Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neurotox Res ; 41(3): 288-309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36800114

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/complicações , Riluzol , Edaravone/uso terapêutico , Ácido Glutâmico , Compostos Fitoquímicos/uso terapêutico
2.
Neurotox Res ; 40(4): 973-994, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35708826

RESUMO

Astrocytes preserve the brain microenvironment homeostasis in order to protect other brain cells, mainly neurons, against damages. Glial cells have specific functions that are important in the context of neuronal survival in different models of central nervous system (CNS) diseases. Microglia are among these cells, secreting several molecules that can modulate astrocyte functions. Although 1,2-dihydroxybenzene (catechol) is a neurotoxic monoaromatic compound of exogenous origin, several endogenous molecules also present the catechol group. This study compared two methods to obtain astrocyte-enriched cultures from newborn Wistar rats of both sexes. In the first technique (P1), microglial cells began to be removed early 48 h after primary mixed glial cultures were plated. In the second one (P2), microglial cells were late removed 7 to 10 days after plating. Both cultures were exposed to catechol for 72 h. Catechol was more cytotoxic to P1 cultures than to P2, decreasing cellularity and changing the cell morphology. Microglial-conditioned medium (MCM) protected P1 cultures and inhibited the catechol autoxidation. P2 cultures, as well as P1 in the presence of 20% MCM, presented long, dense, and fibrillary processes positive for glial fibrillary acidic protein, which retracted the cytoplasm when exposed to catechol. The Ngf and Il1beta transcription increased in P1, meanwhile astrocytes expressed more Il10 in P2. Catechol decreased Bdnf and Il10 in P2 cultures, and it decreased the expression of Il1beta in both conditions. A prolonged contact with microglia before isolation of astrocyte-enriched cultures modifies astrocyte functions and morphology, protecting these cells against catechol-induced cytotoxicity.


Assuntos
Astrócitos , Microglia , Animais , Astrócitos/metabolismo , Catecóis/toxicidade , Células Cultivadas , Interleucina-10/metabolismo , Microglia/metabolismo , Ratos , Ratos Wistar
3.
J Neuroimmune Pharmacol ; 17(1-2): 206-217, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881709

RESUMO

Oligodendrocytes produce the myelin that is critical for rapid neuronal transmission in the central nervous system (CNS). Disruption of myelin has devastating effects on CNS function, as in the demyelinating disease multiple sclerosis (MS). Microglia are the endogenous immune cells of the CNS and play a central role in demyelination and repair. There is a need for new potential therapies that regulate myelination and microglia to promote repair. Agathisflavone (FAB) is a non-toxic flavonoid that is known for its anti-inflammatory and neuroprotective properties. Here, we examined the effects of FAB (5-50 µM) on myelination and microglia in organotypic cerebellar slices prepared from P10-P12 Sox10-EGFP and Plp1-DsRed transgenic mice. Immunofluorescence labeling for myelin basic protein (MBP) and neurofilament (NF) demonstrates that FAB significantly increased the proportion of MBP + /NF + axons but did not affect the overall number of oligodendroglia or axons, or the expression of oligodendroglial proteins CNPase and MBP. FAB is known to be a phytoestrogen, but blockade of α- or ß- estrogen receptors (ER) indicated the myelination promoting effects of FAB were not mediated by ER. Examination of microglial responses by Iba1 immunohistochemistry demonstrated that FAB markedly altered microglial morphology, characterized by smaller somata and reduced branching of their processes, consistent with a decreased state of activation, and increased Iba1 protein expression. The results provide evidence that FAB increases the extent of axonal coverage by MBP immunopositive oligodendroglial processes and has a modulatory effect upon microglial cells, which are important therapeutic strategies in multiple neuropathologies.


Assuntos
Animais , Camundongos
4.
Mol Biol Rep ; 48(2): 1475-1483, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33492574

RESUMO

Rutin is an important flavonoid consumed in the daily diet. It is also known as vitamin P and has been extensively investigated due to its pharmacological properties. On the other hand, neuronal death induced by glutamate excitotoxicity is present in several diseases including neurodegenerative diseases. The neuroprotective properties of rutin have been under investigation, although its mechanism of action is still poorly understood. We hypothesized that the mechanisms of neuroprotection of rutin are associated with the increase in glutamate metabolism in astrocytes. This study aimed to evaluate the protective effects of rutin with a focus on the modulation of glutamate detoxification. We used brain organotypic cultures from post-natal Wistar rats (P7-P9) treated with rutin to evaluate neural cell protection and levels of proteins involved in the glutamate metabolism. Moreover, we used cerebral cortex slices from adult Wistar rats to evaluate glutamate uptake. We showed that rutin inhibited the cell death and loss of glutamine synthetase (GS) induced by glutamate that was associated with an increase in glutamate-aspartate transporter (GLAST) in brain organotypic cultures from post-natal Wistar rats. Additionally, it was observed that rutin increased the glutamate uptake in cerebral cortex slices from adult Wistar rats. We conclude that rutin is a neuroprotective agent that prevents glutamate excitotoxicity and thereof suggest that this effect involves the regulation of astrocytic metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Rutina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Transportador 1 de Aminoácido Excitatório , Glutamato-Amônia Ligase/genética , Ácido Glutâmico/toxicidade , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Ratos , Ratos Wistar
5.
Brain Behav Immun ; 85: 170-185, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31059805

RESUMO

Microglia cells are the immune effector in the Central Nervous System (CNS). However, studies have showed that they contribute more to glioma progression than to its elimination. Rutin and its aglycone quercetin are flavonoids present in many fruits as well as plants and have been demonstrated to bear anti-inflammatory, antioxidant and antitumor properties also to human glioblastoma cell lines. Previous studies also demonstrated that rutin, isolated from the Brazilian plant Dimorphandra mollis Bent., presents immunomodulatory effect on astrocytes and microglia. In this study, we investigate the antitumor and immunomodulatory properties of rutin and its aglycone quercetin on the viability of glioma cells alone and under direct and indirect interaction with microglia. Flavonoid treatment of rat C6 glioma cells induced inhibition of proliferation and migration, and also induced microglia chemotaxis that was associated to the up regulation of tumor necrosis factor (TNF) and the down regulation of Interleukin 10 (IL-10) at protein and mRNA expression levels, regulation of mRNA expression for chemokines CCL2, CCL5 and CX3CL1, and Heparin Binding Growth Factor (HDGF), Insulin-like growth factor (IGF) and Glial cell-derived neurotrophic factor (GDNF) growth factors. Treatment of human U251 and TG1 glioblastoma cells with both flavonoids also modulated negatively the expression of mRNA for IL-6 and IL-10 and positively the expression of mRNA for TNF characterizing changes to the immune regulatory profile. Treatment of microglia and C6 cells either in co-cultures or during indirect interaction, via conditioned media from glioma cells treated with flavonoids or via conditioned media from microglia treated with flavonoids reduced proliferation and migration of glioma cells. It also directed microglia towards an inflammatory profile with increased expression of mRNA for IL-1ß, IL-6, IL-18 and decreased expression of mRNA for nitric oxide synthase 2 (NOS2) and prostaglandin-endoperoxide synthase 2 (PTGS2), arginase and transforming growth factor beta (TGF-ß), as well as Insulin-like growth factor (IGF). Treatment of U251 cells with flavonoids also reduced tumorigenesis when the cells were xenotransplanted in rat brains, and directed microglia and also astrocytes in the microenvironment of tumor cell implantation as well as in the brain parenchyma to a not favorable molecular inflammatory profile to the glioma growth, as observed in cultures. Together these results demonstrate that the flavonoid rutin and its aglycone quercetin present antiglioma effects related to the property of modulating the microglial inflammatory profile and may be considered for molecular and preclinical studies as adjuvant molecules for treatment of gliomas.


Assuntos
Microglia , Rutina , Animais , Células Cultivadas , Flavonoides , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Quercetina/farmacologia , Ratos , Rutina/farmacologia
6.
Neurotoxicology ; 65: 85-97, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29425760

RESUMO

Flavonoids are bioactive compounds that are known to be neuroprotective against glutamate-mediated excitotoxicity, one of the major causes of neurodegeneration. The mechanisms underlying these effects are unresolved, but recent evidence indicates flavonoids may modulate estrogen signaling, which can delay the onset and ameliorate the severity of neurodegenerative disorders. Furthermore, the roles played by glial cells in the neuroprotective effects of flavonoids are poorly understood. The aim of this study was to investigate the effects of the flavonoid agathisflavone (FAB) in primary neuron-glial co-cultures from postnatal rat cerebral cortex. Compared to controls, treatment with FAB significantly increased the number of neuronal progenitors and mature neurons, without increasing astrocytes or microglia. These pro-neuronal effects of FAB were suppressed by antagonists of estrogen receptors (ERα and ERß). In addition, treatment with FAB significantly reduced cell death induced by glutamate and this was associated with reduced expression levels of pro-inflammatory (M1) microglial cytokines, including TNFα, IL1ß and IL6, which are associated with neurotoxicity, and increased expression of IL10 and Arginase 1, which are associated with anti-inflammatory (M2) neuroprotective microglia. We also observed that FAB increased neuroprotective trophic factors, such as BDNF, NGF, NT4 and GDNF. The neuroprotective effects of FAB were also associated with increased expression of glutamate regulatory proteins in astrocytes, namely glutamine synthetase (GS) and Excitatory Amino Acid Transporter 1 (EAAT1). These findings indicate that FAB acting via estrogen signaling stimulates production of neurons in vitro and enhances the neuroprotective properties of microglia and astrocytes to significantly ameliorate glutamate-mediated neurotoxicity.


Assuntos
Biflavonoides/farmacologia , Fabaceae , Ácido Glutâmico/efeitos adversos , Degeneração Neural/prevenção & controle , Neurogênese/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Biflavonoides/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Córtex Cerebral , Técnicas de Cocultura , Citocinas/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Fabaceae/química , Glutamato-Amônia Ligase/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Degeneração Neural/induzido quimicamente , Fatores de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Cultura Primária de Células , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos
7.
J Ethnopharmacol ; 209: 157-166, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28712890

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Amburana cearensis (Allemao) A.C.Sm. is a medicinal plant of the Brazilian Caatinga reported to present antioxidant and anti-inflammatory activity. This study aimed to evaluate the neuroprotective effect of the extracts obtained from the seeds of A. cearensis in primary cultures of cerebellar cells subjected to excitotoxicity induced by glutamate and brain mitochondria submitted to oxidative stress. MATERIALS: and methods: Primary cultures of cerebellar cells were treated with the ethanol (ETAC), hexane (EHAC), dichloromethane (EDAC) and ethyl acetate (EAAC) extracts of the seeds of A.cearensis and subjected to excitotoxicity induced by glutamate (10µM). Mitochondria isolated from rat brains were submitted to oxidative stress and treated with ETAC. RESULTS: Only the EHAC extract reduced cell viability by 30% after 72h of treatment. Morphological analyses by Immunofluorescence showed positive staining for glutamine synthetase, ß-III tubulin, GFAP and IBA1 similar to control cultures, indicating a better preservation of astrocytes, neurons and microglia, after excitotoxic damage induced by glutamate in cerebellar cultures treated with the extracts. The ETAC extract also protected mitochondria isolated from rat brains from oxidative stress, reducing the swelling, dissipation of the membrane potential, ROS production and calcium influx. CONCLUSION: Thus, this study suggests that the seed extracts from A. Cearensis exhibit neuroprotective potential against oxidative stress and excitotoxicity induced by glutamate and can be considered a potential therapeutic agent in the treatment of neurodegenerative diseases.


Assuntos
Cerebelo/citologia , Fabaceae/química , Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Brasil , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/química , Plantas Medicinais , Ratos , Ratos Wistar , Sementes/química
8.
Chem Biol Interact ; 274: 89-99, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28693884

RESUMO

Rutin is a glycosylated flavonoid present in many fruits and plants that has been demonstrated to have anti-inflammatory and antioxidant properties. However, little is known about the mechanisms underlying microglial activation and its effects on the regulation of cytokines and chemokines associated with inflammatory responses in the central nervous system. In this study we examined the effect of rutin on resting or lipopolysaccharide (LPS)-stimulated microglia and characterized their modulation to an activated M1 phenotype or an alternatively activated M2 phenotype. Microglial cells were treated with rutin (1-100 µM); alternatively, microglial cells were stimulated with LPS and the cells were then treated with rutin (50 µM). The results revealed that rutin treatment was not toxic to microglial cells and induced a dose-dependent increase in microglial proliferation associated with changes in morphology after 24 h of treatment. Rutin also induced microglial activation characterized by an increase in OX-42 positive cells and a large proportion of cells with a CD150/CD206-positive M2 phenotype. Rutin also induced a decrease in the mRNA levels of TNF, IL1ß, IL6 and iNOS, reduced the production of IL6, TNF, and nitric oxide, and increased production of the M2 regulatory cytokine IL10 and arginase. Rutin also significantly inhibited the LPS-induced expression of PTGS2, IL18 and TGFß mRNA. These findings show that rutin has the ability to promote microglial proliferation and induces microglial polarization to the M2 profile when cells are stimulated with LPS. These results point this flavonoid as a possible alternative in the treatment or prevention of neurodegenerative disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Microglia/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Rutina/farmacologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Anti-Inflamatórios/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/análise , Flavonoides/química , Flavonoides/farmacologia , Interleucina-18/genética , Interleucina-18/metabolismo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptor de Manose , Microglia/citologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Fenótipo , Ratos , Ratos Wistar , Rutina/química , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
9.
Neurotox Res ; 30(1): 41-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26951456

RESUMO

Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson's disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.


Assuntos
Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Plantas/química , Animais , Células Cultivadas , Humanos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico
10.
J Neurosci Res ; 90(10): 1892-902, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22588662

RESUMO

Sphingosine 1-phosphate (S1P) is a bioactive signaling lysophospholipid. Effects of S1P on proliferation, survival, migration, and differentiation have already been described; however, its role as a mediator of interactions between neurons and glial cells has been poorly explored. Here we describe effects of S1P, via the activation of its receptors in astrocytes, on the differentiation of neural progenitor cells (NPC) derived from either embryonic stem cells or the developing cerebral cortex. S1P added directly to NPC induced their differentiation, but S1P-primed astrocytes were able to promote even more pronounced changes in maturation, neurite outgrowth, and arborization in NPC. An increase in laminin by astrocytes was observed after S1P treatment. The effects of S1P-primed astrocytes on neural precursor cells were abrogated by antibodies against laminin. Together, our data indicate that S1P-treated astrocytes are able to induce neuronal differentiation of NPC by increasing the levels of laminin. These results implicate S1P signaling pathways as new targets for understanding neuroglial interactions within the central nervous system.


Assuntos
Astrócitos/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados , Imuno-Histoquímica , Laminina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Neuritos/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Esfingosina/farmacologia
11.
Cell Transplant ; 21(7): 1547-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21975034

RESUMO

Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions, and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Feminino , Fibroblastos/citologia , Expressão Gênica/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Pele/citologia , Ácido Valproico/farmacologia
12.
Brain Res ; 1349: 115-28, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20599835

RESUMO

We tested the effects of mouse embryonic stem cells (mES) grafts in mice spinal cord injury (SCI). Young adult female C57/Bl6 mice were subjected to laminectomy at T9 and 1-minute compression of the spinal cord with a vascular clip. Four groups were analyzed: laminectomy (Sham), injured (SCI), vehicle (DMEM), and mES-treated (EST). mES pre-differentiated with retinoic acid were injected (8 x 10(5) cells/2 microl) into the lesion epicenter, 10 min after SCI. Basso mouse scale (BMS) and Global mobility test (GMT) were assessed weekly up to 8 weeks, when morphological analyses were performed. GMT analysis showed that EST animals moved faster (10.73+/-0.9076, +/-SEM) than SCI (5.581+/-0.2905) and DMEM (5.705+/-0.2848), but slower than Sham animals (15.80+/-0.3887, p<0.001). By BMS, EST animals reached the final phase of locomotor recovery (3.872+/-0.7112, p<0.01), while animals of the SCI and DMEM groups improved to an intermediate phase (2.037+/-0.3994 and 2.111+/-0.3889, respectively). White matter area and number of myelinated nerve fibers were greater in EST (46.80+/-1.24 and 279.4+/-16.33, respectively) than the SCI group (39.97+/-0.925 and 81.39+/-8.078, p<0.05, respectively). EST group also presented better G-ratio values when compared with SCI group (p<0.001). Immunohistochemical revealed the differentiation of transplanted cells into astrocytes, oligodendrocytes, and Schwann cells, indicating an integration of transplanted cells with host tissue. Ultrastructural analysis showed, in the EST group, better tissue preservation and more remyelination by oligodendrocytes and Schwann cells than the other groups. Our results indicate that acute transplantation of predifferentiated mES into the injured spinal cord increased the spared white matter and number of nerve fibers, improving locomotor function.


Assuntos
Células-Tronco Embrionárias/fisiologia , Recuperação de Função Fisiológica/fisiologia , Compressão da Medula Espinal/fisiopatologia , Compressão da Medula Espinal/cirurgia , Transplante de Células-Tronco , Análise de Variância , Animais , Comportamento Animal , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/fisiologia , Proteína Básica da Mielina/metabolismo , Fibras Nervosas Mielinizadas/patologia , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/fisiologia , Neuroglia/ultraestrutura , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células de Schwann/fisiologia , Células de Schwann/ultraestrutura , Compressão da Medula Espinal/patologia
13.
Artigo em Inglês | VETINDEX | ID: vti-711682

RESUMO

Casos de intoxicações com plantas do gênero Crotalaria (Leguminosae) em humanos, e principalmente em animais, tem sido amplamente descritos, com o comprometimento do SNC em animais mais sensíveis, como equídeos. Esse estudo objetivou investigar os efeitos diretos do alcalóide pirrolizidínico Monocrotalina (MCT), principal toxina da C. retusa, em culturas primárias de astrócitos corticais de ratos. Foram testadas concentrações entre 0,1-500µM da MCT no período de 24 e 72h. O teste do MTT revelou que a MCT não mostrou toxicidade em astrócitos. A coloração de Rosenfeld permitiu evidenciar que os astrócitos tratados com 10-500µM MCT por 72h, apresentaram o corpo celular contraído e desenvolveram finos prolongamentos de tamanho variável; este efeito foi dose-dependente, e verificado em até cerca de 80% das células tratadas com 500µM MCT. Modificações na expressão da GFAP foram verificadas por marcação imunocitoquímica e western blot, especialmente após 72h de tratamento: a MCT induziu, de forma dose dependente, modificação na distribuição da GFAP, que ficou mais localiza na região peri-nuclear, e uma redução de cerca de 40% nos níveis de expressão dessa proteína foi verificada em todas as concentrações testadas. A coloração da cromatina nuclear com Hoechst-33258 revelou que a presença de astrócitos com núcleos picnóticos ou múltiplos nas culturas tratadas com 1-500µM MCT. Estes resu

14.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1493973

RESUMO

Casos de intoxicações com plantas do gênero Crotalaria (Leguminosae) em humanos, e principalmente em animais, tem sido amplamente descritos, com o comprometimento do SNC em animais mais sensíveis, como equídeos. Esse estudo objetivou investigar os efeitos diretos do alcalóide pirrolizidínico Monocrotalina (MCT), principal toxina da C. retusa, em culturas primárias de astrócitos corticais de ratos. Foram testadas concentrações entre 0,1-500µM da MCT no período de 24 e 72h. O teste do MTT revelou que a MCT não mostrou toxicidade em astrócitos. A coloração de Rosenfeld permitiu evidenciar que os astrócitos tratados com 10-500µM MCT por 72h, apresentaram o corpo celular contraído e desenvolveram finos prolongamentos de tamanho variável; este efeito foi dose-dependente, e verificado em até cerca de 80% das células tratadas com 500µM MCT. Modificações na expressão da GFAP foram verificadas por marcação imunocitoquímica e western blot, especialmente após 72h de tratamento: a MCT induziu, de forma dose dependente, modificação na distribuição da GFAP, que ficou mais localiza na região peri-nuclear, e uma redução de cerca de 40% nos níveis de expressão dessa proteína foi verificada em todas as concentrações testadas. A coloração da cromatina nuclear com Hoechst-33258 revelou que a presença de astrócitos com núcleos picnóticos ou múltiplos nas culturas tratadas com 1-500µM MCT. Estes resu

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA