Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Gerontol ; 194: 112509, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964429

RESUMEN

Sake may potentially halt the progression of Parkinson's disease due to its properties, yet no studies have explored its effects. This preliminary study aimed to assess the impact of sake supplementation on Parkinson's disease using a zebrafish model. Sixty fish were divided into six groups: control, rotenone (ROT), and groups administered rotenone along with sake at concentrations of 25, 50, 75, and 100 mg/L (25S, 50S, 75S, and 100S). After 28 days of treatment, behavioral responses and the activities of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase (GST), as well as the expressions of TNF-α, IL-1ß, and COX-2, were evaluated. The results indicated that rotenone administration significantly reduced crossing number (P = 0.001), entries in the top area (P = 0.001), and time spent in the top area (P = 0.001). It also markedly increased levels of TBARS and SH compared to the control group (P = 0.001). Rotenone significantly decreased CAT, SOD, and GSH activities while increasing GST levels. Furthermore, it upregulated the expressions of TNF-α (P = 0.001), IL-1ß (P = 0.001), and COX-2 (P = 0.001). Supplementation with sake, particularly at higher doses, reversed the adverse effects of rotenone on behavioral, oxidative, and inflammatory responses. In conclusion, sake shows promise for preventing Parkinson's disease pending further clinical studies.


Asunto(s)
Antioxidantes , Suplementos Dietéticos , Modelos Animales de Enfermedad , Estrés Oxidativo , Rotenona , Pez Cebra , Animales , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Vino , Masculino , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Foods ; 13(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38472883

RESUMEN

The HHP inactivation behaviors of Niigata sake yeast Saccharomyces cerevisiae strain S9arg and its aerobic respiratory-deficient mutant strains were investigated after cultivating them in a YPD media containing 2% to 15% glucose, as well as in moromi mash, in a laboratory-scale sake brewing process. The piezotolerance of strain S9arg, shown after cultivation in a YPD medium containing 2% glucose, decreased to become piezosensitive with increasing glucose concentrations in YPD media. In contrast, the piezosensitivity of a mutant strain UV1, shown after cultivation in the YPD medium containing 2% glucose, decreased to become piezotolerant with increasing glucose concentrations in the YPD medium. The intracellular ATP concentrations were analyzed for an S. cerevisiae strain with intact aerobic respiratory ability, as well as for strain UV1. The higher concentration of ATP after cultivation suggested a higher energy status and may be closely related to higher piezotolerance for the yeast strains. The decreased piezotolerance of strain S9arg observed after a laboratory-scale sake brewing test may be due to a lower energy status resulting from a high glucose concentration in moromi mash during the early period of brewing, as well as a lower aeration efficiency during the brewing process, compared with cultivation in a YPD medium containing 2% glucose.

3.
J Biosci Bioeng ; 137(4): 268-273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310037

RESUMEN

Hineka is a type of off-flavor of sake and is attributed to the presence of several compounds, including a major one called dimethyl trisulfide (DMTS). The production of the main precursor of DMTS involves yeast methionine salvage pathway. The DMTS-producing potential (DMTS-pp) of sake brewed using the Km67 strain, a non-Kyokai sake yeast, is lower than that of sake brewed using Kyokai yeast; however, the detailed mechanism is unclear. We focused on S-adenosyl-methionine (SAM) and aimed to elucidate the mechanism that prevents DMTS production in sake brewed using the Km67 strain. We revealed that SAM is involved in DMTS production in sake, and that the conversion of SAM to the DMTS precursor occurs through an enzymatic reaction rather than a chemical reaction. Based on previous reports on ADO1 and MDE1 genes, sake brewing tests were performed using the Km67 Δmde1, Δado1, and Δmde1Δado1 strains. A comparison of the SAM content of pressed sake cakes and DMTS-pp of sake produced using the Km67 Δado1 strain showed an increase in both SAM content and DMTS-pp compared to those produced using the parent strain. However, the Km67 Δmde1Δado1 strain showed little increase in DMTS-pp compared to the Km67 Δmde1 strain, despite an increase in SAM content. These results suggest that SAM accumulation in yeast plays a role in the production of DMTS in sake through the methionine salvage pathway. Moreover, the low SAM-accumulation characteristic of the Km67 strain contributes to low DMTS production in sake.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sulfuros , Saccharomyces cerevisiae/metabolismo , Bebidas Alcohólicas/análisis , Proteínas de Saccharomyces cerevisiae/genética , Odorantes/análisis , Fermentación , S-Adenosilmetionina/metabolismo
4.
J Biosci Bioeng ; 137(3): 195-203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242756

RESUMEN

The EHL1/2/3 genes were identified by whole-genome sequencing of Kyokai No. 7 (K7), which is a well-known representative Japanese sake yeast Saccharomyces cerevisiae. The genes are present in K7, but not in laboratory strain S288C. Although the genes were presumed to encode epoxide hydrolase based on homology analysis, their effect on cellular metabolism in sake yeast has not yet been clarified. We constructed ehl1/2/3 mutants harboring a stop codon in each gene using the haploid yeast strain H3 as the parental strain, which was derived from K701, and investigated the physiological role and effects of the EHL1/2/3 genes on sake quality. Metabolome analysis and vitamin requirement testing revealed that the EHL1/2/3 genes are partly responsible for the synthesis of pantothenate. For fermentation profiles, ethanol production by the ehl1/2/3 mutant was comparable with that of strain H3, but succinate production was decreased in the ehl1/2/3 mutant compared to strain H3 when cultured in yeast malt (YM) medium containing 10% glucose and during sake brewing. Ethyl hexanoate and isoamyl acetate levels in the ehl1/2/3 mutant strain were decreased compared to those of strain H3 during sake brewing. Thus, the EHL1/2/3 genes did not affect ethanol production but did affect the production of organic acids and aromatic components during sake brewing.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Bebidas Alcohólicas , Fermentación , Proteínas de Saccharomyces cerevisiae/genética , Etanol
5.
Biosci Biotechnol Biochem ; 88(3): 249-253, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37833236

RESUMEN

Kuratsuki bacteria enter during the sake-making process and interact with sake yeast until their growth is attenuated by the ethanol produced by sake yeast. Due to the interaction between kuratsuki bacteria and sake yeast, the metabolism of sake yeast changes, affecting the composition of esters and organic acids and subsequently the flavor and taste of sake. We cultivated kuratsuki bacteria and sake yeast, and performed test making at sake breweries to clarify the interaction among microorganisms in the sake-making process. We aim to propose a sake-making process that controls the flavor and taste of sake by utilizing the functions of kuratsuki bacteria.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Bebidas Alcohólicas/análisis , Fermentación , Etanol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Bacterias/metabolismo
6.
Psychopharmacology (Berl) ; 241(2): 401-416, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37996666

RESUMEN

RATIONALE: Using routine synthetic drugs in the treatment of psychiatric disorders may have some restrictions due to serious side effects and pharmacoresistance. Some natural agents may be promising alternatives in this case. The neuroprotective activity of the neuromodulator adenosine and its receptor, A1 receptor (A1R) in the central nervous system has been mentioned in different studies. OBJECTIVE: We aimed to determine the anxiolytic, antidepressant and sedative effects of Japanese sake yeast as the first report. METHOD: Mice were subjected to a one-week stress protocol and concomitantly treated orally with sake yeast at the dose levels of 100, 200 and 300 mg kg-1 once daily for a week. The anxiolytic, antidepressant, and sedative actions of sake yeast were evaluated with the related tests. RESULTS: In all dose regiments, sake yeast significantly improved functions in the EPM and FST. 200 and 300 mg/kg of sake yeast significantly increased sleep duration and reduced sleep latency. Anxiolytic and antidepressant-like activities of sake yeast were maintained by the injection of ZM241385 (15 mg kg-1), a selective adenosine A2AR antagonist but completely counteracted by the injection of 8-cyclopentyltheophylline (10 mg kg-1), a selective adenosine A1R antagonist. 300 mg/kg of the yeast significantly increased the BDNF levels. Amygdala corticosterone levels did not show any significant changes at any dosage. Amygdala TNF-α, IL-6 and IL-1ß levels also decreased significantly with all the sake regiments compared to the control group. CONCLUSIONS: We conclude that oral sake yeast supplement exerts a neurobehavioral protective effect predominantly by activating central A1Rs.


Asunto(s)
Ansiolíticos , Saccharomyces cerevisiae , Humanos , Ratones , Animales , Ansiolíticos/farmacología , Bebidas Alcohólicas , Depresión/tratamiento farmacológico , Depresión/prevención & control , Fermentación , Ansiedad/tratamiento farmacológico , Ansiedad/prevención & control , Adenosina/farmacología , Antidepresivos/farmacología , Receptores Purinérgicos P1
7.
J Biosci Bioeng ; 137(1): 24-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989703

RESUMEN

Chromosome aneuploidy is a common phenomenon in industrial yeast. Aneuploidy is considered one of the strategies to enhance the industrial properties of Saccharomyces cerevisiae strains. However, the effects of chromosomal aneuploidy on the brewing properties of sake have not been extensively studied. In this study, sake brewing was performed using a series of genome-wide segmental duplicated laboratory S. cerevisiae strains, and the effects of each segmentally duplicated region on sake brewing were investigated. We found that the duplication of specific chromosomal regions affected the production of organic acids and aromatic compounds in sake brewing. As organic acids significantly influence the taste of sake, we focused on the segmental duplication of chromosome II that alters malate levels. Sake yeast Kyokai No. 901 strains with segmental chromosome II duplication were constructed using a polymerase chain reaction-mediated chromosomal duplication method, and sake was brewed using the resultant aneuploid sake yeast strains. The results showed the possibility of developing sake yeast strains exhibiting low malate production without affecting ethanol production capacity. Our study revealed that aneuploidy in yeast alters the brewing properties; in particular, the aneuploidy of chromosome II alters malate production in sake brewing. In conclusion, aneuploidization can be a novel and useful tool to breed sake yeast strains with improved traits, possessing industrial significance.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bebidas Alcohólicas/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Malatos , Fermentación , Aneuploidia , Cromosomas/metabolismo
8.
Biosci Biotechnol Biochem ; 88(3): 237-241, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38006236

RESUMEN

The yeast Saccharomyces cerevisiae plays a pivotal role in the production of fermented foods by converting sugars in ingredients into ethanol through alcoholic fermentation. However, how accurate is our understanding of its biological significance? Although yeast is essential to produce alcoholic beverages and bioethanol, yeast does not yield ethanol for humankind. Yeast obtains energy in the form of ATP for its own vital processes through alcoholic fermentation, which generates ethanol as a byproduct. The production of ethanol may have more significance for yeast, since many other organisms do not produce ethanol, a highly toxic substance, to obtain energy. The key to address this issue has not been found using conventional microbiology, where yeasts are isolated and cultured in pure form. This review focuses on a possible novel role of yeast alcohol fermentation, which is revealed through our recent studies of microbial interactions.


Asunto(s)
Lactobacillales , Saccharomyces cerevisiae , Bebidas Alcohólicas/análisis , Simbiosis , Fermentación , Etanol
9.
Arch Microbiol ; 205(8): 290, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468657

RESUMEN

Although sake yeast mainly produces the taste of sake, sake brewery-inhabiting (kuratsuki) bacteria affect the taste of sake. Thus, kuratsuki bacteria may alter the metabolism of sake yeast through interactions between kuratsuki bacteria and sake yeast. This study aimed to confirm the effects of the combination of kuratsuki Kocuria TGY1127_2 and different sake yeast strains, AK25, K901, and K1801 on the taste of sake. Although the Brix and acidity during sake production using AK25 differed between sake with and without kuratsuki Kocuria, those using K901 and K1801 did not differ. Thus, sake yeast AK25 interacted with kuratsuki Kocuria and changed its characteristics of ethanol fermentation. In addition, the taste intensity changes, measured with a taste sensor TS-5000Z, showed that the effects of adding kuratsuki Kocuria varied among different sake yeasts. Thus, each sake yeast strain interacted with the kuratsuki bacterium and produced different metabolites, resulting in a change in the taste of sake. The findings of this study can lead to the brewing of sake using different types of kuratsuki bacteria which can affect the taste of sake.


Asunto(s)
Micrococcaceae , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Bebidas Alcohólicas/microbiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación , Gusto , Micrococcaceae/metabolismo
10.
Biochem Biophys Res Commun ; 674: 97-101, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37419037

RESUMEN

Stroke is a serious cerebrovascular disease that causes post-stress depression and death. Stress and inflammation have pivotal roles in the induction of the disease. Several drugs and agents have been used for the treatment of disease, but their uses are faced with limitations owing to their side effects. Natural agents are more efficient for the treatment of stroke due to lower toxicity and their pharmaceutical properties. Sake yeast or Japanese rice wine is an antioxidant compound that could be used to treat stroke and post-stress depression. This study evaluates the effects of sake yeast on depressive-like behaviors, oxidative stress and inflammatory parameters in a rat model of global cerebral ischemia/reperfusion. Rats were divided into four groups, including 1) control: without bilateral common carotid artery occlusion (BCCAO) and sake supplement, 2) Ischemia group: rats induced with BCCAO and lack of therapeutic supplement, and 3 and 4) Ischemia + sake groups: rats induced with BCCAO and treated with 25 and 50 mg/kg sake yeast, respectively. Depressive-like behaviors antioxidant enzymes activities were assessed. The induction of stroke increased oxidant status, inflammatory parameters, and depressive-like behaviors, while the administration of sake could decrease inflammation, depressive-like behaviors, and oxidant status and increase antioxidant enzymes. The yeast could be used as a supplement in combination with other drugs to treat stroke.


Asunto(s)
Isquemia Encefálica , Enfermedades de las Arterias Carótidas , Daño por Reperfusión , Accidente Cerebrovascular , Ratas , Animales , Saccharomyces cerevisiae , Bebidas Alcohólicas , Ratas Wistar , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Fermentación , Isquemia Encefálica/tratamiento farmacológico , Estrés Oxidativo , Accidente Cerebrovascular/tratamiento farmacológico , Infarto Cerebral , Inflamación/tratamiento farmacológico , Reperfusión , Oxidantes/farmacología
11.
Microorganisms ; 11(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37317248

RESUMEN

Modification of the genetic background and, in some cases, the introduction of targeted mutations can play a critical role in producing trait characteristics during the breeding of crops, livestock, and microorganisms. However, the question of how similar trait characteristics emerge when the same target mutation is introduced into different genetic backgrounds is unclear. In a previous study, we performed genome editing of AWA1, CAR1, MDE1, and FAS2 on the standard sake yeast strain Kyokai No. 7 to breed a sake yeast with multiple excellent brewing characteristics. By introducing the same targeted mutations into other pedigreed sake yeast strains, such as Kyokai strains No. 6, No. 9, and No. 10, we were able to create sake yeasts with the same excellent brewing characteristics. However, we found that other components of sake made by the genome-edited yeast strains did not change in the exact same way. For example, amino acid and isobutanol contents differed among the strain backgrounds. We also showed that changes in yeast cell morphology induced by the targeted mutations also differed depending on the strain backgrounds. The number of commonly changed morphological parameters was limited. Thus, divergent characteristics were produced by the targeted mutations in pedigreed sake yeast strains, suggesting a breeding strategy to generate a variety of sake yeasts with excellent brewing characteristics.

12.
J Biosci Bioeng ; 136(1): 44-50, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37183145

RESUMEN

Biotin is an essential coenzyme that is bound to carboxylases and participates in fatty acid synthesis. The fact that sake yeast exhibit biotin prototrophy while almost all other Saccharomyces cerevisiae strains exhibit biotin auxotrophy, implies that biotin prototrophy is an important factor in sake brewing. In this study, we inserted a stop codon into the biotin biosynthetic BIO3 gene (cording for 7,8-diamino-pelargonic acid aminotransferase) of a haploid sake yeast strain using the marker-removable plasmid pAUR135 and investigated the fermentation profile of the resulting bio3 mutant. Ethanol production was not altered when the bio3 mutant was cultured in Yeast Malt (YM) medium containing 10% glucose at 15 °C and 30 °C. Interestingly, ethanol production was also not changed during the sake brewing process. On the other hand, the levels of organic acids in the bio3 mutant were altered after culturing in YM medium and during sake brewing. In addition, ethyl hexanoate and isoamyl acetate levels decreased in the bio3 mutant during sake brewing. Metabolome analysis revealed that the decreased levels of fatty acids in the bio3 mutant were attributed to the decreased levels of ethyl hexanoate. Further, the transcription level of genes related to the synthesis of ethyl hexanoate and isoamyl acetate were significantly reduced. The findings indicated that although the decrease in biotin biosynthesis did not affect ethanol production, it did affect the synthesis of components such as organic acids and aromatic compounds. Biotin biosynthesis ability is thus a key factor in sake brewing.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Bebidas Alcohólicas/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ésteres/metabolismo , Biotina/metabolismo , Fermentación , Mutación
13.
J Psychiatr Res ; 161: 123-131, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36921500

RESUMEN

Controversial studies indicate the adenosine compound (a neuromodulator with neuroprotective activity) intervention on cognitive performance. On the other hand, Japanese sake yeast has been enriched with oral adenosine analogs as a novel natural agent. As the first report, we aimed to evaluate the effects of Japanese sake yeast supplement in a mouse model of chronic restraint stress-induced cognitive dysfunction. Mice were subjected to a one-week stress protocol and concomitantly treated orally with sake yeast at the dose level of 100, 200 and 300 mg/kg once daily for a week. The spatial and conditioned fear memory functions were evaluated with the Morris Water Maze (MWM) and the Passive Avoidance Learning (PAL) test, respectively. In all dosing regimens, improvements in spatial cognition were observed significantly in the MWM. 200 and 300 mg/kg of sake yeast significantly improved short- and long-term fear memory functions in the PAL test. Memory-enhancing effect of sake yeast was potentiated by the injection of ZM241385 (15 mg/kg), a selective adenosine A2A receptor (A2AR) antagonist, but completely disappeared by the injection of 8-cyclopentyltheophylline (CPT-8, 10 mg/kg), a selective adenosine A1 receptor (A1R) antagonist. The findings of the present study demonstrate the efficacy of sake yeast in acting as a cognitive performance-enhancing agent. Eventually, sake yeast and its ingredient S-adenosyl methionine (SAM) may be useful in improving memory in patients suffering from many dementia forms including Alzheimer's disease (AD).


Asunto(s)
Adenosina , Saccharomyces cerevisiae , Ratones , Animales , Saccharomyces cerevisiae/metabolismo , Adenosina/farmacología , Adenosina/uso terapéutico , Bebidas Alcohólicas , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/uso terapéutico , Fermentación , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología
14.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36725212

RESUMEN

Sake yeasts have a range of brewing characteristics that are particularly beneficial for sake making including high ethanol fermentability, high proliferative capacity at low temperatures, lactic acid tolerance, and high ester productivity. On the other hand, sake yeasts also accumulate a diverse range of functional components. For example, significantly greater accumulation of S-adenosylmethionine (SAM), a compound that plays important regulatory roles in a range of biological processes as a major donor of methyl groups, occurs in sake yeasts compared to other microorganisms. Significantly greater accumulation of folate, a bioactive water-soluble vitamin (vitamin B9), also occurs in sake yeasts compared to laboratory yeasts, and the methyl group on SAM is supplied by folate. Accordingly, fully characterizing 'sake yeast identity' requires detailed understanding of the mechanisms underlying both the nutritional characteristics (functional components) and the brewing characteristics in sake yeasts. Therefore, this mini-review focuses on the accumulation of SAM and folate in sake yeast including descriptions of the genes known to contribute to SAM and folate accumulation and the underlying mechanisms.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , S-Adenosilmetionina/metabolismo , Bebidas Alcohólicas , Ácido Fólico , Proteínas de Saccharomyces cerevisiae/genética , Fermentación
15.
J Gen Appl Microbiol ; 68(5): 248-252, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35676064

RESUMEN

In Saccharomyces cerevisiae, ethyl caprylate is produced by the esterification of caprylic acid, which is synthesized through the action of fatty acid synthase. A recent study reported a yeast mutant with a single nucleotide substitution in the alpha subunit of fatty acid synthase (FAS2) gene (F1279Y; 3836T>A) that produced large amounts of ethyl caprylate. Here, we designed two primer sets (P1/P2 and P3/P4) with mismatches that incorporate restriction sites for the enzymes NdeI and SspI, respectively and developed an easy and rapid polymerase chain reaction-restriction fragment length polymorphism assay to identify yeasts harboring the FAS2-F1279Y mutation associated with high ethyl caprylate productivity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Bebidas Alcohólicas , Ácido Graso Sintasas/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
FEMS Yeast Res ; 22(1)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36370450

RESUMEN

Sake is a traditional Japanese alcoholic beverage made from rice and water, fermented by the filamentous fungi Aspergillus oryzae and the yeast Saccharomyces cerevisiae. Yeast strains, also called sake yeasts, with high alcohol yield and the ability to produce desired flavor compounds in the sake, have been isolated from the environment for more than a century. Furthermore, numerous methods to breed sake yeasts without genetic modification have been developed. The objectives of breeding include increasing the efficiency of production, improving the aroma and taste, enhancing safety, imparting functional properties, and altering the appearance of sake. With the recent development of molecular biology, the suitable sake brewing characteristics in sake yeasts, and the causes of acquisition of additional phenotypes in bred yeasts have been elucidated genetically. This mini-review summarizes the history and lineage of sake yeasts, their genetic characteristics, the major breeding methods used, and molecular biological analysis of the acquired strains. The data in this review on the metabolic mechanisms of sake yeasts and their genetic profiles will enable the development of future strains with superior phenotypes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Bebidas Alcohólicas , Fermentación , Biología Molecular
17.
Microbiol Spectr ; 10(3): e0082222, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35543513

RESUMEN

In the yeast Saccharomyces cerevisiae, N-acetyl glutamate kinase (NAGK), which catalyzes the phosphorylation of N-acetyl glutamate to form N-acetyl glutamyl-5-phosphate, is one of the rate-limiting enzymes in the ornithine and arginine biosynthetic pathways. NAGK activity is strictly regulated via feedback inhibition by the end product, arginine. We previously reported that the Thr340Ile variant of NAGK was insensitive to arginine feedback inhibition and that the interaction between Lys336 and Thr340 in NAGK may be important for arginine recognition. In the present study, we demonstrated that amino acid changes of Thr340 to Ala, Leu, Arg, Glu, Ile, and Asn removed arginine feedback inhibition, although the Thr340Ser variant was subject to the feedback inhibition. Therefore, these results indicate that the arginine-binding cavity formed via the interaction between the carbonyl group in the main chain of Lys336 and the hydroxyl group in the side chain of the residue at position 340 is critical for arginine recognition of NAGK. In addition, we newly identified two mutations in the ARG5,6 gene encoding the Cys119Tyr or Val267Ala variant of NAGK of sake yeast mutants with intracellular ornithine accumulation. Although it is unlikely that Cys119 and Val267 are directly involved in arginine recognition, we found here that two variants of NAGK were insensitive to arginine feedback inhibition and contributed to high-level production of ornithine. Structural analysis of NAGK suggests that these two amino acid substitutions influence the sensitivity to Arg feedback inhibition through alterations in local conformation around each residue. IMPORTANCE Ornithine has a number of physiological benefits in humans. Thus, an Orn-rich alcoholic beverage is expected to relieve feelings of fatigue after drinking. In the yeast Saccharomyces cerevisiae, N-acetyl glutamate kinase (NAGK) encoded by the ARG5,6 gene catalyzes the second step in ornithine and arginine biosynthesis, and its activity is subjected to feedback inhibition by arginine. Here, we revealed a role of key residues in the formation of the arginine-binding cavity which is critical for arginine recognition of NAGK. In addition, we analyzed novel arginine feedback inhibition-insensitive variants of NAGK in sake yeast mutants with ornithine overproduction and proposed that the amino acid substitutions in the NAGK variants destabilize the arginine-binding cavity, leading to the lower sensitivity to arginine feedback inhibition of NAGK activity. These findings provide new insight into the allosteric regulation of NAGK activity and will help to construct superior industrial yeast strains for high-level production of ornithine.


Asunto(s)
Ornitina , Fosfotransferasas (aceptor de Grupo Carboxilo) , Saccharomyces cerevisiae , Bebidas Alcohólicas , Arginina/química , Retroalimentación , Ornitina/biosíntesis , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
18.
J Gen Appl Microbiol ; 68(1): 30-37, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35431296

RESUMEN

Screening for new sake yeasts can expand the sensory diversity of sake, due to their production of metabolites that characterize sake's aroma and taste. In this study, mud from tidal flats in the Ariake Sea was screened for Saccharomyces cerevisiae strains with ethanol productivity suitable for sake brewing, and the brewing characteristics of isolated strains were evaluated. Five strains (H1-1, H1-2, H1-3, H3-1, and H3-2) classified as S. cerevisiae were isolated. Karyotype analysis by pulsed-field gel electrophoresis showed that five isolated strains were closely related to sake yeast strains (K7, K701, K9, K901, and Y52) instead of laboratory yeast strain. Results of small-scale brewing tests including sake yeast strains K701, K901, and Y52 showed that the five isolated strains have fermentation activity comparable to sake yeast strains. Principal component analysis (PCA) revealed that the five isolated strains produce higher levels of ethyl caproate and lower levels of acidic compounds than sake yeasts. In addition, isolated strains H3-1 and H3-2 produce higher levels of isoamyl acetate and lower levels of acetic acid than other isolated strains. Consequently, five S. cerevisiae strains that have high fermentation activity and differ from common sake yeast strains in terms of brewing characteristics were successfully isolated from the Ariake Sea.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Bebidas Alcohólicas , Etanol/metabolismo , Fermentación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Appl Environ Microbiol ; 88(5): e0213021, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35020456

RESUMEN

A variety of the yeast Saccharomyces cerevisiae with intracellular accumulation of isoleucine (Ile) would be a promising strain for developing a distinct kind of sake, a traditional Japanese alcoholic beverage, because Ile-derived volatile compounds have a great impact on the flavor and taste of fermented foods. In this study, we isolated an Ile-accumulating mutant (strain K9-I48) derived from a diploid sake yeast of S. cerevisiae by conventional mutagenesis. Strain K9-I48 carries a novel mutation in the ILV1 gene encoding the His480Tyr variant of threonine deaminase (TD). Interestingly, the TD activity of the His480Tyr variant was markedly insensitive to feedback inhibition by Ile, but was not upregulated by valine, leading to intracellular accumulation of Ile and extracellular overproduction of 2-methyl-1-butanol, a fusel alcohol derived from Ile, in yeast cells. The present study demonstrated for the first time that the conserved histidine residue located in a linker region between two regulatory domains is involved in allosteric regulation of TD. Moreover, sake brewed with strain K9-I48 contained 2 to 3 times more 2-methyl-1-butanol and 2-methylbutyl acetate than sake brewed with the parent strain. These findings are valuable for the engineering of TD to increase the productivity of Ile and its derived fusel alcohols. IMPORTANCE Fruit-like flavors of isoleucine-derived volatile compounds, 2-methyl-1-butanol (2MB) and its acetate ester, contribute to a variety of the flavors and tastes of alcoholic beverages. Besides its value as aroma components in foods and cosmetics, 2MB has attracted significant attention as second-generation biofuels. Threonine deaminase (TD) catalyzes the first step in isoleucine biosynthesis and its activity is subject to feedback inhibition by isoleucine. Here, we isolated an isoleucine-accumulating sake yeast mutant and identified a mutant gene encoding a novel variant of TD. The variant TD exhibited much less sensitivity to isoleucine, leading to higher production of 2MB as well as isoleucine than the wild-type TD. Furthermore, sake brewed with a mutant yeast expressing the variant TD contained more 2MB and its acetate ester than that brewed with the parent strain. These findings will contribute to the development of superior industrial yeast strains for high-level production of isoleucine and its related fusel alcohols.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Bebidas Alcohólicas/análisis , Etanol/metabolismo , Retroalimentación , Fermentación , Isoleucina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Treonina Deshidratasa/genética , Treonina Deshidratasa/metabolismo
20.
J Ind Microbiol Biotechnol ; 49(3)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34788829

RESUMEN

Sake is a traditional Japanese alcoholic beverage brewed by the yeast Saccharomyces cerevisiae. Since the consumption and connoisseurship of sake has spread around the world, the development of new sake yeast strains to meet the demand for unique sakes has been promoted. Phenylalanine is an essential amino acid that is used to produce proteins and important signaling molecules involved in feelings of pleasure. In addition, phenylalanine is a precursor of 2-phenylethanol, a high-value aromatic alcohol with a rose-like flavor. As such, adjusting the quantitative balance between phenylalanine and 2-phenylethanol may introduce value-added qualities to sake. Here, we isolated a sake yeast mutant (strain K9-F39) with phenylalanine accumulation and found a missense mutation on the ARO80 gene encoding the His309Gln variant of the transcriptional activator Aro80p involved in the biosynthesis of 2-phenylethanol from phenylalanine. We speculated that mutation of ARO80 would decrease transcriptional activity and suppress the phenylalanine catabolism, resulting in an increase of intracellular phenylalanine. Indeed, sake brewed with strain K9-F39 contained 60% increase in phenylalanine, but only 10% less 2-phenylethanol than sake brewed with the parent strain. Use of the ARO80 mutant in sake brewing may be promising for the production of distinctive new sake varieties. ONE-SENTENCE SUMMARY: The ARO80 mutant is appropriate for controlling the content of phenylalanine and 2-phenylethanol.


Asunto(s)
Alcohol Feniletílico , Proteínas de Saccharomyces cerevisiae , Bebidas Alcohólicas/análisis , Fermentación , Fenilalanina/metabolismo , Alcohol Feniletílico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA