after S 120 mg/L (178%) and Se 40 mg/L (199%) treatments in Red Russian and Dwarf Green kale sprouts, respectively. MeJA treatment decreased the level of most phenolic levels, except for kaempferol and quercetin, where increases were higher than 70% for both varieties when treated with MeJA 25 µM. The most effective treatment for glucosinolate accumulation was S 120 mg/L in the Red Russian kale variety at 7 days of germination, increasing glucoraphanin (262.4%), glucoerucin (510.8%), 4-methoxy-glucobrassicin (430.7%), and glucoiberin (1150%). Results show that kales treated with Se, S, and MeJA could be used as a functional food for fresh consumption or as raw materials for different industrial applications.

9.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163519

RESUMO

Glucosinolate transporters (GTRs) are part of the nitrate/peptide transporter (NPF) family, members of which also transport specialized secondary metabolites as substrates. Glucosinolates are defense compounds derived from amino acids. We selected 4-methylthiobutyl (4MTB) and indol-3-ylmethyl (I3M) glucosinolates to study how GTR1 from Arabidopsis thaliana transports these substrates in computational simulation approaches. The designed pipeline reported here includes massive docking of 4MTB and I3M in an ensemble of GTR1 conformations (in both inward and outward conformations) extracted from molecular dynamics simulations, followed by clustered and substrate-protein interactions profiling. The identified key residues were mutated, and their role in substrate transport was tested. We were able to identify key residues that integrate a major binding site of these substrates, which is critical for transport activity. In silico approaches employed here represent a breakthrough in the plant transportomics field, as the identification of key residues usually takes a long time if performed from a purely wet-lab experimental perspective. The inclusion of structural bioinformatics in the analyses of plant transporters significantly speeds up the knowledge-gaining process and optimizes valuable time and resources.


Assuntos
Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Butiratos/metabolismo , Indóis/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Tioglucosídeos/metabolismo
10.
J Sci Food Agric ; 102(10): 4210-4217, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023582

RESUMO

BACKGROUND: Broccoli, kale, and cauliflower contain phenolic compounds and glucosinolates, which have several biological effects on the body. However, because they are thermolabile, many of these substances are lost in the cooking process. Electrospinning encapsulation, using zein as a preservative wall material, can expand the applications of the compounds in the food and pharmaceutical industries. The objective of this research was to characterize broccoli, kale, and cauliflower extracts and encapsulate them with the electrospinning technique using zein. RESULTS: Broccoli, kale, and cauliflower extracts contain five phenolic compounds and three glucosinolates. Fibers from broccoli, kale, and cauliflower showed high encapsulation efficiency, good thermal stability, and nanometric size, especially those containing extract and zein in proportions of up to 35:65. CONCLUSION: Fibers from broccoli, kale, and cauliflower containing extract and zein in proportions of up to 35:65 have the potential for effective nutraceutical application for the control of non-communicable chronic diseases or application in food packaging. © 2022 Society of Chemical Industry.


Assuntos
Brassica , Zeína , Brassica/química , Glucosinolatos/análise , Material Particulado , Fenóis , Extratos Vegetais/química , Zeína/química
11.
Plants (Basel) ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34961097

RESUMO

Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.

12.
Genes (Basel) ; 12(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209960

RESUMO

Transcription factors are important regulators of gene expression. They can orchestrate the activation or repression of hundreds or thousands of genes and control diverse processes in a coordinated way. This work explores the effect of a master regulator of plant development, BOLITA (BOL), in plant metabolism, with a special focus on specialized metabolism. For this, we used an Arabidopsis thaliana line in which the transcription factor activity can be induced. Fingerprinting metabolomic analyses of whole plantlets were performed at different times after induction. After 96 h, all induced replicas clustered as a single group, in contrast with all controls which did not cluster. Metabolomic analyses of shoot and root tissues enabled the putative identification of differentially accumulated metabolites in each tissue. Finally, the analysis of global gene expression in induced vs. non-induced root samples, together with enrichment analyses, allowed the identification of enriched metabolic pathways among the differentially expressed genes and accumulated metabolites after the induction. We concluded that the induction of BOL activity can modify the Arabidopsis metabolome. Future work should investigate whether its action is direct or indirect, and the implications of the metabolic changes for development regulation and bioprospection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Metaboloma , Fatores de Transcrição/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Transcriptoma
13.
Transgenic Res ; 30(5): 649-660, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33956271

RESUMO

In traditional, small-scale agriculture in the Andes, potatoes are frequently co-cultivated with the Andean edible tuber Tropaeolum tuberosum, commonly known as mashua, which is believed to exert a pest and disease protective role due to its content of the phenylalanine-derived benzylglucosinolate (BGLS). We bioengineered the production of BGLS in potato by consecutive generation of stable transgenic events with two polycistronic constructs encoding for expression of six BGLS biosynthetic genes from Arabidopsis thaliana. First, we integrated a polycistronic construct coding for the last three genes of the pathway (SUR1, UGT74B1 and SOT16) into potato driven by the cauliflower mosaic virus 35S promoter. After identifying the single-insertion transgenic event with the highest transgene expression, we stacked a second polycistronic construct coding for the first three genes in the pathway (CYP79A2, CYP83B1 and GGP1) driven by the leaf-specific promoter of the rubisco small subunit from chrysanthemum. We obtained transgenic events producing as high as 5.18 pmol BGLS/mg fresh weight compared to the non-transgenic potato plant producing undetectable levels of BGLS. Preliminary bioassays suggest a possible activity against Phytophthora infestans, causing the late blight disease and Premnotrypes suturicallus, referred to as the Andean potato weevil. However, we observed altered leaf morphology, abnormally thick and curlier leaves, reduced growth and tuber production in five out of ten selected transgenic events, which indicates that the expression of BGLS biosynthetic genes has an undesirable impact on the potato. Optimization of the expression of the BGLS biosynthetic pathway in potato is required to avoid alterations of plant development.


Assuntos
Solanum tuberosum , Bioengenharia , Resistência à Doença/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Tiocianatos , Tioglucosídeos
14.
Ann Bot ; 127(7): 887-902, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33675229

RESUMO

BACKGROUND AND AIMS: We investigate patterns of evolution of genome size across a morphologically and ecologically diverse clade of Brassicaceae, in relation to ecological and life history traits. While numerous hypotheses have been put forward regarding autecological and environmental factors that could favour small vs. large genomes, a challenge in understanding genome size evolution in plants is that many hypothesized selective agents are intercorrelated. METHODS: We contribute genome size estimates for 47 species of Streptanthus Nutt. and close relatives, and take advantage of many data collections for this group to assemble data on climate, life history, soil affinity and composition, geographic range and plant secondary chemistry to identify simultaneous correlates of variation in genome size in an evolutionary framework. We assess models of evolution across clades and use phylogenetically informed analyses as well as model selection and information criteria approaches to identify variables that can best explain genome size variation in this clade. KEY RESULTS: We find differences in genome size and heterogeneity in its rate of evolution across subclades of Streptanthus and close relatives. We show that clade-wide genome size is positively associated with climate seasonality and glucosinolate compounds. Model selection and information criteria approaches identify a best model that includes temperature seasonality and fraction of aliphatic glucosinolates, suggesting a possible role for genome size in climatic adaptation or a role for biotic interactions in shaping the evolution of genome size. We find no evidence supporting hypotheses of life history, range size or soil nutrients as forces shaping genome size in this system. CONCLUSIONS: Our findings suggest climate seasonality and biotic interactions as potential forces shaping the evolution of genome size and highlight the importance of evaluating multiple factors in the context of phylogeny to understand the effect of possible selective agents on genome size.


Assuntos
Glucosinolatos , Mostardeira , Evolução Biológica , Tamanho do Genoma , Nutrientes , Filogenia , Solo
15.
Ci. Rural ; 51(1)2021. tab
Artigo em Inglês | VETINDEX | ID: vti-31154

RESUMO

Biofumigation involves the release of volatile biocidal compounds in the soil through the incorporation of certain plants and their residues. Species of the Brassicaceae family are the most widely used plants for biofumigation. These plants contain glucosinolates, which produce compounds, such as isothiocyanates, following enzymatic hydrolysis, with scientifically proven fungicidal effects. The most commonly used brassica species belong to the genera Brassica, Raphanus, Sinapis, and Eruca. In addition to the release of compounds in the soil, complementary mechanisms, such as the supply of organic matter and nutrients, and improvement of the soil structure, also play a role in biofumigation. In the past two decades, several studies on the use of brassica residues in biofumigation have been published, showing promising results in the management of soil pathogens (fungi and oomycetes, nematodes, bacteria, and protozoa), weed seeds, and insects. Usage of new biofumigation compounds has also been validated in recent years, including the development of patented technological products such as liquid formulations and pellets. The objective of this article was to review these new developments, beginning with concepts related to biofumigation, and to discuss the mechanisms of action of compounds involving brassica species and the recommendations on usage. Promising examples of the use of this technique are also presented, further detailing the advances in basic and applied knowledge on the subject.(AU)


A biofumigação consiste na liberação de compostos biocidas voláteis no solo a partir da incorporação de determinadas plantas e de seus resíduos. As espécies da família Brassicaceae são as plantas mais utilizadas na biofumigação. Em sua constituição, possuem os glucosinolatos que, após hidrólise enzimática, produzem compostos como os isotiocianatos com efeito biofungicida comprovado cientificamente. As espécies de brássicas mais utilizadas pertencem aos gêneros Brassica, Raphanus, Sinapis e Eruca. Além da liberação de compostos no solo, mecanismos complementares como o fornecimento de matéria orgânica, nutrientes e melhoria da estrutura do solo, também desempenham papel complementar na biofumigação. Diversos estudos foram publicados nas últimas duas décadas com a utilização de resíduos de brássicas na biofumigação e apresentaram resultados promissores no manejo de patógenos de solo (fungos e oomicetos, nematóides, bactérias e protozoários), sementes de plantas daninhas e insetos. Novas formas de utilização também foram validadas nos últimos anos, inclusive com o desenvolvimento de produtos tecnológicos patenteados como formulações líquidas e pellets. Nesta revisão, objetivamos apresentar estes novos desdobramentos iniciando com os conceitos relacionados à biofumigação. Em seguida, apresentamos os mecanismos de ação e compostos envolvidos; as espécies de brássicas, produtos e recomendações para sua utilização; e exemplos promissores de adoção da técnica a nível mundial. Pretende-se, dessa forma, detalhar os avanços no conhecimento básico e aplicado do assunto.(AU)


Assuntos
Fumigação , Compostos Químicos/análise , Compostos Químicos/métodos , Brassicaceae/efeitos dos fármacos , Brassicaceae/toxicidade
16.
Ciênc. rural (Online) ; 51(1): e20200440, 2021. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1142738

RESUMO

ABSTRACT: Biofumigation involves the release of volatile biocidal compounds in the soil through the incorporation of certain plants and their residues. Species of the Brassicaceae family are the most widely used plants for biofumigation. These plants contain glucosinolates, which produce compounds, such as isothiocyanates, following enzymatic hydrolysis, with scientifically proven fungicidal effects. The most commonly used brassica species belong to the genera Brassica, Raphanus, Sinapis, and Eruca. In addition to the release of compounds in the soil, complementary mechanisms, such as the supply of organic matter and nutrients, and improvement of the soil structure, also play a role in biofumigation. In the past two decades, several studies on the use of brassica residues in biofumigation have been published, showing promising results in the management of soil pathogens (fungi and oomycetes, nematodes, bacteria, and protozoa), weed seeds, and insects. Usage of new biofumigation compounds has also been validated in recent years, including the development of patented technological products such as liquid formulations and pellets. The objective of this article was to review these new developments, beginning with concepts related to biofumigation, and to discuss the mechanisms of action of compounds involving brassica species and the recommendations on usage. Promising examples of the use of this technique are also presented, further detailing the advances in basic and applied knowledge on the subject.


RESUMO: A biofumigação consiste na liberação de compostos biocidas voláteis no solo a partir da incorporação de determinadas plantas e de seus resíduos. As espécies da família Brassicaceae são as plantas mais utilizadas na biofumigação. Em sua constituição, possuem os glucosinolatos que, após hidrólise enzimática, produzem compostos como os isotiocianatos com efeito biofungicida comprovado cientificamente. As espécies de brássicas mais utilizadas pertencem aos gêneros Brassica, Raphanus, Sinapis e Eruca. Além da liberação de compostos no solo, mecanismos complementares como o fornecimento de matéria orgânica, nutrientes e melhoria da estrutura do solo, também desempenham papel complementar na biofumigação. Diversos estudos foram publicados nas últimas duas décadas com a utilização de resíduos de brássicas na biofumigação e apresentaram resultados promissores no manejo de patógenos de solo (fungos e oomicetos, nematóides, bactérias e protozoários), sementes de plantas daninhas e insetos. Novas formas de utilização também foram validadas nos últimos anos, inclusive com o desenvolvimento de produtos tecnológicos patenteados como formulações líquidas e pellets. Nesta revisão, objetivamos apresentar estes novos desdobramentos iniciando com os conceitos relacionados à biofumigação. Em seguida, apresentamos os mecanismos de ação e compostos envolvidos; as espécies de brássicas, produtos e recomendações para sua utilização; e exemplos promissores de adoção da técnica a nível mundial. Pretende-se, dessa forma, detalhar os avanços no conhecimento básico e aplicado do assunto.

17.
Foods ; 9(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182814

RESUMO

Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.

18.
Plant Foods Hum Nutr ; 75(4): 447-457, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32909179

RESUMO

Alternative therapies, such as phytotherapy, are considered to improve the health status of people with chronic non-communicable diseases (CNCDs). In this regard, Moringa oleifera is currently being studied for its nutritional value and its total phenolic content. Besides phenolic compounds, the phytochemical composition is also of great interest. This composition is characterized by the presence of glucosinolates and isothiocyanates. Isothiocyanates formed by the biotransformation of Moringa glucosinolates contain an additional sugar in their chemical structure, which provides stability to these bioactive compounds over other isothiocyanates found in other crops. Both glucosinolates and isothiocyanates have been described as beneficial for the prevention and improvement of some chronic diseases. The content of glucosinolates in Moringa tissues can be enhanced by certain harvesting methods which in turn alters their final yield after extraction. This review aims to highlight certain features of glucosinolates and isothiocyanates from M. oleifera, such as their chemical structure, functionality, and main extraction and harvesting methods. Some of their health-promoting effects will also be addressed.


Assuntos
Moringa oleifera , Glucosinolatos , Isotiocianatos , Extratos Vegetais , Folhas de Planta
19.
Gynecol Endocrinol ; 36(12): 1106-1111, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32954883

RESUMO

OBJECTIVE: To evaluate the effect of a herbal preparation containing glucosinolates, phytosterols and citrus flavonoids (supplement) on body weight and metabolic parameters usually impaired by menopause. METHODS: A pre-clinical experimental study carried out in twenty-five Swiss strain mice (Mus musculus) randomly distributed (1:1:1:1:1 ratio) to five groups to receive for ten weeks: (1) oral gelatinized maca extract 0.5625 mg/kg/day + bilateral ovariectomy (Maca + OVX); (2) oral supplement 0.5625 mg/kg/day + bilateral ovariectomy (S1 + OVX); (3) oral supplement 1.6875 mg/kg/day + bilateral ovariectomy (S2 + OVX); (4) oral saline 100 µl/kg/day + bilateral ovariectomy (OVX); and (5) oral saline 100 µl/kg/day + sham surgery (sham). The primary endpoint was change in body weight gain from baseline to final. Secondary endpoints were uterine weight and cholesterol, triglyceride, glucose, and glucose/triglycerides index values at the end of the study. A modified intention-to-treat analysis was performed through linear regression models and using the Bonferroni method to penalized p-values by multiple comparisons. RESULTS: Twenty-three animals completed the study. There was a significant average difference in weight gain, with a greater reduction in the S2 + OVX group compared to the OVX group (difference= -3.5; 95% CI (-5.27; -1.74); p < .001). S2 + OVX group also displayed a significant average reduction of total blood cholesterol (difference: -16.94; 95% CI (-33.73; -0.15); p = .037). No significant effects of the supplement were found on other secondary endpoints. CONCLUSION: In this murine menopausal model, triple oral supplement dose resulted in an average reduction of weight gain and total cholesterol levels, suggesting that the compound could have a potential effect at regulating menopausal altered metabolism.


Assuntos
Glucosinolatos/farmacologia , Hesperidina/farmacologia , Lepidium , Menopausa , Ovariectomia , Fitosteróis/farmacologia , Preparações de Plantas/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Suplementos Nutricionais , Feminino , Camundongos , Tamanho do Órgão , Extratos Vegetais/farmacologia , Sitosteroides/farmacologia , Triglicerídeos/sangue , Útero/efeitos dos fármacos , Útero/patologia
20.
Food Res Int ; 136: 109529, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846593

RESUMO

The consumption of broccoli provides a large quantity of compounds with nutraceutical properties to the human diet. Broccoli has a high content of glucosinolates, compounds of the specialized metabolism with anticarcinogenic activity. In a previous work, we found that harvesting different time-points during the day affects the rate of senescence of broccoli heads during postharvest storage. In this work, we tested the same cultural practice to evaluate glucosinolate content and expression of genes involved in glucosinolate metabolism. Broccoli heads were harvested at 8:00, 13:00 and 18:00 h and stored for 5 d at 20 °C in darkness. We found that content and composition of the glucosinolate pool was affected by the time of harvest. Levels of indolic glucosinolates decreased with the time of harvest on the day whereas indolic glucosinolate showed only a moderate decrease. The expression of genes associated to the biosynthesis of aliphatic glucosinolates was variable during the day. In relation to indolic glucosinolates, an increase in the expression of the transcription factor BolMYB51 was detected around 13:00 h, which strongly correlated with the increase in expression of genes associated to their biosynthesis towards the end of the day. During postharvest, the storage in darkness affected differently the metabolisms of indolic and aliphatic glucosinolates. The content of aliphatics decreased during the postharvest period, as well as the expression of the genes associated with their biosynthesis. In contrast, in the case of indolics, their content remained constant or varied slightly, while the expression of the associated biosynthetic genes decreased only slightly. Finally, the genes related to the degradation of glucosinolates appeared to be strongly regulated by light conditions, since their expression increased during the course of the day and decreased markedly during postharvest storage in darkness. These results suggest that harvesting of broccolis close to noon would be convenient to maintain higher levels of glucosinolates during postharvest storage.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Escuridão , Glucosinolatos , Humanos , Metabolismo Secundário , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA