Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.551
Filtrar
1.
Arch Microbiol ; 206(10): 399, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254720

RESUMEN

Antimicrobial resistance (AMR) is global health concern escalating rapidly in both clinical settings and environment. The effluent from pharmaceuticals and hospitals may contain diverse antibiotics, exerting selective pressure to develop AMR. To study the aquatic prevalence of drug-resistant staphylococci, sampling was done from river Yamuna (3 sites) and wastewater (7 sites) near pharmaceutical industries in Delhi-NCR, India. 59.25% (224/378) were considered presumptive staphylococci while, methicillin resistance was noted in 25% (56/224) isolates. Further, 23 methicillin-resistant coagulase negative staphylococci (MR-CoNS) of 8 different species were identified via 16S rRNA gene sequencing. Multidrug resistance (MDR) was noted in 60.87% (14/23) isolates. PCR based detection of antibiotic resistance genes revealed the number of isolates containing mecA (7/23), blaZ (6/23), msrA (10/23), aac(6')aph (2") (2/23), aph(3')-IIIa (2/23), ant(4')-Ia (1/23), dfrG (4/23), dfrA(drfS1) (3/23), tetK (1/23) and tetM (1/23). The current research highlights the concerning prevalence of MDR-CoNS in aquatic environment in Delhi.


Asunto(s)
Antibacterianos , Coagulasa , Farmacorresistencia Bacteriana Múltiple , ARN Ribosómico 16S , Staphylococcus , Aguas Residuales , India/epidemiología , Aguas Residuales/microbiología , Staphylococcus/genética , Staphylococcus/efectos de los fármacos , Staphylococcus/aislamiento & purificación , Staphylococcus/clasificación , Farmacorresistencia Bacteriana Múltiple/genética , Coagulasa/metabolismo , Coagulasa/genética , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Prevalencia , Pruebas de Sensibilidad Microbiana
2.
Microb Genom ; 10(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222339

RESUMEN

While conducting genomic surveillance of carbapenemase-producing Enterobacteriaceae (CPE) from patient colonisation and clinical infections at Birmingham's Queen Elizabeth Hospital (QE), we identified an N-type plasmid lineage, pQEB1, carrying several antibiotic resistance genes, including the carbapenemase gene bla KPC-2. The pQEB1 lineage is concerning due to its conferral of multidrug resistance, its host range and apparent transmissibility, and its potential for acquiring further resistance genes. Representatives of pQEB1 were found in three sequence types (STs) of Citrobacter freundii, two STs of Enterobacter cloacae, and three species of Klebsiella. Hosts of pQEB1 were isolated from 11 different patients who stayed in various wards throughout the hospital complex over a 13 month period from January 2023 to February 2024. At present, the only representatives of the pQEB1 lineage in GenBank were carried by an Enterobacter hormaechei isolated from a blood sample at the QE in 2016 and a Klebsiella pneumoniae isolated from a urine sample at University Hospitals Coventry and Warwickshire (UHCW) in May 2023. The UHCW patient had been treated at the QE. Long-read whole-genome sequencing was performed on Oxford Nanopore R10.4.1 flow cells, facilitating comparison of complete plasmid sequences. We identified structural variants of pQEB1 and defined the molecular events responsible for them. These have included IS26-mediated inversions and acquisitions of multiple insertion sequences and transposons, including carriers of mercury or arsenic resistance genes. We found that a particular inversion variant of pQEB1 was strongly associated with the QE Liver speciality after appearing in November 2023, but was found in different specialities and wards in January/February 2024. That variant has so far been seen in five different bacterial hosts from six patients, consistent with recent and ongoing inter-host and inter-patient transmission of pQEB1 in this hospital setting.


Asunto(s)
Brotes de Enfermedades , Plásmidos , beta-Lactamasas , Humanos , Plásmidos/genética , beta-Lactamasas/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/efectos de los fármacos , Proteínas Bacterianas/genética , Enterobacter cloacae/genética , Enterobacter cloacae/aislamiento & purificación , Enterobacter cloacae/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Infección Hospitalaria/microbiología , Antibacterianos/farmacología , Citrobacter freundii/genética , Citrobacter freundii/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Hospitales , Enterobacter
3.
PeerJ ; 12: e18023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224828

RESUMEN

Background: Hemorrhoids are common conditions at or around the anus, to which numerous people suffer worldwide. Previous research has suggested that microbes may play a role in the development of hemorrhoids, and the origins of these microbes have been preliminarily investigated. However, no detailed research on the microbes related to hemorrhoid patients has been conducted. This work aims to provide an initial investigation into the microbes related to hemorrhoid patients with high quality whole genome sequencing. Methods: Forty-nine bacterial strains were isolated from seven hemorrhoid patients. Third-generation nanopore sequencing was performed to obtain high quality whole genome sequences. The presence of plasmids, particularly new plasmids, along with antibiotic resistance genes, was investigated for these strains. Phylogenetic analysis and genome comparisons were performed. Results: Out of the 31 plasmids found in the strains, 15 new plasmids that have not been observed previously were discovered. Further structural analysis revealed new multidrug-resistant conjugative plasmids, virulent plasmids, and small, high-copy mobile plasmids that may play significant functional roles. These plasmids were found to harbor numerous integrases, transposases, and recombinases, suggesting their ability to quickly obtain genes to change functions. Analysis of antibiotic resistance genes revealed the presence of antibiotic resistant-integrons. Together with the surprising number of new plasmids identified, as well as the finding of transmission and modification events for plasmids in this work, we came to the suggestion that plasmids play a major role in genetic plasticity. Conclusion: This study reveals that the diversity of plasmids in human-associated microbes has been underestimated. With the decreasing cost of whole-genome sequencing, monitoring plasmids deserves increased attention in future surveillance efforts.


Asunto(s)
Bacterias , Hemorroides , Filogenia , Plásmidos , Humanos , Plásmidos/genética , Hemorroides/microbiología , Hemorroides/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Secuenciación Completa del Genoma , Masculino , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Adulto
4.
Front Cell Infect Microbiol ; 14: 1444031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282498

RESUMEN

Tigecycline is a last-resort drug used to treat serious infections caused by multidrug-resistant bacteria. tet(X4) is a recently discovered plasmid-mediated tigecycline resistance gene that confers high-level resistance to tigecycline and other tetracyclines. Since the first discovery of tet(X4) in 2019, it has spread rapidly worldwide, and as a consequence, tigecycline has become increasingly ineffective in the clinical treatment of multidrug-resistant infections. In this study, we identified and analyzed tet(X4)-positive Escherichia coli isolates from duck farms in Hunan Province, China. In total, 976 samples were collected from nine duck farms. Antimicrobial susceptibility testing and whole-genome sequencing (WGS) were performed to establish the phenotypes and genotypes of tet(X4)-positive isolates. In addition, the genomic characteristics and transferability of tet(X4) were determined based on bioinformatics analysis and conjugation. We accordingly detected an E. coli strain harboring tet(X4) and seven other resistance genes in duck feces. Multi-locus sequence typing analysis revealed that this isolate belonged to a new clone, and subsequent genetic analysis indicated that tet(X4) was carried in a 4608-bp circular intermediate, flanked by ISVsa3-ORF2-abh elements. Moreover, it exhibited transferability to E. coli C600 with a frequency of 10-5. The detection of tet(X4)-harboring E, coli strains on duck farms enhances our understanding of tigecycline resistance dynamics. The transferable nature of the circular intermediate of tet(X4) contributing to the spread of tigecycline resistance genes poses a substantial threat to healthcare. Consequently, vigilant monitoring and proactive measures are necessary to prevent their spread.


Asunto(s)
Antibacterianos , Patos , Infecciones por Escherichia coli , Escherichia coli , Granjas , Pruebas de Sensibilidad Microbiana , Plásmidos , Tigeciclina , Secuenciación Completa del Genoma , Patos/microbiología , Tigeciclina/farmacología , Animales , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Antibacterianos/farmacología , China , Plásmidos/genética , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Tipificación de Secuencias Multilocus , Farmacorresistencia Bacteriana Múltiple/genética , Genotipo , Enfermedades de las Aves de Corral/microbiología , Proteínas de Escherichia coli/genética , Transferencia de Gen Horizontal , Farmacorresistencia Bacteriana/genética
5.
Nat Commun ; 15(1): 7936, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261449

RESUMEN

Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being traditionally viewed as unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.


Asunto(s)
Antibacterianos , Cloranfenicol , Escherichia coli , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Antibacterianos/farmacología , Cloranfenicol/farmacología , Azitromicina/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos
6.
BMC Microbiol ; 24(1): 339, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261762

RESUMEN

BACKGROUND: Antimicrobial resistance is a major global public health issue. Infections caused by resistant species are associated with higher mortality rates, longer hospital stays, medication failure, and rising medical costs. The World Health Organisation has declared multidrug resistance-associated infections as an epidemic of public health concern. OBJECTIVE: This study aimed to evaluate the antimicrobial resistance profile and associated factors of hospital-acquired Gram-negative bacterial pathogens among hospitalized patients in Northeast Ethiopia. MATERIALS AND METHODS: A health facility-based cross-sectional study was conducted among hospitalized patients from March 2021 to February 2022. About 810 clinical specimens were collected, transported, and processed from admitted patients following the standard bacteriological procedures. The clinical samples were inoculated onto blood agar, MacConkey agar, and chocolate agar. Furthermore, the species identification was done using gram reactions, colony morphology, and color and biochemical tests. Antimicrobial susceptibility tests, extended-spectrum beta-lactamase, and carbapenemase production were performed as per the clinical laboratory standard institute guidelines. For analysis, the information was entered into Epi-data and exported to SPSS. A P value of < 0.05 with a 95% confidence interval was considered as a statistically significant association. RESULTS: Out of 810 clinical specimens, 285/810 (35.2%) developed bacterial infections. From the isolated bacteria, E. coli was the predominant bacteria accounting for 78/285 (27.4%) followed by K. pneumoniae, 69/285(24.42%), whereas P. vulgaris accounted for the least, 7/285 (2.5%). Overall, 132/285 (46.3%) and 99/285 (34.7%) of culture-positive patients were infected by extended-spectrum beta-lactamase and carbapenemase-producing bacteria. The overall multidrug resistance rate of the isolated bacteria was 89.4%. The highest antibiotic resistance rates were detected for doxycycline (92.9%), amoxicillin-clavulanic acid (83.9%), and ampicillin (93%). The least antibiotic resistance rate was observed for meropenem at 41.1% and amikacin at 1.7%, respectively. CONCLUSIONS AND RECOMMENDATIONS: In the study area, significant health concerns include a range of hospital-acquired bacterial infections associated with elevated rates of multidrug resistance, Extended-spectrum beta-lactamase (ESBL), and carbapenemase-producing bacterial pathogens. Consequently, it is recommended to conduct drug-susceptibility testing of isolates and molecular detection at a national level to optimize antibiotic usage for treating prevalent bacterial infections in this area.


Asunto(s)
Antibacterianos , Infección Hospitalaria , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Humanos , Etiopía/epidemiología , Estudios Transversales , Masculino , Femenino , Adulto , Persona de Mediana Edad , Antibacterianos/farmacología , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/genética , Adulto Joven , Adolescente , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Anciano , Niño , Preescolar , Lactante , Hospitalización/estadística & datos numéricos , Proteínas Bacterianas/genética , Anciano de 80 o más Años
7.
Sci Rep ; 14(1): 21480, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277620

RESUMEN

Metformin is the most commonly prescribed medication for treating type 2 diabetes (T2D). It is known that metformin can alter the gut microbiome, which influences the effectiveness of metformin treatment. We posited that if the gut microbiome, a reservoir of the resistome, is altered, then the resistome should change as well. To test this hypothesis, we reanalyzed microbiome data generated by Wu et al. (Nat Med 23(7):850-858, 2017), identifying antibiotic resistance genes (ARGs) and bacterial species. Through read-based analysis, we observed that the abundance of ARGs indeed changed in many samples treated with metformin. Moreover, the altered pattern was sufficiently heterogeneous across individual samples to allow subcategorization. We also found a strong correlation between the abundance of multidrug-resistant ARGs (MDR-ARGs) and the presence of E. coli. The contig-based analysis led to the same conclusion: an increase in MDR-ARGs due to metformin was associated with an increase in E. coli. In relation to this, we were able to confirm that the majority of MDR-ARGs are likely to originate from E. coli. These results suggest that metformin may have the potential side effect of increasing E. coli carrying ARGs, particularly MDR-ARGs, which could be a concern in T2D therapy that relies on metformin.


Asunto(s)
Diabetes Mellitus Tipo 2 , Escherichia coli , Microbioma Gastrointestinal , Metformina , Metformina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Humanos , Hipoglucemiantes/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antibacterianos/farmacología
8.
Sci Rep ; 14(1): 20401, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223176

RESUMEN

Tuberculosis is a global public health concern. Earlier reports suggested the emergence of high rates of drug resistant tuberculosis in Egypt. This study included 102 isolates of Mycobacterium tuberculosis collected from two reference laboratories in Cairo and Alexandria. All clinical isolates were sub-cultured on Löwenstein-Jensen medium and analyzed using both BD BACTEC MGIT 960 SIRE Kit and standard diffusion disk assays to identify the antibiotic sensitivity profile. Extracted genomic DNA was subjected to whole genome sequencing (WGS) using Illumina platform. Isolates that belong to lineage 4 represented > 80%, while lineage 3 represented only 11% of the isolates. The percentage of drug resistance for the streptomycin, isoniazid, rifampicin and ethambutol were 31.0, 17.2, 19.5 and 20.7, respectively. Nearly 47.1% of the isolates were sensitive to the four anti-tuberculous drugs, while only one isolate was resistant to all four drugs. In addition, several new and known mutations were identified by WGS. High rates of drug resistance and new mutations were identified in our isolates. Tuberculosis control measures should focus on the spread of mono (S, I, R, E)- and double (S, E)-drug resistant strains present at higher rates throughout the whole Nile Delta, Egypt.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Egipto/epidemiología , Humanos , Antituberculosos/farmacología , Secuenciación Completa del Genoma/métodos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Mutación , Adulto , Genoma Bacteriano , Masculino , Femenino , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Isoniazida/farmacología , Variación Genética , Persona de Mediana Edad , Estreptomicina/farmacología
9.
Funct Integr Genomics ; 24(5): 154, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223360

RESUMEN

Proteus mirabilis is a gram-negative pathogen that caused significant opportunistic infections. In this study we aimed to identify antimicrobial resistance (AMR) genes and virulence determinants in two pan-drug resistant isolate "Bacteria_11" and "Bacteria_27" using whole genome sequencing. Proteus mirabilis "Bacteria_11" and "Bacteria_27" were isolated from two different hospitalized patients in Egypt. Antimicrobial susceptibility determined using Vitek 2 system, then whole genome sequencing (WGS) using MinION nanopore sequencing was done. Antimicrobial resistant genes and virulence determinants were identified using ResFinder, CADR AMR database, Abricate tool and VF analyzer were used respectively. Multiple sequence alignment was performed using MAFFT and FastTree, respectively. All genes were present within bacterial chromosome and no plasmid was detected. "Bacteria_11" and "Bacteria_27" had sizes of approximately 4,128,657 bp and 4,120,646 bp respectively, with GC content of 39.15% and 39.09%. "Bacteria_11" and "Bacteria_27" harbored 43 and 42 antimicrobial resistance genes respectively with different resistance mechanisms, and up to 55 and 59 virulence genes respectively. Different resistance mechanisms were identified: antibiotic inactivation, antibiotic efflux, antibiotic target replacement, and antibiotic target change. We identified several genes associated with aminoglycoside resistance, sulfonamide resistance. trimethoprim resistance tetracycline resistance proteins. Also, those responsible for chloramphenicol resistance. For beta-lactam resistance, only blaVEB and blaCMY-2 genes were detected. Genome analysis revealed several virulence factors contribution in isolates pathogenicity and bacterial adaptation. As well as numerous typical secretion systems (TSSs) were present in the two isolates, including T6SS and T3SS. Whole genome sequencing of both isolates identify their genetic context of antimicrobial resistant genes and virulence determinants. This genomic analysis offers detailed representation of resistant mechanisms. Also, it clarifies P. mirabilis ability to acquire resistance and highlights the emergence of extensive drug resistant (XDR) and pan-drug resistant (PDR) strains. This may help in choosing the most appropriate antibiotic treatment and limiting broad spectrum antibiotic use.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Proteus mirabilis , Factores de Virulencia , Proteus mirabilis/genética , Proteus mirabilis/patogenicidad , Proteus mirabilis/efectos de los fármacos , Proteus mirabilis/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Factores de Virulencia/genética , Genoma Bacteriano , Humanos , Antibacterianos/farmacología , Secuenciación Completa del Genoma , Virulencia/genética , Pruebas de Sensibilidad Microbiana , Infecciones por Proteus/microbiología , Infecciones por Proteus/tratamiento farmacológico
10.
Front Cell Infect Microbiol ; 14: 1447933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247055

RESUMEN

Fosfomycin (FOS) is an effective antibiotic against multidrug-resistant Enterobacterales, but its effectiveness is reducing. Little is known on the current prevalence of FosA enzymes in low-risk pathogens, such as Citrobacter freundii. The aim of the study was the molecular characterization of a carbapenemase- and FosA-producing C. freundii collected in Italy. AK867, collected in 2023, showed an XDR profile, retaining susceptibility only to colistin. AK867 showed a FOS MIC >128 mg/L by ADM. Based on WGS, AK867 belonged to ST116 and owned a wide resistome, including fosA3, blaKPC-2, and blaVIM-1. fosA3 was carried by a conjugative pKPC-CAV1312 plasmid of 320,480 bp, on a novel composite transposon (12,907 bp). FosA3 transposon shared similarities with other fosA3-harboring pKPC-CAV1312 plasmids among Citrobacter spp. We report the first case of FosA3 production in clinical carbapenemase-producing C. freundii ST116. The incidence of FosA3 enzymes is increasing among Enterobacterales, affecting even low-virulence pathogens, as C. freundii.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Citrobacter freundii , Infecciones por Enterobacteriaceae , Fosfomicina , beta-Lactamasas , Humanos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Citrobacter freundii/genética , Citrobacter freundii/enzimología , Citrobacter freundii/efectos de los fármacos , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Enterobacteriaceae/microbiología , Fosfomicina/farmacología , Italia/epidemiología , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Secuenciación Completa del Genoma
11.
Int J Mycobacteriol ; 13(3): 258-264, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39277887

RESUMEN

BACKGROUND: Drug-resistant tuberculosis (DR-TB) poses a major global challenge to public health and therapeutics. It is an emerging global concern associated with increased morbidity and mortality mostly seen in the low- and middle-income countries. Molecular techniques are highly sensitive and offer timely and accurate results for TB drug resistance testing, thereby positively influencing patient management plan. METHODS: The study was carried out at the National Tuberculosis Reference Laboratory (NTRL) in Kenya in the period between January and October 2022. A total of 243 Mycobacterium tuberculosis (M.tb) clinical isolates were included in the study. These isolates comprised of 50 isolates with mutations in rpoB, 51 isolates with katG mutations, 51 isolates with mutations in inhA, and 91 M.tb isolates lacking mutations in these genes based on Genotype MTBDRplus results. DNA from the isolates was extracted using the FluoroLyse extraction kit. Real-time polymerase chain reaction targeting the rpoB, InhA, and katG genes was performed using the FluoroType MTBDR amplification mix. Isolates with discordant results between Genotype MTBDRplus and FluoroCycler® MTBDR assays underwent targeted sequencing for the respective genes, then, sequences were analyzed for mutations using Geneious version 11.0 software. RESULTS: The sensitivity of the Fluorocycler XT MTBDR assay for the detection of mutations that confer drug resistance was 86% (95% confidence interval [CI] 73.0-94.0) for rpoB, 96% (95% CI 87-100) for katG and 92% (95% CI 81-98) for inhA. The assay's specificity was 97% (95% CI 93-99) for rpoB, 98% (95% CI 96-100) for katG, and 97% (95% CI 93-99) for inhA. CONCLUSION: The diagnostic accuracy of FluoroType MTBDR for the detection of mutations conferring resistance to rifampicin and isoniazid was high compared with that of Genotype MTBDRplus and demonstrates its suitability as a replacement assay for Genotype MTBDRplus.


Asunto(s)
Antituberculosos , Isoniazida , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Rifampin , Tuberculosis Resistente a Múltiples Medicamentos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Humanos , Isoniazida/farmacología , Kenia , Rifampin/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Mutación , Sensibilidad y Especificidad , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Catalasa/genética , Genotipo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Oxidorreductasas/genética
12.
BMC Microbiol ; 24(1): 344, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271999

RESUMEN

BACKGROUND: In the present study, we aimed to determine the frequency of the csgA, fimH, mrkD, foc, papaGI, papGII and papGIII genes, to provide and to design fimbrial adhesin gene (FAG) patterns and profiles for the isolated uropathogenic Escherichia coli (UPEC) strains. METHODS: The enrollment of 108 positive urine samples was performed during seven months, between January 2022 and July 2022. The UPEC strains were confirmed through the standard microbiological and biochemical tests. The antimicrobial susceptibility test was performed through the Kirby-Bauer disc diffusion method. Molecular screening of FAGs was done through the polymerase chain reaction technology. The statistical analyses including chi square and Fisher's exact tests were performed to interpret the obtained results in the present study. RESULTS: As the main results, the antimicrobial resistance (AMR) patterns, multi- (MDR) and extensively drug-resistance (XDR) patterns and FAG patterns were designed and provided. fimH (93.3%), csgA (90.4%) and papG (37.5%) (papGII (30.8%)) genes were recognized as the top three FAGs, respectively. Moreover, the frequency of csgA-fimH gene profile was identified as the top FAG pattern (46.2%) among the others. The isolates bearing csgA-fimH gene profile were armed with a versatile of phenotypic AMR patterns. In the current study, 27.8%, 69.4% and 1.9% of the UPEC isolates were detected as extended-spectrum ß-lactamases (ESBLs) producers, MDR and XDR strains, respectively. CONCLUSIONS: In conclusion, detection, providing and designing of patterns and profiles in association with FAGs, AMR feature in UPEC strains give us an effective option to have a successful and influential prevention for both of UTIs initiation and AMR feature.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Proteínas Fimbrias , Fimbrias Bacterianas , Infecciones Urinarias , Escherichia coli Uropatógena , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Humanos , Proteínas de Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Femenino , Adulto , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Masculino , Farmacorresistencia Bacteriana Múltiple/genética , Persona de Mediana Edad , Adulto Joven , Adolescente , Proteínas Bacterianas
13.
Microb Pathog ; 195: 106902, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218374

RESUMEN

Mastitis remains a paramount economic threat to dairy livestock, with antibiotic resistance severely compromising treatment efficacy. This study provides an in-depth investigation into the multidrug resistance (MDR) mechanisms in bacterial isolates from bovine mastitis, emphasizing the roles of antimicrobial resistance genes (ARGs), biofilm formation, and active efflux systems. A total of 162 Staphylococci, eight Escherichia coli, and seven Klebsiella spp. isolates were obtained from 215 milk samples of clinical and subclinical mastitis cases. Antibiotic susceptibility testing identified Twenty Staphylococci (12.35 %), six E. coli (75 %) and seven Klebsiella (100 %) identified as MDR displaying significant resistance to ß-lactams and tetracyclines The Multiple Antibiotic Resistance (MAR) index of these isolates ranged from 0.375 to 1.0, highlighting extensive resistance. Notably, 29 of the 33 MDR isolates produced biofilms on Congo red agar, while all exhibited biofilm formation in the Microtitre Plate assay. Critical ARGs (blaZ, blaTEM, blaCTX-M, tetM, tetA, tetB, tetC, strA/B, aadA) and efflux pump genes (acrB, acrE, acrF, emrB, norB) regulating active efflux were identified. This pioneering study elucidates the synergistic contribution of ARGs, biofilm production, and efflux pump activity to MDR in bovine mastitis pathogens. To our knowledge, this comprehensive study is the first of its kind, offering novel insights into the complex resistance mechanisms. The findings underscore the imperative need for advanced antibiotic stewardship and strategic interventions in dairy farming to curb the rise of antibiotic-resistant infections, thereby protecting both animal and public health.


Asunto(s)
Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Klebsiella , Mastitis Bovina , Pruebas de Sensibilidad Microbiana , Leche , Staphylococcus , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Bovinos , Animales , Mastitis Bovina/microbiología , Femenino , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Klebsiella/genética , Klebsiella/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Leche/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Genes Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
14.
BMC Res Notes ; 17(1): 252, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252055

RESUMEN

OBJECTIVE: The purpose of this study is a new update on the resistance profile, Macrolide-Lincosamide-Streptogramin B resistance mechanisms and biofilm formation in the Staphylococcus aureus isolated from health care workers (HCWs) nasal carriage at a children's teaching hospital in Babol (Northern Iran). RESULTS: A total of 143 non-repetitive nasal swab samples were collected from volunteers, where 53.8% (n; 77/143) were HCWs, 33.6% (n; 48/143) medical students, and 12.6% (n; 18/143) resident students. The prevalence of nasal carriers of S. aureus was 22.4% (n; 32/143), among them, 40.6% (n; 13/32) were identified as methicillin-resistant Staphylococcus aureus (MRSA( carriers. Antimicrobial susceptibility testing showed that erythromycin (68.8%, n; 22/32) and ciprofloxacin (15.6%, n; 5/32) had the highest and lowest resistance rate, respectively. The frequency of resistance genes in the strains was as follows; ermC (n; 17/32, 53.1%), ermA (n; 11/32, 34.4%), ermB (n; 6/32, 18.7%), ereA (n; 3/32, 9.4%). Moreover, 50.0% (n; 16/32), 28.1% (n; 9/32) and 21.8% (n; 7/32) of isolates were strongly, weakly and moderately biofilm producer, respectively. Macrolides-lincosamides-streptogramins B (MLSB) antibiotic resistance among S. aureus isolates from HCWs nasal carriage have found significant prevalence rates throughout the globe. It is crucial to remember that the development of biofilms and MLS B antibiotic resistance are both dynamic processes.


Asunto(s)
Antibacterianos , Biopelículas , Portador Sano , Clindamicina , Personal de Salud , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Clindamicina/farmacología , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/fisiología , Staphylococcus aureus/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/fisiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/epidemiología , Portador Sano/microbiología , Irán , Masculino , Adulto , Femenino , Eritromicina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética
15.
Arch Microbiol ; 206(10): 394, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39245770

RESUMEN

Escherichia coli can colonise the urogenital tract of individuals without causing symptoms of infection, in a condition referred to as asymptomatic bacteriuria (ABU). ABU isolates can protect the host against symptomatic urinary tract infections (UTIs) by bacterial interference against uropathogenic E. coli (UPEC). The aim of this study was to investigate the genotypic and phenotypic characteristics of five ABU isolates from midstream urine samples of adults. Comparative genomic and phenotypic analysis was conducted including an antibiotic resistance profile, pangenome analysis, and a putative virulence profile. Based on the genome analysis, the isolates consisted of one from phylogroup A, three from phylogroup B2, and one from phylogroup D. Two of the isolates, PUTS 58 and SK-106-1, were noted for their lack of antibiotic resistance and virulence genes compared to the prototypic ABU strain E. coli 83,972. This study provides insights into the genotypic and phenotypic profiles of uncharacterised ABU isolates, and how relevant fitness and virulence traits can impact their potential suitability for therapeutic bacterial interference.


Asunto(s)
Antibacterianos , Bacteriuria , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Genotipo , Fenotipo , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Bacteriuria/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/clasificación , Infecciones por Escherichia coli/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Virulencia/genética , Filogenia , Adulto , Factores de Virulencia/genética , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana
16.
Indian J Tuberc ; 71(4): 383-388, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39278670

RESUMEN

BACKGROUND: Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis (M. tuberculosis). The world is currently facing challenges due to the spread of anti-tuberculosis drug-resistant of M. tuberculosis. Isoniazid-resistant (INH), is one of the first-line anti-tuberculosis agents that has a high resistance case. This study used Multiplex allele-specific Polymerase Chain Reaction (MAS-PCR) to detect the most common mutations associated with isoniazid resistance on inhA, katG, and ahpC gene. METHODS: This study used samples from clinical isolates of M. tuberculosis which had been tested for their antibiotic sensitivity of first-line anti-tuberculosis drugs. The DNA extraction process was carried out using the boiling method and then amplified with specific primers for inhA, katG, and ahpC genes using the MAS-PCR method. The results are then read on the electrophoretic gel with an interpretation of the mutation gene when the target gene DNA bands were absent according to the allele-specific fragments target. RESULTS: A total of 200 isolates were tested in this study consisting of isoniazid-resistant and susceptible with the largest distribution of Multi-Drug Resistant (MDR) isolates with a total of 146 isolates (73%). The most significant gene mutation was on the ahpC gene in 61 isolates (30,5%) and the combination mutation of the katG + ahpC gene in 52 isolates (26%) with sensitivity and specificity of the test reaching 87% and 42% for the detection of INH-resistant. CONCLUSION: Mutation on the ahpC gene has the highest percentage in this study. AhpC gene can be considered one of the essential genes to be tested for the cause of isoniazid-resistant. Using MAS-PCR for detecting gene mutation in isoniazid-resistant was simple and easy, it has the potential to be widely used as a rapid screening molecular test.


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Catalasa , Isoniazida , Mutación , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Indonesia , Isoniazida/farmacología , Isoniazida/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Catalasa/genética , Oxidorreductasas/genética , Pruebas de Sensibilidad Microbiana , Femenino , Masculino , Adulto , Reacción en Cadena de la Polimerasa Multiplex , Farmacorresistencia Bacteriana Múltiple/genética
17.
BMC Microbiol ; 24(1): 349, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285278

RESUMEN

BACKGROUND: Bacteriophage has been renewed attention as a new antibacterial agent due to the limitations of antibiotic treatment. Bacteriophages are generally thought to be highly host specific and even strain specific, but a small number of polyvalent bacteriophages have been found to infect bacteria of different genera. RESULTS: In this study, a virulent lytic bacteriophage (named Salmonella phage PSH-1) of Salmonella Enteritidis was isolated from the sewage samples of a large-scale pig farm, PSH-1 demonstrated lytic activity against four multidrug-resistant Salmonella Enteritidis isolates and Escherichia coli, and then its biological characteristics, genome and bacteriostatic ability were investigated. The results showed that the initial titer of PSH-1 was 1.15 × 1010 PFU/mL and the optimal multiplicity of infection (MOI) was 0.01, PSH-1 has stable activity in the range of pH 3.0-11.0. One-step growth curve showed that its latent period was 20 min, burst time was 80 min, and the burst was 495 particles. The whole-genome sequencing results revealed phage PSH-1 had a linear dsDNA with 48,466 bp length. The G/C content was 45.33%. Non-coding RNA genes and virulence factors were not found. Eighty- five open reading frames (ORFs) were identified after online annotation. By tests, the use of phage could succeed in controlling the artificial Salmonella contamination in milk at a range of temperatures. CONCLUSIONS: This study reports a novel Salmonella Enteritidis phage PSH-1, which has a robust lytic ability, no virulence factors, and good stability. The characterization and genomic analysis of PSH-1 will develop our understanding of phage biology and diversity and provide a potential arsenal for controlling of salmonellosis.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Genoma Viral , Fagos de Salmonella , Salmonella enteritidis , Aguas del Alcantarillado , Secuenciación Completa del Genoma , Salmonella enteritidis/virología , Salmonella enteritidis/genética , Salmonella enteritidis/efectos de los fármacos , Fagos de Salmonella/genética , Fagos de Salmonella/aislamiento & purificación , Fagos de Salmonella/fisiología , Fagos de Salmonella/clasificación , Farmacorresistencia Bacteriana Múltiple/genética , Animales , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , Porcinos , Composición de Base , Escherichia coli/virología , Escherichia coli/genética
18.
Pol J Microbiol ; 73(3): 363-375, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39268958

RESUMEN

Escherichia coli, a rod-shaped Gram-negative bacterium, is a significant causative agent of severe clinical bacterial infections. This study aimed to analyze the epidemiology of extended-spectrum ß-lactamase (ESBL)-producing mcr-1 -positive E. coli in Shandong, China. We collected 668 non-duplicate ESBL-producing E. coli strains from clinical samples at Shandong Provincial Hospital between January and December 2018, and estimated their minimum inhibitory concentrations (MICs) using a VITEK® 2 compact system and broth microdilution. Next-generation sequencing and bioinformatic analyses identified the mcr-1 gene and other resistance genes in the polymyxin B-resistant strains. The conjugation experiment assessed the horizontal transfer capacity of the mcr-1 gene. Of the strains collected, 24 polymyxin B-resistant strains were isolated with a positivity rate of 3.59% and among the 668 strains, 19 clinical strains carried the mobile colistin resistance gene mcr-1, with a positivity rate of approximately 2.8%. All 19 clinical strains were resistant to ampicillin, cefazolin, ceftriaxone, ciprofloxacin, levofloxacin, and polymyxin B. Seventeen strains successfully transferred the mcr-1 gene into E. coli J53. All transconjugants were resistant to polymyxin B, and carried the drug resistance gene mcr-1. The 19 clinical strains had 14 sequence types (STs), with ST155 (n = 4) being the most common. The whole-genome sequencing results of pECO-POL-29_mcr1 revealed that no ISApl1 insertion sequences were found on either side of the mcr-1 gene. Our study uncovered the molecular epidemiology of mcr-1-carrying ESBL-producing E. coli in the region and suggested horizontal transmission mediated by plasmids as the main mode of mcr-1 transmission.


Asunto(s)
Antibacterianos , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Polimixina B , Centros de Atención Terciaria , beta-Lactamasas , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Polimixina B/farmacología , Humanos , China/epidemiología , beta-Lactamasas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/epidemiología , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Farmacorresistencia Bacteriana Múltiple/genética
19.
Pol J Microbiol ; 73(3): 349-362, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39268957

RESUMEN

The aim of this work was to provide a theoretical and scientific basis for the treatment, prevention, and control of clinical drug-resistant bacterial infections by studying the molecular epidemiology and horizontal transfer mechanism of optrA-carrying linezolid-resistant Enterococcus faecalis strains (LREfs) that were clinically isolated in a tertiary hospital in Kunming, China. Non-repetitive LREfs retained in a tertiary A hospital in Kunming, China. The strains were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The transferability and horizontal transfer mechanism of optrA gene were analyzed using polymerase chain reaction (PCR), whole-genome sequencing (WGS), and conjugation experiments. A total of 39 LREfs strains were collected, and all of them were multi-drug resistant. There were 30 LREfs strains (76.9%) carrying the optrA gene, The cfr, poxtA genes and mutations in the 23S rRNA gene were not detected. The conjugation experiments showed that only three of 10 randomly selected optrA-carrying LREfs were successfully conjugated with JH2-2. Further analysis of one successfully conjugated strain revealed that the optrA gene, located in the donor bacterium, formed the IS1216E-erm(A)-optrA-fexA-IS1216E transferable fragment under the mediation of the mobile genetic element (MGE) IS1216E, which was then transferred to the recipient bacterium via horizontal plasmid transfer. Carrying the optrA gene is the primary resistance mechanism of LREfs strains. The optrA gene could carry the erm(A) and fexA genes to co-transfer among E. faecalis. MGEs such as insertion sequence IS1216E play an important role in the horizontal transfer of the optrA gene.


Asunto(s)
Antibacterianos , Enterococcus faecalis , Transferencia de Gen Horizontal , Infecciones por Bacterias Grampositivas , Linezolid , Enterococcus faecalis/genética , Enterococcus faecalis/efectos de los fármacos , Linezolid/farmacología , Antibacterianos/farmacología , Humanos , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/epidemiología , China/epidemiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Epidemiología Molecular , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , Secuenciación Completa del Genoma , Conjugación Genética
20.
Microb Pathog ; 195: 106916, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236969

RESUMEN

In this work, the antibiotic resistance, biofilm formation capability, and clonal relatedness of 50 A. baumannii isolates collected from three hospitals in Ardabil city, Iran, were evaluated. Antibiotic sensitivity and biofilm formation of isolates were determined by disk diffusion and microtiter-plate methods, respectively. Molecular typing of isolates was also performed using repetitive sequence-based PCR (REP-PCR). The majority of isolates were resistant to cephems, aminoglycosides, and carbapenems, with 80 % classified as multi-drug resistant (MDR). While, only isolates collected from blood and tracheal were resistant to colistin. Additionally, 42 isolates (84 %) had biofilm formation capability. According to rep-PCR results, 34 isolates showed similar banding patterns, while 16 isolates had unique banding patterns. Finally, based on the molecular analysis, there was a direct relationship between biofilm formation and the antibiotic resistance of isolates. In other words, MDR isolates had a higher ability to form biofilm.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Infecciones por Acinetobacter/microbiología , Irán , Farmacorresistencia Bacteriana Múltiple/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter baumannii/fisiología , Tipificación Molecular , Reacción en Cadena de la Polimerasa , Colistina/farmacología , Adulto , Hospitales , Masculino , Femenino , Genotipo , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA