Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.655
Filtrar
1.
Nutrients ; 16(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275251

RESUMEN

Inulin is a plant polysaccharide which, due to its chemical structure, is not digestible by human gut enzymes but by some bacteria of the human microbiota, acting as a prebiotic. Consequently, inulin consumption has been associated with changes in the composition of the intestinal microbiota related to an improvement of the metabolic state, counteracting different obesity-related disturbances. However, the specific mechanisms of action, including bacterial changes, are not exactly known. Here, a bibliographic review was carried out to study the main effects of inulin on human metabolic health, with a special focus on the mechanisms of action of this prebiotic. Inulin supplementation contributes to body weight and BMI control, reduces blood glucose levels, improves insulin sensitivity, and reduces inflammation markers, mainly through the selective favoring of short-chain fatty acid (SCFA)-producer species from the genera Bifidobacterium and Anaerostipes. These SCFAs have been shown to ameliorate glucose metabolism and decrease hepatic lipogenesis, reduce inflammation, modulate immune activity, and improve anthropometric parameters such as body weight or BMI. In conclusion, the studies collected suggest that inulin intake produces positive metabolic effects through the improvement of the intestinal microbiota and through the metabolites produced by its fermentation.


Asunto(s)
Microbioma Gastrointestinal , Inulina , Prebióticos , Humanos , Inulina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Ácidos Grasos Volátiles/metabolismo , Obesidad/metabolismo , Obesidad/microbiología , Índice de Masa Corporal , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Resistencia a la Insulina
2.
Sci Rep ; 14(1): 21311, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266589

RESUMEN

Obesity is a major public health problem worldwide. Different approaches are known to face this problem, for example, dieting, surgery, or drug interventions. It has also been shown that placebos may help to reduce weight and hunger feelings, but the use of placebos is linked to problems with respect to the patient-healthcare-provider relationship. However, recent studies demonstrated that even placebos without deception (open-label placebos) affect symptoms such as pain, anxiety, or emotional distress. Here we aimed to examine whether an open-label placebo may help to lose weight in obesity. Our study included fifty-seven overweight and obese patients who aimed to lose weight using a combination of diet and sports. Patients were randomly divided into two groups. Participants in the open-label placebo group received two placebos each day. A treatment-as-usual group received no pills. Primary outcome included changes of body weight. Secondary outcomes were change of eating behavior and self-management abilities. After 4 weeks we found that participants in the open-label placebo condition lost more weight than the treatment-as-usual group. Furthermore, OLP treatment affected eating behavior. No effects for self-management abilities were found. Although further research is necessary, open-label placebos might help individuals to lose weight.


Asunto(s)
Obesidad , Pérdida de Peso , Humanos , Obesidad/tratamiento farmacológico , Obesidad/psicología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Pérdida de Peso/efectos de los fármacos , Placebos , Conducta Alimentaria/efectos de los fármacos , Resultado del Tratamiento , Efecto Placebo , Peso Corporal/efectos de los fármacos
3.
Acta Cir Bras ; 39: e395024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258617

RESUMEN

PURPOSE: Hibiscus sabdariffa (HS) extract has several health benefits and anti-obesogenic effects. The aim of the present study was to assess whether the medicinal properties attributable to HS would prevent or mitigate bladder changes induced by obesity in an experimental model. METHODS: Forty-eight male Wistar rats were submitted to one of four different dietary interventions (12 animals each): G1, standard diet and water (controls); G2, standard diet and HS tea; G3, a palatable high-fat diet and water; and G4, high-fat diet diet and HS tea. The animals were monitored for body weight, feed, and water and tea intake, according to the allocated group. After 16 weeks, the animals were euthanized, and the levels of creatinine, inflammatory cytokines, testosterone, cholesterol, triglycerides, and electrolytes were evaluated. In addition, histopathological analysis of the animals' bladder was performed. RESULTS: Groups receiving HS (G2 and G4) showed decreased levels of the pro-inflammatory cytokine interleukin-1α. HS tea was able to reduce low-density lipoprotein and triglyceride levels in the G2 group compared to other groups. Only in the G3 there was a significant increase in the body weight when it was compared the 12th and 16th weeks. Leptin was shown to be elevated in the groups that received a high-fat diet. There was a significant decrease in the muscle fibers thickness and in the total collagen count in G4 bladder when compared with G1 and G3. CONCLUSIONS: HS has an anti-inflammatory role, can reverse hyperlipidemia in rats, and reduced deleterious effects of obesity on these animals' bladder.


Asunto(s)
Dieta Alta en Grasa , Hibiscus , Obesidad , Extractos Vegetales , Ratas Wistar , Vejiga Urinaria , Animales , Hibiscus/química , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Dieta Alta en Grasa/efectos adversos , Ratas , Suplementos Dietéticos , Peso Corporal/efectos de los fármacos , Triglicéridos/sangre , Modelos Animales de Enfermedad , Reproducibilidad de los Resultados , Leptina/sangre
4.
F1000Res ; 13: 540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246825

RESUMEN

Background: Nile tilapia ( Oreochromis niloticus) is predominant cultured species in aquaculture. However, there is a scarcity of literature regarding relationship between guava and star gooseberry leaf extract and the condition factor. Thus, the present study aims to investigate the effect of guava and star gooseberry leaf extract-supplemented diets on the specific growth rate, length-weight relationship, and condition factor of Nile tilapia. Methods: Six hundred and thirty Nile tilapia (8.7±0.4 g) were randomly distributed among twenty-one tanks (30 fish per tank) within a recirculation system. Over a 60-day period, the fish were fed diets supplemented with 5g/Kg and 10g/Kg of guava leaf extract (GLE-5, GLE-10), star gooseberry leaf extract (SGLE-5, SGLE-10), and a mixture of both (MxLE-5, MXLE-10). Subsequently, specific growth rate, length-weight relationship, and condition factor were determined. Results: After 60 days, the specific growth rate was significantly higher in all the GLE, SGLE, and MxLE groups compared to the control group. The final lengths and weights differed significantly both in the control group and all the GLE, SGLE, and MxLE groups. The analysis of the regression equation indicated a positive correlation (r = 0.970, 0.977, 0.976, 0.974, 0.974, 0.974, and 0.969) between the length and weight of Nile tilapia in the control group and in all the GLE, SGLE, and MxLE groups. The regression exponent " b" values in all the GLE, SGLE, and MxLE groups were >3, indicating a positive allometric growth pattern in Nile tilapia compared to the control ( b=2.866), which exhibited a negative allometry. The final condition factor values did not differ significantly in either the control group or any of the plant extract groups. Conclusions: Nile tilapia exhibited positive allometric growth patterns and maintained good health when fed with GLE, SGLE, and MxLE groups. Therefore, these plant extracts demonstrate suitability for commercial Nile tilapia production.


Asunto(s)
Peso Corporal , Cíclidos , Suplementos Dietéticos , Extractos Vegetales , Hojas de la Planta , Psidium , Animales , Psidium/química , Extractos Vegetales/farmacología , Cíclidos/crecimiento & desarrollo , Hojas de la Planta/química , Peso Corporal/efectos de los fármacos , Alimentación Animal/análisis , Acuicultura/métodos , Dieta , Photinia/química
5.
BMC Res Notes ; 17(1): 249, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237963

RESUMEN

OBJECTIVES: Apples are one of the most frequently consumed fruits and are effective in preventing lifestyle-related and other diseases. However, few studies have been conducted to evaluate health benefits of processed apple products such as juice. In this study, we analyzed the health benefits of consuming apple juice, focusing on changes in the gut microbiota, which plays an important role in maintaining human health. RESULTS: Rats were fed apple juice ad libitum, and the relative abundances of various gut microbiota in fecal samples were analyzed. In addition, rats treated apple juice were fed with a high-fat diet, and body weight, plasma triglyceride, glucose, and cholesterol levels were measured. The relative abundance of Clostridium cluster XIV did not change with the treatment of apple juice, but the relative abundance of Clostridium cluster IV was significantly decreased. In contrast, the relative abundances of Lactobacillus and Bifidobacterium, which provide benefits to the human body, were significantly increased by 3-fold and 10-fold, respectively, with apple juice consumption. When apple juice-treated rats were fed a high-fat diet, the increase in body weight, liver fat, and blood lipid parameters were all suppressed compared to high-fat alone group. CONCULUSION: This study suggests that the consumption of apple juice changes the gut microbiota, exerts a prebiotic effect, and is effective in improving lifestyle-related diseases.


Asunto(s)
Dieta Alta en Grasa , Jugos de Frutas y Vegetales , Microbioma Gastrointestinal , Malus , Prebióticos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratas , Masculino , Prebióticos/administración & dosificación , Peso Corporal/efectos de los fármacos , Ratas Sprague-Dawley , Heces/microbiología , Triglicéridos/sangre , Bifidobacterium
6.
J Ethnopharmacol ; 335: 118637, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39097212

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Moringa oleifera (Moringaceae family), commonly known as horseradish or tree of life, is traditionally used for various diseases, such as diabetes, hypercholesterolemia, neurological disorders, among others. AIM OF THE STUDY: To evaluate the toxicological profile of the oral use of an aqueous extract of Moringa oleifera leaves for 13 weeks in mice. MATERIALS AND METHODS: Initially, a factorial design (23) was carried out to optimize aqueous extraction using as variables; the extraction method and proportion of drug. The 13-week repeated-dose toxicity trial used female and male mice, with oral administration of aqueous extract of Moringa oleifera leaves at doses of 250, 500, and 1000 mg/kg. The animals were evaluated for body weight, water and feed intake, biochemical and hematological parameters, urinalysis, ophthalmology and histopathology of the liver, spleen and kidneys. RESULTS: The extraction efficiency was evidenced by the extraction by maceration at 5%, obtaining the optimized extract of Moringa oleifera (OEMo). The oral administration of OEMo did not promote significant difference (p > 0.05) in the weight gain, food and water consumption of the control animals and those treated with 250 and 500 mg/kg. However, treatment with 1000 mg/kg promoted a reduction (p < 0.05) in food intake and body weight from the 7th week onwards in male and female mice. No alterations were detected in the hematological and histological parameters in the concentrations tested for both sexes. The highest concentration treatment (1000 mg/kg) promoted an increase in transaminases in males and females. All concentrations promoted a significant decrease (p < 0.05) in the serum lipid profile of mice. CONCLUSION: This study developed an optimized extract of Moringa oleifera leaves, which should be used with caution in preparations above 500 mg/kg for the long term because it leads to significant changes in liver enzymes. On the other hand, the extract proved to be a promising plant preparation for hyperlipidemia in mice.


Asunto(s)
Moringa oleifera , Extractos Vegetales , Hojas de la Planta , Animales , Moringa oleifera/química , Extractos Vegetales/toxicidad , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Masculino , Femenino , Ratones , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hígado/efectos de los fármacos , Hígado/patología , Administración Oral , Riñón/efectos de los fármacos , Riñón/patología
7.
J Ethnopharmacol ; 335: 118663, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39128797

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Depression is a prevalent stress disorder, yet the underlying physiological mechanisms linking stress to appetite and weight loss remain elusive. While most antidepressants are associated with excessive weight and appetite gain, sertraline (SER) exhibits a lower risk of these side effects. Metacinnabar (ß-HgS), the primary component of Tibetan medicine Zuotai, has been shown to enhance mice's resilience against external stress without causing excessive increases in weight or appetite. However, the precise physiological pathway through which ß-HgS restores appetite and weight in stressed mice remains unclear. AIM OF THE STUDY: The objective of this study is to assess the efficacy of ß-HgS in ameliorating weight loss and appetite suppression induced by pressure stimulation in mice, as well as elucidate its potential mechanisms of action. METHODS: The present study employed chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS) as experimental models to simulate environmental stress encountered in daily life. Subsequently, a series of experiments were conducted, including behavior tests, HE staining of rectal and hippocampal pathological sections, detection of depression-related biological indicators, analysis of intestinal flora diversity, as well as metabolomics analysis of hippocampal and intestinal contents. RESULT: Dysregulation of glycerophospholipid metabolism may represent the principal pathway underlying reduced appetite, body weight, neurotransmitter and appetite hormone levels, heightened inflammatory response, hippocampal and rectal tissue damage, as well as altered composition of intestinal microbiota in stressed mice. Following intervention with SER and ß-HgS in stressed mice, the deleterious effects induced by stress can be ameliorated, in which the medium-dose ß-HgS exhibited superior performance. CONCLUSION: The aforementioned research findings suggest that the stress-induced decrease in appetite and body weight in mice may be associated with dysregulation in glycerophospholipid metabolism connecting the gut-brain axis. ß-HgS exhibits potential in ameliorating depressive-like symptoms in mice subjected to stress, while concurrently restoring their body weight and appetite without inducing excessive augmentation. Its therapeutic effect may also be attributed to its ability to modulate glycerophospholipid metabolism status and exert influence on the gut-brain axis.


Asunto(s)
Apetito , Microbioma Gastrointestinal , Estrés Psicológico , Animales , Masculino , Estrés Psicológico/tratamiento farmacológico , Ratones , Apetito/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Conducta Animal/efectos de los fármacos
8.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201705

RESUMEN

The prevalence of obesity and related consequences, including insulin resistance and Alzheimer's-like neuropathology, has increased dramatically. Contributing to this prevalence is the shift in lifestyle preference away from wholesome foods and exercise to the Western-style diet and sedentarism. Despite advances in drug development, a healthy diet and regular exercise remain the most effective approaches to mitigating the unwanted sequelae of diet-induced obesity on brain health. In this study, we used the high-fat high-sugar (HFHS) mouse model of neurodegeneration to examine the effects of exercise training (HFHS+Ex), genistein treatment (HFHS+Gen), and combination treatment (HFHS+Ex+Gen) on proteins relating to neurodegeneration in the brain of male mice. After a period of 12 weeks, as expected, HFHS feeding increased body weight, adipose tissue weight, and systemic plasma inflammation (TNF-α) compared to lean mice fed a standard diet. HFHS feeding also increased protein expression of brain markers of insulin resistance (pGSK-3ß, p-IR), apoptosis (caspase 3), early neurofibrillary tangles (CP13), and amyloid-beta precursor (CT20). Compared to HFHS mice, Ex decreased body weight, plasma TNF-α, and expression of pGSK-3ß, caspase 3, CP13, amyloid-ß precursor (22c11), and ADAM10. Treatment with Gen was equally protective on these markers and decreased the expression of p-IR. Combination treatment with Ex and Gen afforded the greatest overall benefits, and this group exhibited the greatest reduction in body and adipose tissue weight and all brain markers, except for 22c11 and ADAM10, which were decreased compared to mice fed an HFHS diet. In addition, levels of 4G8, which detects protein levels of amyloid-ß, were decreased with combination treatment. Our results indicate that exercise training, genistein supplementation, or combination treatment provide varying degrees of neuroprotection from HFHS feeding-induced Alzheimer's pathology. Future perspectives could include evaluating moderate exercise regimens in combination with dietary supplementation with genistein in humans to determine whether the same benefits translate clinically.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Dieta Alta en Grasa , Genisteína , Condicionamiento Físico Animal , Animales , Masculino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/etiología , Genisteína/farmacología , Genisteína/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Biomarcadores , Resistencia a la Insulina , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Peso Corporal/efectos de los fármacos , Azúcares de la Dieta/efectos adversos , Caspasa 3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
9.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201737

RESUMEN

Numerous studies indicate that intrauterine growth restriction (IUGR) can predispose individuals to metabolic syndrome (MetS) in adulthood. Several reports have demonstrated that pharmacological concentrations of biotin have therapeutic effects on MetS. The present study investigated the beneficial effects of prenatal biotin supplementation in a rat model of intrauterine caloric restriction to prevent cardiometabolic risk in adult female offspring fed fructose after weaning. Female rats were exposed to a control (C) diet or global caloric restriction (20%) (GCR), with biotin (GCRB) supplementation (2 mg/kg) during pregnancy. Female offspring were exposed to 20% fructose (F) in drinking water for 16 weeks after weaning (C, C/F, GCR/F, and GCRB/F). The study assessed various metabolic parameters including Lee's index, body weight, feed conversion ratio, caloric intake, glucose tolerance, insulin resistance, lipid profile, hepatic triglycerides, blood pressure, and arterial vasoconstriction. Results showed that GCR and GCRB dams had reduced weights compared to C dams. Offspring of GCRB/F and GCR/F dams had lower body weight and Lee's index than C/F offspring. Maternal biotin supplementation in the GCRB/F group significantly mitigated the adverse effects of fructose intake, including hypertriglyceridemia, hypercholesterolemia, hepatic steatosis, glucose and insulin resistance, hypertension, and arterial hyperresponsiveness. This study concludes that prenatal biotin supplementation can protect against cardiometabolic risk in adult female offspring exposed to postnatal fructose, highlighting its potential therapeutic benefits.


Asunto(s)
Biotina , Restricción Calórica , Suplementos Dietéticos , Retardo del Crecimiento Fetal , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Ratas , Restricción Calórica/métodos , Biotina/administración & dosificación , Biotina/farmacología , Efectos Tardíos de la Exposición Prenatal/prevención & control , Retardo del Crecimiento Fetal/prevención & control , Retardo del Crecimiento Fetal/etiología , Resistencia a la Insulina , Modelos Animales de Enfermedad , Síndrome Metabólico/prevención & control , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Fructosa/efectos adversos , Factores de Riesgo Cardiometabólico , Peso Corporal/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos
10.
J Agric Food Chem ; 72(34): 19167-19176, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39150542

RESUMEN

Xanthophyllomyces dendrorhous (X. dendrorhous), previously known as Phaffia rhodozyma, is a red yeast that is widely recognized as a rich source of carotenoids, particularly astaxanthin, which exhibits potent antioxidant activity and other health-promoting functions. However, there is currently a lack of research on the safety of consuming X. dendrorhous. To address this, we conducted an acute toxicity study followed by a 90-day subchronic toxicity trial to evaluate the safety of X. dendrorhous and investigate its in vivo antioxidant activity. In the acute toxicity study, Sprague-Dawley rats were administered a maximum of 12 g/kg body weight of X. dendrorhous powder by gavage and survived without any adverse effects for 14 days. In the subsequent subchronic toxicity test, the rats were randomly divided into five groups, each with free access to their diet adulterated with 0% (control), 2.5% (low), 5% (middle), 10% (high), and 20% (extreme high) X. dendrorhous powder. The rats' behavior, body weight, and food intake were monitored during the 90-day experiment. At the end of the experiment, urine, blood, and organs were collected from the rats for biochemical testing. Additionally, the antioxidant activity in rat sera was evaluated. The results of the acute toxicity test demonstrated that the LD50 of X. dendrorhous was greater than 12 g/kg body weight, indicating that the substance was not toxic. Throughout the 90-day period of subchronic toxicity, the triglyceride levels of male rats fed with 10 and 20% X. dendrorhous increased to 1.54 ± 0.17 and 1.55 ± 0.25 mmol/L (P < 0.05), respectively. This may be attributed to the elevated fat content of the diet in the high-dose and extreme high-dose groups, which was 5.5 and 2.5% higher than that in the control, respectively. Additionally, the white pulp in the spleen exhibited an increase, and the number of white blood cells in the extreme high-dose group increased by 2.41 × 109/L (P < 0.05), which may contribute to enhanced immunity. Finally, the body weight, food intake, blood and urine indexes, and histopathological examination results of the organs of the rats did not demonstrate any regular toxic effects. With the adulteration of X. dendrorhous, the activity of GSH-Px in male rats increased by 16-36.32%. The activity of GSH-Px in female rats of the extreme high-dose group increased by 14.70% (P < 0.05). The free radical scavenging ability of ABTS in male rats in the two high-dose groups exhibited an increase of 6.5 and 11.41% (P < 0.05). In contrast, the MDA content of male rats in the extreme high-dose group demonstrated a reduction of 2.73 nmol/mL (P < 0.05). These findings indicate that X. dendrorhous has no toxic effects, can be taken in high doses, and has a beneficial antioxidant effect that may enhance the body's immunity.


Asunto(s)
Antioxidantes , Basidiomycota , Suplementos Dietéticos , Ratas Sprague-Dawley , Animales , Antioxidantes/metabolismo , Masculino , Ratas , Suplementos Dietéticos/análisis , Basidiomycota/química , Femenino , Xantófilas/química , Humanos , Peso Corporal/efectos de los fármacos
11.
Front Endocrinol (Lausanne) ; 15: 1432928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104812

RESUMEN

We recently reported that a novel chimeric peptide (GEP44) targeting both the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2 receptor (Y1R and Y2R) reduced energy intake and body weight (BW) in diet-induced obese (DIO) rats. We hypothesized that GEP44 reduces energy intake and BW primarily through a GLP-1R dependent mechanism. To test this hypothesis, GLP-1R+/+ mice and GLP-1R null (GLP-1R-/-) mice were fed a high fat diet for 4 months to elicit diet-induced obesity prior to undergoing a sequential 3-day vehicle period, 3-day drug treatment (5, 10, 20 or 50 nmol/kg; GEP44 vs the selective GLP-1R agonist, exendin-4) and a 3-day washout. Energy intake, BW, core temperature and activity were measured daily. GEP44 (10, 20 and 50 nmol/kg) reduced BW after 3-day treatment in DIO male GLP-1R+/+ mice by -1.5 ± 0.6, -1.3 ± 0.4 and -1.9 ± 0.4 grams, respectively (P<0.05), with similar effects being observed in female GLP-1R+/+ mice. These effects were absent in male and female DIO GLP-1R-/- mice suggesting that GLP-1R signaling contributes to GEP44-elicited reduction of BW. Further, GEP44 decreased energy intake in both male and female DIO GLP-1R+/+ mice, but GEP44 appeared to produce more consistent effects across multiple doses in males. In GLP-1R-/- mice, the effects of GEP44 on energy intake were only observed in males and not females, suggesting that GEP44 may reduce energy intake, in part, through a GLP-1R independent mechanism in males. In addition, GEP44 reduced core temperature and activity in both male and female GLP-1R+/+ mice suggesting that it may also reduce energy expenditure. Lastly, we show that GEP44 reduced fasting blood glucose in DIO male and female mice through GLP-1R. Together, these findings support the hypothesis that the chimeric peptide, GEP44, reduces energy intake, BW, core temperature, and glucose levels in male and female DIO mice primarily through a GLP-1R dependent mechanism.


Asunto(s)
Peso Corporal , Dieta Alta en Grasa , Ingestión de Energía , Receptor del Péptido 1 Similar al Glucagón , Ratones Obesos , Obesidad , Animales , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Femenino , Masculino , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ratones Noqueados , Ratones Endogámicos C57BL
12.
Neuroreport ; 35(14): 936-946, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39171853

RESUMEN

This study aimed to elucidate the effects of sucrose (SUC) consumption on neurodevelopmental processes through behavioral changes in rodents and determine whether these effects could be because of sweet taste, energy supply, or both. Mice were divided into five groups based on the time of SUC or sucralose (SUR, a noncaloric sweetener) administration: for 6 days from gestation day (GTD) 7, to birth from GTD13 and for 15 days from postnatal day (PND) 21, PND38, and PND56. SUC and SUR administration did not impact body weight. However, food intake in the PND56 group and water intake in the GTD13 and PND56 groups were increased by SUC and SUR administration. Amphetamine (0.5, 1, 2, and 3 mg/kg), a dopamine reuptake inhibitor, administration to assess alterations in the dopaminergic system induced increases in distance traveled after SUC administration in the GTD13 and PND21 groups compared with that in the control (vehicle administration) group. In contrast, the SUR group showed a decrease in the distance traveled in the PND56 group. Although there were no differences in locomotor activity and foraging behavior, SUC preference increased in the SUC group regarding the GTD13 and PND38 groups. The correlations between SUC preference and foraging behavior and between SUC preference and amphetamine response varied in both groups according to the developmental stage. Excessive SUC consumption might affect neural function at different developmental stages, as it could affect brain function through complex mechanisms involving sweet taste and energy supply and influence the dopaminergic system.


Asunto(s)
Sacarosa , Animales , Sacarosa/administración & dosificación , Sacarosa/análogos & derivados , Femenino , Ratones , Embarazo , Masculino , Anfetamina/farmacología , Conducta Animal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Actividad Motora/efectos de los fármacos , Edulcorantes/administración & dosificación , Peso Corporal/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Ingestión de Líquidos/efectos de los fármacos
13.
Reprod Toxicol ; 129: 108676, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094807

RESUMEN

In the present study, the effects of levamlodipine benzenesulfonate on the development of fertile Sprague-Dawley (SD) rats, their embryos, and littermates were assessed using an embryo-fetal developmental toxicity test. Maternal body weight reduction was observed at a dose of 20 mg/kg, but it recovered after treatment cessation. The 20 mg/kg dose group showed a skewed sex ratio in fetal rats, with a higher proportion of males. While some effects on fetal sternum development were observed at 20 mg/kg, no skeletal malformations were observed. No significant gross morphological abnormalities were detected in the dams (mothers), no significant embryotoxicity or foetotoxicity in fetal rats and no significant effects on fetal length and weight development at doses of 5 and 10 mg/kg. Genotoxicity was evaluated using a combination of the Ames test, the Chinese hamster ovary (CHO) cell chromosome aberration assay, and the ICR mouse bone marrow micronucleus test. The Ames test results indicated substantial bacteriostatic effects at doses of 500 and 5000 mg/dish, with no mutagenicity observed at doses of 0.5, 5, and 50 mg/dish. No significant effect on the aberration rate of CHO cell chromosomes was found at doses of 2.8, 5.6, and 11.2 mg/mL. In the ICR mouse micronucleus test, no micronucleus-inducing effect was observed at doses of 3.125, 6.25, and 12.5 mg/kg in each treatment group. In conclusion, under the conditions of this experiment, the no-observed-adverse-effect level (NOAEL) for developmental toxicity of levamlodipine benzenesulfonate in fertile SD rats, their embryos, and littermates was established to be 10 mg/kg/day. Levamlodipine benzenesulfonate did not exhibit significant genotoxicity.


Asunto(s)
Aberraciones Cromosómicas , Cricetulus , Pruebas de Mutagenicidad , Ratas Sprague-Dawley , Animales , Femenino , Masculino , Células CHO , Ratas , Cricetinae , Ratones , Embarazo , Aberraciones Cromosómicas/inducido químicamente , Ratones Endogámicos ICR , Pruebas de Micronúcleos , Relación Dosis-Respuesta a Droga , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Razón de Masculinidad , Peso Corporal/efectos de los fármacos , Mutágenos/toxicidad
14.
Behav Brain Res ; 474: 115172, 2024 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094955

RESUMEN

The phytoestrogens daidzein and genistein are ubiquitous in human food. This study aimed to elucidate their anxiety-liked effects, their effects on the reproductive organs, and the molecular mechanism behind any anxiety-liked effects in intact adult male Wistar rats. These phytoestrogens are of interest due to their posited health benefits, particularly for female, but with some effect on males as well. This study comprised two experiments: (1) Male Wistar rats received either a vehicle, daidzein, or genistein (0.25, 0.50, or 1.00 mg/kg) by subcutaneously injection for four weeks. They were then tested for anxiety-liked behaviors. Then, the brain monoamines in anxiolytic rats were determined; (2) The modulation of gamma aminobutyric acid receptors by phytoestrogens was further analyzed by administration of diazepam to phytoestrogen-treated rats before behavioral tests. In the first experiment, the biological parameters measured, including body weight, daily food intake and reproductive organ weights were unaffected by either genistein or daidzein. However, anxiolytic-like effect was observed in the low-dose daidzein (0.25 mg/kg) group. Higher doses of daidzein or genistein of all doses had no effect. Further, the low-dose daidzein did not alter brain monoamine levels. In the second experiment, the anxiolytic-like behavior of daidzein-treated rats receiving diazepam did not differ from that of the rats treated with just diazepam or just daidzein. In conclusion, 4-week exposure to daidzein or genistein had no negative effects on the reproductive organs, body weight, food intake, anxiogenic-like behavior, or monoaminergic and diazepam-modulated GABAergic neurotransmissions of intact male rats. However, beneficial anxiolytic-like effects were apparent after low-dose treatment with daidzein.


Asunto(s)
Ansiolíticos , Ansiedad , Genisteína , Isoflavonas , Ratas Wistar , Animales , Masculino , Genisteína/farmacología , Genisteína/administración & dosificación , Ansiolíticos/farmacología , Ansiolíticos/administración & dosificación , Isoflavonas/farmacología , Isoflavonas/administración & dosificación , Ansiedad/tratamiento farmacológico , Ratas , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Fitoestrógenos/farmacología , Fitoestrógenos/administración & dosificación , Diazepam/farmacología , Ingestión de Alimentos/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos
15.
Arch Environ Occup Health ; 79(3-4): 143-151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169800

RESUMEN

Petrol vapors as important occupational and environmental pollutants can cause oxidative stress and may play a role in the development of neurodegenerative diseases along with the risk factors involved. This research is designed as a preliminary study to evaluate the protective effects of apigenin (APG) on oxidative stress caused by petrol vapors inhalation in rats. A total of 24 male Wistar rats were randomly divided into four groups inside the inhalation chamber. Body weight changes and oxidative stress markers were investigated. The average body weight of the group exposed to petrol vapors was significantly lower compared to the other groups. The level of reactive oxygen species (ROS), content of oxidized-glutathione (GSSG), and Malondialdehyde were found to be higher in the petrol-inhaled group, while the content of reduced-glutathione (GSH) was lower compared to the other groups. APG administration did result in any significant improvement in these toxicities induced by petrol vapor. APG administration may ameliorate the petrol-induced oxidative stress. In chronic exposures, in addition to personal protection and engineering control, the use of compounds of natural origin may help in reducing the side effects (such as CNS) caused by exposure to petrol vapors.


Asunto(s)
Apigenina , Estrés Oxidativo , Ratas Wistar , Especies Reactivas de Oxígeno , Animales , Estrés Oxidativo/efectos de los fármacos , Masculino , Ratas , Especies Reactivas de Oxígeno/metabolismo , Apigenina/farmacología , Glutatión/metabolismo , Gasolina/toxicidad , Contaminantes Ambientales/toxicidad , Malondialdehído/metabolismo , Exposición por Inhalación/efectos adversos , Peso Corporal/efectos de los fármacos , Contaminantes Ocupacionales del Aire
16.
J Agric Food Chem ; 72(36): 20091-20100, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189965

RESUMEN

As the main coffee polyphenols, caffeoylquinic acids (CQAs) are abundant in coffee-derived products and have the potential to act as novel feed additives for animals. However, research on the side effects of dietary CQAs supplementation is scarce, especially in young animals. Here, we explore the safety of CQAs derived from green coffee beans. Results showed that ingesting 50, 125, 250, and 500 mg/kg of dietary CQAs for 55 days is associated with greater final body weight, average daily gain, and feed efficiency in piglets compared with the control group (P < 0.05). CQAs also increased the apparent digestibility of dry matter, crude protein, and gross energy at a dose over 50 mg/kg (P < 0.05). Interestingly, CQAs supplementation with 500 mg/kg increased the white blood cell count (P < 0.05). Moreover, CQAs supplementation at a dose over 50 mg/kg decreased the serum total cholesterol concentration but increased the immunoglobulin M level in serum (P < 0.05). Importantly, CQAs supplementation had no side effects on organ histopathology and organ weight (P > 0.05). These results suggest that CQAs could serve as a secure and effective additive to improve growth performance without negatively affecting the organs of piglets.


Asunto(s)
Alimentación Animal , Coffea , Café , Polifenoles , Ácido Quínico , Animales , Ácido Quínico/análogos & derivados , Ácido Quínico/análisis , Polifenoles/administración & dosificación , Polifenoles/química , Porcinos/metabolismo , Alimentación Animal/análisis , Coffea/química , Café/química , Suplementos Dietéticos/análisis , Masculino , Femenino , Peso Corporal/efectos de los fármacos
17.
Bull Exp Biol Med ; 177(3): 395-400, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39134815

RESUMEN

We compared 2 models of metabolic syndrome in rats: high-fat diet (58% calories) with single streptozotocin injection at a dose of 25 mg/kg and replacement of water with 20% fructose solution. The model with fructose solution did not cause the main signs of metabolic syndrome over 24 weeks: concentrations of glucose, triglycerides, cholesterol, weight, and BP did not significantly differ from the control group (standard diet). At the same time, single streptozotocin administration was followed by the development of persistent hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and signs of visceral obesity. High-fat diet combined with injection of streptozotocin in a low dose can be considered a more representative model of metabolic syndrome in humans.


Asunto(s)
Glucemia , Dieta Alta en Grasa , Síndrome Metabólico , Estreptozocina , Triglicéridos , Animales , Dieta Alta en Grasa/efectos adversos , Ratas , Masculino , Síndrome Metabólico/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Glucemia/metabolismo , Ratas Wistar , Hiperglucemia/metabolismo , Hiperglucemia/inducido químicamente , Colesterol/sangre , Colesterol/metabolismo , Peso Corporal/efectos de los fármacos , Fructosa/administración & dosificación , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/inducido químicamente , Hipertrigliceridemia/sangre , Hipertrigliceridemia/etiología , Hipercolesterolemia/metabolismo , Hipercolesterolemia/etiología , Carbohidratos de la Dieta/administración & dosificación , Presión Sanguínea/efectos de los fármacos
18.
Nutrients ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125412

RESUMEN

Previous studies have suggested that the effects of androgens on body weight (BW) and appetite are affected by the estrogen milieu in females; however, the mechanism underlying these effects remains unclear. We hypothesized that androgens may affect endogenous oxytocin (OT), which is a hypothalamic anorectic factor, and that these effects of androgens may be altered by the estrogen milieu in females. To investigate this hypothesis, in the present study, we examined the effects of testosterone on peripheral and central OT levels in ovariectomized female rats that did or did not receive estradiol supplementation. Ovariectomized female rats were randomly divided into non-estradiol-supplemented or estradiol-supplemented groups, and half of the rats in each group were concurrently supplemented with testosterone (i.e., rats were divided into four groups, n = 7 per each group). We also measured peripheral and central OT receptor (OTR) gene expression levels. As a result, we found that testosterone increased serum and hypothalamic OT levels and OT receptor mRNA levels in non-estradiol-supplemented rats, whereas it had no effects on these factors in estradiol-supplemented rats. In addition, testosterone reduced food intake, BW gain, and fat weight in non-estradiol-supplemented rats, whereas it did not have any effects on BW, appetite, or fat weight in estradiol-supplemented rats. These findings indicate that the effects of androgens on OT may be affected by the estrogen milieu, and elevated OT levels may be related to the blunting of appetite and prevention of obesity under estrogen-deficient conditions.


Asunto(s)
Estradiol , Hipotálamo , Ovariectomía , Oxitocina , Receptores de Oxitocina , Testosterona , Animales , Oxitocina/sangre , Oxitocina/farmacología , Femenino , Testosterona/sangre , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Estradiol/sangre , Estradiol/farmacología , Ratas , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/genética , Estrógenos/sangre , Estrógenos/farmacología , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Ratas Sprague-Dawley , Apetito/efectos de los fármacos , ARN Mensajero/metabolismo
19.
Nutrients ; 16(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125424

RESUMEN

Although, in randomized clinical trials, once-weekly subcutaneous semaglutide (OW s.c.) has demonstrated superior efficacy in comparison with placebo and active controls in terms of glycemic control and body weight reduction in patients with type 2 diabetes mellitus (T2DM), these results need to be confirmed in a real-world (RW) setting. An RW ambispective study (6 months retrospective and 6 months prospective) was conducted in 10 tertiary hospitals in Spain. We evaluated changes in HbA1c and body weight in patients with T2DM treated with semaglutide OW s.c. Additionally, we analyzed different subgroups of patients treated with semaglutide OW s.c. as an add-on to glucose-lowering therapy. A total of 752 patients with a mean age of 60.2 years, a mean HbA1c level of 8.5%, a mean body weight of 101.6 kg, and a mean T2DM duration of 10 years were included. At 12 months, compared with baseline, there was a mean difference of -2.1% in HbA1c levels (p < 0.001) and a mean difference of 9.2 kg in body weight (p < 0.001). Moreover, there were statistically significant differences (p < 0.001) between baseline and month 12 in both HbA1c and body weight in the four subgroups receiving semaglutide OW s.c. as an add-on to glucose-lowering therapy. Semaglutide OW s.c. was well tolerated, with gastrointestinal disorders being the most commonly reported side effects. In this RW study, 12 months of treatment with semaglutide OW s.c. in patients with T2DM was associated with significant and clinically relevant improvements in glycemic control and weight loss, regardless of the glucose-lowering therapy received, and the overall safety profile was positive.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptidos Similares al Glucagón , Hemoglobina Glucada , Hipoglucemiantes , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Masculino , Femenino , Persona de Mediana Edad , Péptidos Similares al Glucagón/administración & dosificación , Péptidos Similares al Glucagón/efectos adversos , España , Hemoglobina Glucada/análisis , Hipoglucemiantes/administración & dosificación , Anciano , Inyecciones Subcutáneas , Estudios Prospectivos , Glucemia/efectos de los fármacos , Estudios Retrospectivos , Pérdida de Peso/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Resultado del Tratamiento , Esquema de Medicación , Control Glucémico/métodos
20.
Front Endocrinol (Lausanne) ; 15: 1440070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145314

RESUMEN

Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (TIBAT, a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase TIBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9 ± 2.0, 77.4 ± 12.7 and 93.6 ± 4.6% (P<0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on TIBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated TIBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7 ± 2.23% and 6.6 ± 1.4% in sham and denervated mice (P<0.05), respectively, and this effect was similar between groups (P=NS). OT produced corresponding reductions in whole body fat mass (P<0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.


Asunto(s)
Tejido Adiposo Pardo , Adiposidad , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Oxitocina , Sistema Nervioso Simpático , Animales , Oxitocina/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/inervación , Masculino , Ratones , Obesidad/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Adiposidad/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Ratones Obesos , Metabolismo Energético/efectos de los fármacos , Norepinefrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA