Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 876, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083182

RESUMEN

BACKGROUND: Mitochondria, essential for cellular energy production through oxidative phosphorylation (OXPHOS), integrate mt-DNA and nuclear-encoded genes. This cooperation extends to the mitochondrial translation machinery, involving crucial mtDNA-encoded RNAs: 22 tRNAs (mt-tRNAs) as adapters and two rRNAs (mt-rRNAs) for ribosomal assembly, enabling mitochondrial-encoded mRNA translation. Disruptions in mitochondrial gene expression can strongly impact energy generation and overall animal health. Our study investigates the tissue-specific expression patterns of mt-tRNAs and mt-rRNAs in buffalo. MATERIAL AND METHODS: To investigate the expression patterns of mt-tRNAs and mt-rRNAs in different tissues and gain a better understanding of tissue-specific variations, RNA-seq was performed on various tissues, such as the kidney, heart, brain, and ovary, from post-pubertal female buffaloes. Subsequently, we identified transcripts that were differentially expressed in various tissue comparisons. RESULTS: The findings reveal distinct expression patterns among specific mt-tRNA and mt-rRNA genes across various tissues, with some exhibiting significant upregulation and others demonstrating marked downregulation in specific tissue contexts. These identified variations reflect tissue-specific physiological roles, underscoring their significance in meeting the unique energy demands of each tissue. Notably, the brain exhibits the highest mtDNA copy numbers and an abundance of mitochondrial mRNAs of our earlier findings, potentially linked to the significant upregulation of mt-tRNAs in brain. This suggests a plausible association between mtDNA replication and the regulation of mtDNA gene expression. CONCLUSION: Overall, our study unveils the tissue-specific expression of mitochondrial-encoded non-coding RNAs in buffalo. As we proceed, our further investigations into tissue-specific mitochondrial proteomics and microRNA studies aim to elucidate the intricate mechanisms within mitochondria, contributing to tissue-specific mitochondrial attributes. This research holds promise to elucidate the critical role of mitochondria in animal health and disease.


Asunto(s)
Búfalos , Perfilación de la Expresión Génica , Genoma Mitocondrial , Mitocondrias , Especificidad de Órganos , ARN Ribosómico , ARN de Transferencia , Transcriptoma , Animales , Búfalos/genética , Búfalos/metabolismo , ARN de Transferencia/genética , Especificidad de Órganos/genética , Perfilación de la Expresión Génica/métodos , Genoma Mitocondrial/genética , Femenino , Transcriptoma/genética , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Ribosómico/genética , ADN Mitocondrial/genética , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Fosforilación Oxidativa , Regulación de la Expresión Génica/genética
2.
J Cardiovasc Aging ; 3(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38235059

RESUMEN

Introduction: Mice harboring a D257A mutation in the proofreading domain of the mitochondrial DNA polymerase, Polymerase Gamma (POLG), experience severe metabolic dysfunction and display hallmarks of accelerated aging. We previously reported a mitochondrial unfolded protein response (UPTmt) - like (UPRmt-like) gene and protein expression pattern in the right ventricular tissue of POLG mutant mice. Aim: We sought to determine if POLG mutation altered the expression of genes encoded by the mitochondria in a way that might also reduce proteotoxic stress. Methods and Results: The expression of genes encoded by the mitochondrial DNA was interrogated via RNA-seq and northern blot analysis. A striking, location-dependent effect was seen in the expression of mitochondrial-encoded tRNAs in the POLG mutant as assayed by RNA-seq. These expression changes were negatively correlated with the tRNA partner amino acid's amyloidogenic potential. Direct measurement by northern blot was conducted on candidate mt-tRNAs identified from the RNA-seq. This analysis confirmed reduced expression of MT-TY in the POLG mutant but failed to show increased expression of MT-TP, which was dramatically increased in the RNA-seq data. Conclusion: We conclude that reduced expression of amyloid-associated mt-tRNAs is another indication of adaptive response to severe mitochondrial dysfunction in the POLG mutant. Incongruence between RNA-seq and northern blot measurement of MT-TP expression points towards the existence of mt-tRNA post-transcriptional modification regulation in the POLG mutant that alters either polyA capture or cDNA synthesis in RNA-seq library generation. Together, these data suggest that 1) evolution has distributed mt-tRNAs across the circular mitochondrial genome to allow chromosomal location-dependent mt-tRNA regulation (either by expression or PTM) and 2) this regulation is cognizant of the tRNA partner amino acid's amyloidogenic properties.

3.
Comput Struct Biotechnol J ; 20: 6578-6585, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467585

RESUMEN

Post-transcriptional modifications in RNAs regulate their biological behaviors and functions. N1-methyladenosine (m1A), which is dynamically regulated by writers, erasers and readers, has been found as a reversible modification in tRNA, mRNA, rRNA and long non-coding RNA (lncRNA). m1A modification has impacts on the RNA processing, structure and functions of targets. Increasing studies reveal the critical roles of m1A modification and its regulators in tumorigenesis. Due to the positive relevance between m1A and cancer development, targeting m1A modification and m1A-related regulators has been of attention. In this review, we summarized the current understanding of m1A in RNAs, covering the modulation of m1A modification in cancer biology, as well as the possibility of targeting m1A modification as a potential target for cancer diagnosis and therapy.

4.
EXCLI J ; 21: 1306-1330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483916

RESUMEN

Most studies aiming at unraveling the molecular events associated with cardiac congenital heart disease (CHD) have focused on the effect of mutations occurring in the nuclear genome. In recent years, a significant role has been attributed to mitochondria for correct heart development and maturation of cardiomyocytes. Moreover, numerous heart defects have been associated with nucleotide variations occurring in the mitochondrial genome, affecting mitochondrial functions and cardiac energy metabolism, including genes encoding for subunits of respiratory chain complexes. Therefore, mutations in the mitochondrial genome may be a major cause of heart disease, including CHD, and their identification and characterization can shed light on pathological mechanisms occurring during heart development. Here, we have analyzed mitochondrial genetic variants in previously reported mutational genome hotspots and the flanking regions of mt-ND1, mt-ND2, mt-COXI, mt-COXII, mt-ATPase8, mt-ATPase6, mt-COXIII, and mt-tRNAs (Ile, Gln, Met, Trp, Ala, Asn, Cys, Tyr, Ser, Asp, and Lys) encoding genes by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) in 200 patients with CHD, undergoing cardiac surgery. A total of 23 mitochondrial variations (5 missense mutations, 8 synonymous variations, and 10 nucleotide changes in tRNA encoding genes) were identified and included 16 novel variants. Additionally, we showed that intracellular ATP was significantly reduced (P=0.002) in CHD patients compared with healthy controls, suggesting that the mutations have an impact on mitochondrial energy production. Functional and structural alterations caused by the mitochondrial nucleotide variations in the gene products were studied in-silico and predicted to convey a predisposing risk factor for CHD. Further studies are necessary to better understand the mechanisms by which the alterations identified in the present study contribute to the development of CHD in patients.

5.
J Clin Med ; 11(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362661

RESUMEN

Mitochondria are important organelles whose primary role is generating energy through the oxidative phosphorylation (OXPHOS) system. Cardiomyopathy, a common clinical disorder, is frequently associated with pathogenic mutations in nuclear and mitochondrial genes. To date, a growing number of nuclear gene mutations have been linked with cardiomyopathy; however, knowledge about mitochondrial tRNAs (mt-tRNAs) mutations in this disease remain inadequately understood. In fact, defects in mt-tRNA metabolism caused by pathogenic mutations may influence the functioning of the OXPHOS complexes, thereby impairing mitochondrial translation, which plays a critical role in the predisposition of this disease. In this review, we summarize some basic knowledge about tRNA biology, including its structure and function relations, modification, CCA-addition, and tRNA import into mitochondria. Furthermore, a variety of molecular mechanisms underlying tRNA mutations that cause mitochondrial dysfunctions are also discussed in this article.

6.
Diabetes Metab Syndr Obes ; 15: 1687-1701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685248

RESUMEN

Background: Mutations in mitochondrial DNA (mtDNA) are associated with type 2 diabetes mellitus (T2DM). In particular, m.A3243G is the most common T2DM-related mtDNA mutation in many families worldwide. However, the clinical features and pathophysiology of m.A3243G-induced T2DM are largely undefined. Methods: Two pedigrees with maternally inherited T2DM were underwent clinical, molecular and biochemical assessments. The mtDNA genes were PCR amplified and sequenced. Mitochondrial adenosine triphosphate (ATP) and reactive oxygen species (ROS) were measured in polymononuclear leukocytes derived from three patients with both the m.A3243G and m.T14502C mutations, three patients with only the m.A3243G mutation and three controls without these mutations. Moreover, GJB2, GJB3 and GJB6 mutations were screened by PCR-Sanger sequencing. Results: Members of the two pedigrees manifestated variable clinical phenotypes including diabetes and hearing and vision impairments. The age at onset of T2DM varied from 31 to 66 years, with an average of 41 years. Mutational analysis of mitochondrial genomes indicated the presence of the m.A3243G mutation in both pedigrees. Matrilineal relatives in one of the pedigrees harbored the coexisting of m.A3243G and m.T14502C mutations. Remarkably, the m.T14502C mutation, which causes the substitution of a conserved isoleucine for valine at position 58 in ND6 mRNA, may affect the mitochondrial respiratory chain functions. Biochemical analysis revealed that cell lines bearing both the m.A3243G and m.T14502C mutations exhibited greater reductions in ATP levels and increased ROS production compared with those carrying only the m.A3243G mutation. However, we did not find any mutations in the GJB2, GJB3 and GJB6 genes. Conclusion: Our study indicated that mitochondrial diabetes is associated with the tRNALeu(UUR) A3243G and ND6 T14502C mutations.

7.
J Clin Lab Anal ; 36(4): e24298, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218233

RESUMEN

BACKGROUND: Sequence alternations in mitochondrial genomes, especially in genes encoding mitochondrial tRNA (mt-tRNA), were the important contributors to nonsyndromic hearing loss (NSHL); however, the molecular mechanisms remained largely undetermined. METHODS: A maternally transmitted Chinese pedigree with NSHL underwent clinical, genetic, and biochemical assessment. PCR and direct sequence analyses were performed to detect mitochondrial DNA (mtDNA), GJB2, and SLC26A4 gene mutations from matrilineal relatives of this family. Mitochondrial functions including mitochondrial membrane potential (MMP), ATP, and ROS were evaluated in polymononuclear leukocytes (PMNs) derived from three deaf patients and three controls from this pedigree. RESULTS: Four of nine matrilineal relatives developed hearing loss at the variable age of onset. Two putative pathogenic mutations, m.5601C>T in tRNAAla and m.12311T>C in tRNALeu(CUN) , were identified via PCR-Sanger sequencing, as well as 34 variants that belonged to mtDNA haplogroup G2b2. Intriguingly, m.5601C>T mutation resided at very conserved nucleotide in the TψC loop of tRNAAla (position 59), while the T-to-C substitution at position 12311 located at position 48 in the variable stem of tRNALeu(CUN) and was believed to alter the aminoacylation and the steady-state level of tRNA. Biochemical analysis revealed the impairment of mitochondrial functions including the significant reductions of ATP and MMP, whereas markedly increased ROS levels were found in PMNs derived from NSHL patients with m.5601C>T and m.12311T>C mutations. However, we did not detect any mutations in GJB2 and SLC26A4 genes. CONCLUSION: Our data indicated that mt-tRNAAla m.5601C>T and tRNALeu(CUN) 12311T>C mutations were associated with NSHL.


Asunto(s)
ARN de Transferencia de Alanina , ARN de Transferencia de Leucina , Humanos , Adenosina Trifosfato , Sordera , ADN Mitocondrial/genética , Mutación/genética , Especies Reactivas de Oxígeno
8.
Ir J Med Sci ; 191(2): 865-876, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34053002

RESUMEN

INTRODUCTION: Mutations in mitochondrial DNA (mtDNA) are the most important causes for Leber's hereditary optic neuropathy (LHON). Of these, three primary mtDNA mutations account for more than 90% cases of this disease. However, to date, little is known regarding the relationship between mitochondrial tRNA (mt-tRNA) variants and LHON. AIM: In this study, we aimed to investigate the association between mt-tRNA variants and LHON. METHODOLOGY: One hundred thirty-eight LHON patients lacking three primary mutations (ND1 3460G > A, ND4 11778Gxs > A, and ND6 14484 T > C), as well as 266 controls were enrolled in this study. PCR-Sanger sequencing was performed to screen the mt-tRNA variants. Moreover, the phylogenetic analysis, pathogenicity scoring system, as well as mitochondrial functions were performed. RESULTS: We identified 8 possible pathogenic variants: tRNAPhe 593 T > C, tRNALeu(UUR) 3275C > T, tRNAGln 4363 T > C, tRNAMet 4435A > G, tRNAAla 5587 T > C, tRNAGlu 14693A > G, tRNAThr 15927G > A, and 15951A > G, which may change the structural and functional impact on the corresponding tRNAs, and subsequently lead to a failure in tRNA metabolism. Furthermore, significant reductions in mitochondrial ATP and MMP levels and an overproduction of ROS were observed in cybrid cells containing these mt-tRNA variants, suggesting that these variants may lead to mitochondrial dysfunction which was responsible for LHON. CONCLUSION: Our study indicated that mt-tRNA variants were associated with LHON, and screening for mt-tRNA variants were recommended for early detection, diagnosis, and prevention of maternally inherited LHON.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , ADN Mitocondrial/genética , Humanos , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/patología , Filogenia , ARN de Transferencia/genética
9.
J Clin Lab Anal ; 36(1): e24102, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34811812

RESUMEN

BACKGROUND: Mitochondrial dysfunctions caused by mitochondrial DNA (mtDNA) pathogenic mutations play putative roles in type 2 diabetes mellitus (T2DM) progression. But the underlying mechanism remains poorly understood. METHODS: A large Chinese family with maternally inherited diabetes and deafness (MIDD) underwent clinical, genetic, and molecular assessment. PCR and sequence analysis are carried out to detect mtDNA variants in affected family members, in addition, phylogenetic conservation analysis, haplogroup classification, and pathogenicity scoring system are performed. Moreover, the GJB2, GJB3, GJB6, and TRMU genes mutations are screened by PCR-Sanger sequencing. RESULTS: Six of 18 matrilineal subjects manifested different clinical phenotypes of diabetes. The average age at onset of diabetic patients is 52 years. Screening for the entire mitochondrial genomes suggests the co-existence of two possibly pathogenic mutations: tRNATrp A5514G and tRNASer(AGY) C12237T, which belongs to East Asia haplogroup G2a. By molecular level, m.A5514G mutation resides at acceptor stem of tRNATrp (position 3), which is critical for steady-state level of tRNATrp . Conversely, m.C12237T mutation occurs in the variable region of tRNASer(AGY) (position 31), which creates a novel base-pairing (11A-31T). Thus, the mitochondrial dysfunctions caused by tRNATrp A5514G and tRNASer(AGY) C12237T mutations, may be associated with T2DM in this pedigree. But we do not find any functional mutations in those nuclear genes. CONCLUSION: Our findings suggest that m.A5514G and m.C12337T mutations are associated with T2DM, screening for mt-tRNA mutations is useful for molecular diagnosis and prevention of mitochondrial diabetes.


Asunto(s)
ADN Mitocondrial/genética , Sordera/genética , Diabetes Mellitus Tipo 2/genética , Enfermedades Mitocondriales/genética , Mutación/genética , ARN de Transferencia/genética , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
10.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774131

RESUMEN

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Asunto(s)
Metiltransferasas/metabolismo , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Anticodón , Proliferación Celular , Codón , Citoplasma , ADN Mitocondrial/metabolismo , Transporte de Electrón , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales , Proteínas Mitocondriales/química , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Ribosomas/metabolismo , Regulación hacia Arriba
11.
Eur J Med Genet ; 64(10): 104306, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34400372

RESUMEN

BACKGROUND: Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial disorder associated with variable penetrance and partial to full remission of symptoms. OBJECTIVE: To describe features of maternally related individuals with a novel variant associated with RIRCD. MATERIALS AND METHODS: Nine maternally related individuals aged 23 months to 64 years are described through physical examinations, muscle biopsies, histochemical and biochemical analyses, genome sequencing, and cerebral imaging. RESULTS: A homoplasmic mitochondrial transfer ribonucleic acid for glutamic acid (mt-tRNAGlu) m.14701C>T variant was identified in eight tested individuals out of nine maternally related individuals. Two individuals presented with hypotonia, muscle weakness, feeding difficulties and lactic acidosis at age 3-4 months, and improvement around age 15-23 months with mild residual symptoms at last examination. One individual with less severe symptoms had unknown age at onset and improved around age 4-5 years. Five individuals developed lipoma on the upper back, and one adult individual developed ataxia, while one was unaffected. CONCLUSIONS: We have identified a novel homoplasmic mt-tRNAGlu m.14701C>T variant presenting with phenotypic and paraclinical features associated with RIRCD as well as ataxia and lipomas, which to our knowledge are new features associated to RIRCD.


Asunto(s)
Heteroplasmia , Enfermedades Mitocondriales/genética , Penetrancia , ARN de Transferencia de Ácido Glutámico/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/patología , Mutación , Linaje
12.
PeerJ ; 9: e10651, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33552719

RESUMEN

Leber's Hereditary Optic Neuropathy (LHON) was a common maternally inherited disease causing severe and permanent visual loss which mostly affects males. Three primary mitochondrial DNA (mtDNA) mutations, ND1 3460G>A, ND4 11778G>A and ND6 14484T>C, which affect genes encoding respiratory chain complex I subunit, are responsible for >90% of LHON cases worldwide. Families with maternally transmitted LHON show incomplete penetrance with a male preponderance for visual loss, suggesting the involvement of secondary mtDNA variants and other modifying factors. In particular, variants in mitochondrial tRNA (mt-tRNA) are important risk factors for LHON. These variants decreased the tRNA stability, prevent tRNA aminoacylation, influence the post-transcriptionalmodification and affect tRNA maturation. Failure of mt-tRNA metabolism subsequently impairs protein synthesis and expression, folding, and function of oxidative phosphorylation (OXPHOS) enzymes, which aggravates mitochondrial dysfunction that is involved in the progression and pathogenesis of LHON. This review summarizes the recent advances in our understanding of mt-tRNA biology and function, as well as the reported LHON-related mt-tRNA second variants; it also discusses the molecular mechanism behind the involvement of these variants in LHON.

13.
Mitochondrial DNA B Resour ; 5(3): 3796-3801, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33367105

RESUMEN

According a recent report by Heidari et al., a mutational screening for candidate pathogenic mitochondrial tRNA (mt-tRNA) mutations were performed in 45 Iranian patients with non-dystrophic myotonia (NDM) and 70 control subjects. Through PCR amplification and direct sequence analysis, nine mt-tRNA mutations were identified: tRNAMet T4454C, tRNATrp A5568G, tRNACys T5794C, tRNAArg A10438T and T10462C, tRNALeu(CUN) A12308G, tRNAThr A15907G, A15924G and G15928A. However, through the database searches and phylogenetic conservation analysis, we noticed that the tRNAThr A15924G, G15928A and tRNALeu(CUN) A12308G mutations should be classified 'pathogenic'. Thus, the roles of mt-tRNA mutations in clinical expression of NDM needed to be further experimentally addressed.

14.
Mol Genet Metab ; 131(4): 398-404, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33279411

RESUMEN

Genetic defects in mitochondrial DNA encoded tRNA genes impair mitochondrial translation with resultant defects in the mitochondrial respiratory chain and oxidative phosphorylation system. The phenotypic spectrum of disease seen in mitochondrial tRNA defects is variable and proving pathogenicity of new variants is challenging. Only three pathogenic variants have been described previously in the mitochondrial tRNATyr gene MT-TY, with the reported phenotypes consisting largely of adult onset myopathy and ptosis. We report a patient with a novel MT-TY acceptor stem variant m.5889A>G at high heteroplasmy in muscle, low in blood, and absent in the mother's blood. The phenotype consisted of a childhood-onset severe multi-system disorder characterized by a neurodegenerative course including ataxia and seizures, failure-to-thrive, combined myopathy and neuropathy, and hearing and vision loss. Brain imaging showed progressive atrophy and basal ganglia calcifications. Mitochondrial biomarkers lactate and GDF15 were increased. Functional studies showed a deficient activity of the respiratory chain enzyme complexes containing mtDNA-encoded subunits I, III and IV. There were decreased steady state levels of these mitochondrial complex proteins, and presence of incompletely assembled complex V forms in muscle. These changes are typical of a mitochondrial translational defect. These data support the pathogenicity of this novel variant. Careful review of variants in MT-TY additionally identified two other pathogenic variants, one likely pathogenic variant, nine variants of unknown significance, five likely benign and four benign variants.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Musculares/genética , ARN de Transferencia/genética , Tirosina/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación/genética , Fosforilación Oxidativa , Fenotipo
15.
Genet Test Mol Biomarkers ; 24(3): 165-170, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32167396

RESUMEN

Aim: Pathogenic variants within mitochondrial tRNA and rRNA genes negatively affect protein synthesis function and cause oxidative phosphorylation defects. The majority of mitochondrial cytopathies are caused by pathogenic point variants within the mitochondrial tRNA gene for leucine (MT-TL1). This study was designed to evaluate a novel amplification-refractory mutation system (ARMS)-PCR based assay to screen patient samples with a clinical diagnosis of mitochondrial cytopathies. Methods: Tissue DNA samples from 219 affected individuals were screened for the pathogenic variants m.3271T>C, m.3291Ty >C, m.3303C>T, m.3256C>T, and m.3260A>G along with the most frequent m.3243A>G mutation in the MT-TL1 gene. The assay included a "High Resolution Melt curve analysis" to enhance detection limits. The precision of the assay was verified using synthetic controls with variant heteroplasmy ratios. Results: The screening identified the second reported m.3303C>T case as well as two patients with m.3243A>G variants and a rare variant exhibiting m.3290T>C. Conclusion: ARMS-PCR is superior to Sanger sequencing for the detection of variations exhibiting low heteroplasmy. These results provide "proof of concepts" for the implementation of this application for future screening of rare mtDNA variations in sample repositories.


Asunto(s)
Síndrome de Kearns-Sayre/genética , Miopatías Mitocondriales/genética , Reacción en Cadena de la Polimerasa/métodos , ARN de Transferencia de Leucina/genética , ADN Mitocondrial/genética , Femenino , Humanos , Síndrome de Kearns-Sayre/diagnóstico , Masculino , Mitocondrias/genética , Miopatías Mitocondriales/diagnóstico , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Prueba de Estudio Conceptual , ARN de Transferencia de Leucina/análisis , Sensibilidad y Especificidad
16.
Genet Med ; 22(5): 917-926, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31965079

RESUMEN

PURPOSE: To develop criteria to interpret mitochondrial transfer RNA (mt-tRNA) variants based on unique characteristics of mitochondrial genetics and conserved structural/functional properties of tRNA. METHODS: We developed rules on a set of established pathogenic/benign variants by examining heteroplasmy correlations with phenotype, tissue distribution, family members, and among unrelated families from published literature. We validated these deduced rules using our new cases and applied them to classify novel variants. RESULTS: Evaluation of previously reported pathogenic variants found that 80.6% had sufficient evidence to support phenotypic correlation with heteroplasmy levels among and within families. The remaining variants were downgraded due to the lack of similar evidence. Application of the verified criteria resulted in rescoring 80.8% of reported variants of uncertain significance (VUS) to benign and likely benign. Among 97 novel variants, none met pathogenic criteria. A large proportion of novel variants (84.5%) remained as VUS, while only 10.3% were likely pathogenic. Detection of these novel variants in additional individuals would facilitate their classification. CONCLUSION: Proper interpretation of mt-tRNA variants is crucial for accurate clinical diagnosis and genetic counseling. Correlations with tissue distribution, heteroplasmy levels, predicted perturbations to tRNA structure, and phenotypes provide important evidence for determining the clinical significance of mt-tRNA variants.


Asunto(s)
Mitocondrias , ARN de Transferencia , Humanos , Mitocondrias/genética , Fenotipo , ARN Mitocondrial/genética , ARN de Transferencia/genética
17.
Neuromuscul Disord ; 29(5): 358-367, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962064

RESUMEN

Chronic progressive external ophthalmoplegia (CPEO) is a frequent clinical manifestation of disorders caused by pathogenic mitochondrial DNA mutations. However, for diagnostic purposes skeletal muscle tissue is used, since extraocular muscle tissue is usually not available for work-up. In the present study we aimed to identify causative factors that are responsible for extraocular muscle to be primarily affected in CPEO. We performed comparative histochemical and molecular genetic analyses of extraocular muscle and skeletal muscle single fibers in a case of isolated CPEO caused by the heteroplasmic m.5667G>A mutation in the mitochondrial tRNAAsn gene (MT-TN). Histochemical analyses revealed higher proportion of cytochrome c oxidase deficient fibers in extraocular muscle (41%) compared to skeletal muscle (10%). However, genetic analyses of single fibers revealed no significant difference either in the mutation loads between extraocular muscle and skeletal muscle cytochrome c oxidase deficient single fibers (extraocular muscle 86% ±â€¯4.6%; skeletal muscle 87.8 %±â€¯5.7%, p = 0.246) nor in the mutation threshold (extraocular muscle 74% ±â€¯3%; skeletal muscle 74% ±â€¯4%). We hypothesize that higher proportion of cytochrome c oxidase deficient fibers in extraocular muscle compared to skeletal muscle might be due to facilitated segregation of the m.5667G>A mutation into extraocular muscle, which may explain the preferential ocular manifestation and clinically isolated CPEO.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculos Oculomotores/metabolismo , Oftalmoplejía Externa Progresiva Crónica/genética , Músculo Cuádriceps/metabolismo , ARN de Transferencia de Asparagina/genética , Adolescente , Deficiencia de Citocromo-c Oxidasa , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Inmunohistoquímica , Masculino , Fibras Musculares Esqueléticas/patología , Músculo Esquelético , Músculos Oculomotores/patología , Oftalmoplejía Externa Progresiva Crónica/metabolismo , Oftalmoplejía Externa Progresiva Crónica/patología , Músculo Cuádriceps/patología
18.
Curr Mol Med ; 19(2): 136-146, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854964

RESUMEN

BACKGROUND: Mutations in mitochondrial tRNA (mt-tRNA) genes have been found to be associated with both syndromic and non-syndromic hearing impairment. However, the pathophysiology underlying mt-tRNA mutations in clinical expression of hearing loss remains poorly understood. OBJECTIVE: The aim of this study was to explore the potential association between mttRNA mutations and hearing loss. METHODS AND RESULTS: We reported here the molecular features of a pedigree with maternally transmitted non-syndromic hearing loss. Among 12 matrilineal relatives, five of them suffered variable degree of hearing impairment, but none of them had any medical history of using aminoglycosides antibiotics (AmAn). Genetic screening of the complete mitochondrial genomes from the matrilineal relatives identified the coexistence of mt-tRNAHis G12192A and mt-tRNAThr G15927A mutations, together with a set of polymorphisms belonging to human mitochondrial haplogroup B5b1b. Interestingly, the G12192A mutation occurred 2-bp from the 3' end of the TψC loop of mt-tRNAHis, which was evolutionarily conserved from various species. In addition, the well-known G15927A mutation, which disrupted the highly conserved C-G base-pairing at the anticodon stem of mt-tRNAThr, may lead to the failure in mt-tRNA metabolism. Furthermore, a significant decreased in ATP production and an increased ROS generation were observed in polymononuclear leukocytes (PMNs) which were isolated from the deaf patients carrying these mt-tRNA mutations, suggested that the G12192A and G15927A mutations may cause mitochondrial dysfunction that was responsible for deafness. However, the absence of any functional mutations/variants in GJB2, GJB3, GJB6 and TRMU genes suggested that the nuclear genes may not play important roles in the clinical expression of non-syndromic hearing loss in this family. CONCLUSION: Our data indicated that mt-tRNAHis G12192A mutation may increase the penetrance and expressivity of deafness-associated m-tRNAThr G15927A mutation in this family.


Asunto(s)
Pueblo Asiatico/genética , Sordera/genética , Sordera/fisiopatología , Mitocondrias/genética , Mutación , ARN de Transferencia de Histidina/genética , ARN de Transferencia de Treonina/genética , Adulto , Secuencia de Bases , ADN Mitocondrial/análisis , Femenino , Genes Mitocondriales , Humanos , Masculino , Persona de Mediana Edad , Linaje , Penetrancia , Fenotipo
19.
Pediatr Neurol ; 80: 8-23, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29449072

RESUMEN

BACKGROUND: Given the etiologic heterogeneity of disease classification using clinical phenomenology, we employed contemporary criteria to classify variants associated with myoclonic epilepsy with ragged-red fibers (MERRF) syndrome and to assess the strength of evidence of gene-disease associations. Standardized approaches are used to clarify the definition of MERRF, which is essential for patient diagnosis, patient classification, and clinical trial design. METHODS: Systematic literature and database search with application of standardized assessment of gene-disease relationships using modified Smith criteria and of variants reported to be associated with MERRF using modified Yarham criteria. RESULTS: Review of available evidence supports a gene-disease association for two MT-tRNAs and for POLG. Using modified Smith criteria, definitive evidence of a MERRF gene-disease association is identified for MT-TK. Strong gene-disease evidence is present for MT-TL1 and POLG. Functional assays that directly associate variants with oxidative phosphorylation impairment were critical to mtDNA variant classification. In silico analysis was of limited utility to the assessment of individual MT-tRNA variants. With the use of contemporary classification criteria, several mtDNA variants previously reported as pathogenic or possibly pathogenic are reclassified as neutral variants. CONCLUSIONS: MERRF is primarily an MT-TK disease, with pathogenic variants in this gene accounting for ~90% of MERRF patients. Although MERRF is phenotypically and genotypically heterogeneous, myoclonic epilepsy is the clinical feature that distinguishes MERRF from other categories of mitochondrial disorders. Given its low frequency in mitochondrial disorders, myoclonic epilepsy is not explained simply by an impairment of cellular energetics. Although MERRF phenocopies can occur in other genes, additional data are needed to establish a MERRF disease-gene association. This approach to MERRF emphasizes standardized classification rather than clinical phenomenology, thus improving patient diagnosis and clinical trial design.


Asunto(s)
Síndrome MERRF , Humanos , Síndrome MERRF/clasificación , Síndrome MERRF/diagnóstico , Síndrome MERRF/genética , Síndrome MERRF/fisiopatología
20.
Neuromuscul Disord ; 28(4): 350-360, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29398297

RESUMEN

Chronic Progressive External Ophthalmoplegia (CPEO) is characterized by ptosis and ophthalmoplegia and is usually caused by mitochondrial DNA (mtDNA) deletions or mt-tRNA mutations. The aim of the present work was to clarify the genetic defect in a patient presenting with CPEO and elucidate the underlying pathogenic mechanism. This 62-year-old female first developed ptosis of the right eye at the age of 12 and subsequently the left eye at 45 years, and was found to have external ophthalmoplegia at the age of 55 years. Histopathological abnormalities were detected in the patient's muscle, including ragged-red fibres, a mosaic pattern of COX-deficient muscle fibres and combined deficiency of respiratory chain complexes I and IV. Genetic investigation revealed the "common deletion" in the patient's muscle and fibroblasts. Moreover, a novel, heteroplasmic mt-tRNASer(UCN) variant (m.7486G>A) in the anticodon loop was detected in muscle homogenate (50%), fibroblasts (11%) and blood (4%). Single-fibre analysis showed segregation with COX-deficient fibres for both genetic alterations. Assembly defects of mtDNA-encoded complexes were demonstrated in fibroblasts. Functional analyses showed significant bioenergetic dysfunction, reduction in respiration rate and ATP production and mitochondrial depolarization. Multilamellar bodies were detected by electron microscopy, suggesting disturbance in autophagy. In conclusion, we report a CPEO patient with two possible genetic origins, both segregating with biochemical and histochemical defect. The "common mtDNA deletion" is the most likely cause, yet the potential pathogenic effect of a novel mt-tRNASer(UCN) variant cannot be fully excluded.


Asunto(s)
ADN Mitocondrial/genética , Mutación/genética , Eliminación de Secuencia/genética , Succinato Deshidrogenasa/genética , Femenino , Humanos , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Succinato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA