Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260817

RESUMEN

Combinatorial library-based metabolic engineering approaches allow lower cost and faster strain development. We developed a genetic toolbox EXPRESSYALI for combinatorial engineering of the oleaginous yeast Yarrowia lipolytica. The toolbox enables consecutive rounds of engineering, where up to three combinatorially assembled gene expression cassettes can be integrated into each yeast clone per round. The cassettes are integrated into distinct intergenic sites or an open reading frame of a target gene if a simultaneous gene knockout is desired. We demonstrate the application of the toolbox by optimizing the Y. lipolytica to produce the red beet color betanin via six consecutive rounds of genome editing and screening. The library size varied between 24-360. Library screening was facilitated by automated color-based colony picking. In the first round, betanin pathway genes were integrated, resulting in betanin titer of around 20 mg/L. Through the following five consecutive rounds, additional biosynthetic genes were integrated, and the precursor supply was optimized, resulting in a titer of 70 mg/L. Three beta-glucosidases were deleted to prevent betanin deglycosylation, which led to a betanin titer of 130 mg/L in a small scale and a titer of 1.4 g/L in fed-batch bioreactors. The EXPRESSYALI toolbox can facilitate metabolic engineering efforts in Y. lipolytica (available via AddGene Cat. Nr. 212682-212704, Addgene kit ID # 1000000245).

2.
J Fluoresc ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954082

RESUMEN

The current study looks into the characterization and differentiation of mango juices that are sold commercially using fluorescence spectroscopy. The emission spectra displayed well-defined and prominent peaks that suggested the existence of many fluorophores, such as water content, ß-carotene, tartrazine food color, and chlorophyll components. For this study, water and yellow food coloring solution, the two most popular adulterants were added to pure and authenticated mango pulp that had been diluted to an 8% concentration. The fluorophore profile of the samples was ascertained by using multivariate analysis (principal component analysis) in conjunction with fluorescence spectroscopy. The findings showed that the existence of water content is directly correlated with the spectral bands at 444 and 467 nm, and for food color at 580 nm thus the best indicators to detect adulteration of high water contents and food color. Chlorophyll and ß-carotene intensities varied among juices, acting as a discriminant marker to distinguish between those with unripened pulp (high chlorophyll intensity) and those with more water and other pigments (lower chlorophyll and ß-carotene intensities). With fluorescence emission spectroscopy, qualitative assessment of mango juice can be quickly determined by spectral features, providing details on composition and quality.

3.
Food Sci Nutr ; 12(3): 1502-1527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455202

RESUMEN

Food characteristics like appearance and color, which are delicate parameters during food processing, are important determinants of product acceptance because of the growing trend toward more diverse and healthier diets worldwide, as well as the increase in population and its effects on food consumption. Cold plasma (CP), as a novel technology, has marked a new trend in agriculture and food processing due to the various advantages of meeting both the physicochemical and nutritional characteristics of food products with minimal changes in physical, chemical, nutritional, and sensorial properties. CP processing has a positive impact on food quality, including the preservation of natural food pigments. This article describes the influence of CP on natural food pigments and color changes in vegetables and fruits. Attributes of natural pigments, such as carotenoids, chlorophyll, anthocyanin, betalain, and myoglobin, are presented. In addition, the characteristics and mechanisms of CP processes were studied, and the effect of CP on mentioned pigments was investigated in recent literature, showing that the use of CP technology led to better preservation of pigments, improving their preservation and extraction yield. While certain modest and undesirable changes in color are documented, overall, the exposure of most food items to CP resulted in minor loss and even beneficial influence on color. More study is needed since not all elements of CP treatment are currently understood. The negative and positive effects of CP on natural food pigments in various products are discussed in this review.

4.
Food Chem ; 443: 138424, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301551

RESUMEN

The objective of this study is to find optimum conditions to valorize chestnut shell bioactive compounds with coloring pigments through microwave-assisted extraction. With this aim, response surface methodology with central composite design was used. Microwave power (800 W), extraction time (12 min) and solvent concentration (NaOH: 0.115 mol/L) were determined as the optimum conditions to maximize the responses like color value, total phenolic content and total antioxidant capacity. In the optimized extract (OE), characterization of brown melanin like pigments were assessed by Spectrophotometer, Fourier Transform Infrared Spectrometer and major phenolics were identified as; gallic acid, ellagic acid, protocatechuic acid, catechin, and epicatechin as 0.53, 0.48, 0.46, 0.46, 0.14 mg/g dried weight (dw) by High Performance Liquid Chromatography, respectively. In terms of antibacterial activity, OE inhibited the growth of Staphylococcus aureus. Consequently, chestnut shells were successfully processed into natural coloring agents that were possessing strong brown color properties as well as high bioactive potential.


Asunto(s)
Catequina , Extractos Vegetales , Extractos Vegetales/química , Microondas , Fenoles/análisis , Nueces/química , Solventes/química , Catequina/análisis
5.
Foods ; 12(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38002214

RESUMEN

The objective of this work was to develop a sustainable process for the extraction of anthocyanins from red cabbage byproducts using, for the first time, apple vinegar in extractant composition. Our results showed that the mixture 50% (v/v) ethanol-water, acidified with apple vinegar, used in the proportion of 25 g of red cabbage by-products per 100 mL of solvent, was the best solvent for the preparation of an anthocyanin extract with good stability for food applications. The chemical characterization of this extract was performed by FTIR, UV-VIS, HPLC-DAD, and ICP-OES. The stability was evaluated by determining the dynamics of the total polyphenol content (TPC) and the total monomeric anthocyanin pigment content (TAC) during storage. On the basis of the statistical method for analysis of variance (ANOVA), the standard deviation between subsamples and the repeatability standard deviation were determined. The detection limit of the stability test of TPC was 3.68 mg GAE/100 g DW and that of TAC was 0.79 mg Cyd-3-Glu/100 g DW. The red cabbage extract has high TPC and TAC, good stability, and significant application potential. The extracted residues, depleted of anthocyanins and polyphenols with potential allelopathic risks, fulfill the requirements for a fertilizing product and could be used for soil treatment.

6.
J Agric Food Chem ; 71(30): 11607-11614, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37437259

RESUMEN

Safety concerns in the food industry have increased the demand for natural food colorants. However, the application ranges of natural blue colorants are insufficient because they are scarce in nature, and the currently available natural blue dyes are limited to water-soluble products. In this study, we investigated a fat-soluble azulene derivative isolated from the mushroom Lactarius indigo as a potential candidate for a natural blue colorant. We developed its first total synthesis, where the azulene skeleton was constructed from a pyridine derivative and an ethynyl group was converted into an isopropenyl group using zirconium complexes. Moreover, nanoparticles of the azulene derivative were prepared via reprecipitation method, and their colorant ability was investigated in aqueous solutions. The new candidate food colorant exhibited a deep-blue color in an organic solvent and aqueous dispersion.


Asunto(s)
Azulenos , Colorantes de Alimentos , Colorantes de Alimentos/análisis , Colorantes , Agua
7.
Curr Top Med Chem ; 23(14): 1380-1393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36650651

RESUMEN

Food color additives are used to make food more appetizing. The United States Food and Drug Administration (FDA) permitted nine artificial colorings in foods, drugs, and cosmetics, whereas the European Union (EU) approved five artificial colors (E-104, 122, 124, 131, and 142) for food. However, these synthetic coloring materials raise various health hazards. The present review aimed to summarize the toxic effects of these coloring food additives on the brain, liver, kidney, lungs, urinary bladder, and thyroid gland. In this respect, we aimed to highlight the scientific evidence and the crucial need to assess potential health hazards of all colors used in food on human and nonhuman biota for better scrutiny. Blue 1 causes kidney tumor in mice, and there is evidence of death due to ingestion through a feeding tube. Blue 2 and Citrus Red 2 cause brain and urinary bladder tumors, respectively, whereas other coloring additives may cause different types of cancers and numerous adverse health effects. In light of this, this review focuses on the different possible adverse health effects caused by these food coloring additives, and possible ways to mitigate or avoid the damage they may cause. We hope that the data collected from in vitro or in vivo studies and from clinical investigations related to the possible health hazards of food color additives will be helpful to both researchers and the food industry in the future.


Asunto(s)
Colorantes de Alimentos , Animales , Humanos , Ratones , Aditivos Alimentarios/efectos adversos , Colorantes de Alimentos/efectos adversos , Hígado , Estados Unidos , United States Food and Drug Administration
8.
Food Sci Technol Int ; 29(1): 50-61, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34779305

RESUMEN

Enzymatic browning is a major problem in minimally processed banana puree; it reduces consumer's acceptability and affects nutritional quality. The objective of this work was to evaluate the effects ultrasound (40 kHz/10 min), microwave (800 W/ 25 s) and UV-C radiation (1.97 kJ/m2) applied to banana puree. Colour parameters (L*, a*, b*, chroma and hue), browning index (BI), polyphenol oxidase (PPO) and peroxidase (POD) activities, total phenolic compounds (TPC), antioxidant capacity (AOC) and microbiological counts were monitored throughout storage at 4 °C. Ultrasound (US) and microwave (MW) treatments achieved a significant (p < 0.05) reduction in PPO activity and BI; moreover, ultrasound effectively retained phenolic compounds content (75% of initial value). The AOC was in coincidence with TPC values. POD activity was partially inhibited by UV-C while MW and US increase its activity. Although UV-C treatment was not effective to control browning development, it was effective to maintain microbiological stability after 20 days of storage (1.48 ± 0.01 log CFU/g). The evaluated treatments have the advantage of being less aggressive than conventional thermal treatments while maintaining fresh characteristics of the product.


Asunto(s)
Musa , Microondas , Rayos Ultravioleta , Ultrasonido , Catecol Oxidasa , Antioxidantes , Fenoles/análisis
9.
J Food Sci ; 88(S1): 5-20, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36579463

RESUMEN

While there has long been public concern over the use of artificial/synthetic food colors, it should be remembered that food and drink products (e.g., red wine) have been purposefully colored for millennia. This narrative historical review highlights a number of reasons that food and drink have been colored, including to capture the shopper's visual attention through to signaling the likely taste/flavor. Over the course of the last century, there has, on occasion, also been interest in the playful, or sometimes even deliberately discombobulating, use of food coloring by modernist chefs and others. The coloring (or absence of color) of food and drink can, though, sometimes also take on more of a symbolic meaning, and, in a few cases, specific food colors may acquire a signature, or branded (i.e., semantic) association. That said, with food color being associated with so many different potential "meanings," it is an open question as to which meaning the consumer will associate with any given instance of color in food, and what role context may play in their decision. Laboratory-based sensory science research may not necessarily successfully capture the full range of meanings that may be associated with food color in the mind of the consumer. Nevertheless, it seems likely that food color will continue to play an important role in dictating consumer behavior in the years to come, even though the visual appearance of food is increasingly being mediated via technological means, including virtual and augmented reality.


Asunto(s)
Colorantes de Alimentos , Alimentos , Color , Comportamiento del Consumidor , Percepción del Gusto
10.
Food Chem ; 372: 131233, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34624780

RESUMEN

3-Deoxyanthocyanins (3DXA) are of interest as food colorants but readily precipitated in aqueous solutions, limiting their potential applications. This work investigated ability of gum arabic vs alginate to stabilize 3DXA in aqueous systems and mechanisms involved. Apigeninidin and luteolinidin, and sorghum extracts dominant in these compounds, API-EX and LUT-EX, respectively, were prepared in pH 3 and 5 polysaccharide solutions (0.5-1.0 g/L), and colloidal properties and 10-week stability measured. Alginate equally stabilized both pigments at pH 5 (75% retention), but only LUT-EX at pH 3 (65%); viscosity and H-bonding contributed to the effects. By contrast, gum arabic highly stabilized API-EX (100%, pH 5), but not LUT-EX. Gum arabic formed a stable complex with apigeninidin via hydrophobic encapsulation, but much weaker complex with luteolinidin due to its more hydroxylated B-ring. Structure of 3DXA is critical to its interaction with hydrocolloids, thus pigment profile must be considered when selecting stabilizing polysaccharides.


Asunto(s)
Colorantes de Alimentos , Sorghum , Alginatos , Goma Arábiga , Viscosidad
11.
Food Res Int ; 148: 110612, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507756

RESUMEN

Sorghum derived 3-deoxyanthocyanins (3-DXA) are of growing interest as natural food colors due to their unique stability compared to anthocyanins, but are generally difficult to extract. Microwave-assisted extraction (MAE) can dramatically improve extraction efficiency of 3-DXA from sorghum tissue. However, condensed tannins common in some sorghums could impact MAE extractability and color properties of 3-DXA. The objective of this work was to determine how presence of condensed tannins affect MAE extractability, stability, and color properties of sorghum 3-DXA. Sorghums of varying 3-DXA profile and tannin content, as well as purified tannins, were subjected to MAE and pigment yield and profile, aqueous color properties and stability at pH 1 - 5 monitored over time using, UV-vis spectroscopy, colorimetry, and UPLC-MS. The relative yield of 3-DXA from tannin sorghums was higher (3 - 10-fold) after MAE than from non-tannin sorghum (2-fold). During MAE, condensed tannins underwent extensive oxidative depolymerization to anthocyanidins (cyanidin and 7-O-methylcyanidin), which caused the tannin-sorghum pigment extracts to have a redder hue (12-43H°) compared to the non-tannin pigment extract (58H°). The tannin-derived anthocyanidins transformed over time into xanthylium pigments, resulting in increased extract H°. Tannins enhanced both color intensity (pH 1) and stability (pH 3-5) of the 3-DXA over 14 days, indicating they acted as copigments. The presence of tannins in sorghum enhances MAE extractability of 3-DXA from sorghum tissue, and could also potentially enhance their functionality in aqueous food systems. However, the initial changes in extract hue properties due to tannin-derived anthocyanidins should be considered.


Asunto(s)
Sorghum , Taninos , Antocianinas/análisis , Cromatografía Liquida , Microondas , Espectrometría de Masas en Tándem
12.
J Food Sci Technol ; 58(6): 2325-2336, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33967329

RESUMEN

The application of numerical methods on one hand and simulation of various food processing techniques on the other hand could be effective methods in the process optimization such as reducing energy consumption and processing time and increasing product quality. The objective of this study was to apply variable air temperatures during drying process of garlic slices while reducing the drying time and maintaining the highest possible quality of the dried product. Therefore, drying process was simulated based on the numerical methods, and the proper time to change the air temperature was predicted using the product temperature profile. A high air temperature was applied at the beginning of the drying process (70 °C) and then during the process the temperature was decreased (50 °C) in a way that that the product surface temperature was never increased more than the critical temperature of 50 °C. The result of simulation was validated based on experiments at various drying conditions such as air temperature of 50, 60 and 70 °C and slice thickness of 2.5 mm. Based on the results of the study, by applying the variable air temperatures during drying process on samples, the drying time was reduced by 24% and the color quality of the samples was preserved. The final product produced by this method had higher quality (total color changes is 3.278) compared to the products dried at the higher constant temperature of 70 °C (total color changes is 6.71).

13.
Food Chem ; 350: 129197, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33618098

RESUMEN

A fluorescent assay for the selective analysis of tartrazine was developed. Tartrazine is a health-threatening food additive commonly used as fake saffron. An optical nanosensor was fabricated based on molecular imprinting technique in which carbon dots (CDs) as fluorophores and tartrazine as a template molecule were embedded in molecularly imprinted polymer (MIP) matrix. The synthesized CDs embedded in MIP (CDs-MIP) was characterized by various methods. The fluorescence intensity of (CDs-MIP) was selectively quenched in the presence of tartrazine in comparison with other similar food color additives. The correlation between the quenching of CD-MIP and the concentration of tartrazine was used as an optical sensing for rapid detection of tartrazine in the range of 3.3-20.0 nM (1.8-10.7 µg L-1) with detection limit of 1.3 nM (0.70 µg L-1). Eventually, the designed nanosensor was successfully applied for tartrazine detection in foodstuffs such as fake saffron, saffron tea and saffron ice cream samples.


Asunto(s)
Crocus/química , Contaminación de Alimentos/análisis , Límite de Detección , Nanotecnología/instrumentación , Dispositivos Ópticos , Tartrazina/análisis , Carbono/química , Colorantes Fluorescentes/química , Impresión Molecular , Control de Calidad
14.
Saudi J Biol Sci ; 28(1): 27-34, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424279

RESUMEN

Nutritional risk in children is associated with food safety. This is the first study to identify the food type consumed by 6-17-year-old school-going children in Saudi Arabia. Eight permitted artificial food color additives, including Tartrazine (E102), Sunset Yellow (E110), Carmoisine (E122), Allura Red (E129), Indigo Carmine (E132), Brilliant Blue (E133), Fast Green (E143), and Black PN (E151), and two non-permitted ones, Erythrosine (E127) and Red 2G (E128), were determined using 24-h dietary recall questionnaires. Artificial color additives in 839 food products were divided into nine categories, including biscuits, cakes, chocolates, chips, ice cream, juices and drinks, candy, jelly, and chewing gum, are determined using high performance liquid chromatography and diode array detector. The results indicated a high intake of juices and drinks, ice cream, and cakes, but low consumption of chewing gum among school-going children. Among the permitted artificial food color additives, Brilliant Blue (E133) (54.1%) and Tartrazine (E102) (42.3%) were the most commonly used. Sunset Yellow (E110) in one chocolate sample, Tartrazine (E102) and Sunset Yellow (E110) in one and two juice and drink samples, respectively, and Brilliant Blue (E133) in two candy samples exceeded the permitted level. Therefore, further investigations are needed to provide insights into the possible adverse health effects of high intake of these additives in artificial food coloring on the test population are warranted.

15.
Molecules ; 25(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352910

RESUMEN

Consumers and regulations encourage the use of naturally derived food colorants. Anthocyanins (ACN), plant pigments, are unstable in foods. In aged red wines, ACN with a free hydroxyl group at C-5 condenses to form pyranoanthocyanins (PACN), which are more stable but form inefficiently. This study attempted to produce PACN efficiently using high cofactor concentration and heat. Elderberry anthocyanins were semi-purified and caffeic acid (CA) was dissolved in 15% ethanol and diluted with a buffer to achieve ACN:CA molar ratios of 1:50, 1:100, 1:150, and 1:200, then incubated at 65 °C for 5 days. The effect of temperature was tested using ACN samples incubated with or without CA at 25 °C, 50 °C, and 75 °C for 7 days. Compositional changes were monitored using uHPLC-PDA-MS/MS. Higher CA levels seemed to protect pigment integrity, with ACN:CA 1:150 ratio showing the highest tinctorial strength after 48 h. PACN content growth was fastest between 24 and 48 h for all ACN:CA ratios and after 120 h, all ACN had degraded or converted to PACN. PACN formed faster at higher temperatures, reaching ~90% PACN in 24 h and ~100% PACN in 48 h at 75 °C. These results suggest that PACN can form efficiently from elderberry ACN and CA if heated to produce more stable pigments.


Asunto(s)
Antocianinas/síntesis química , Productos Biológicos/síntesis química , Ácidos Cafeicos/química , Colorantes de Alimentos/síntesis química , Sambucus nigra/química , Temperatura , Antocianinas/química , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Colorantes de Alimentos/química , Espectrometría de Masas en Tándem
16.
Front Psychol ; 11: 595788, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343466

RESUMEN

It is well known that the appearance of food, particularly its color, can influence flavor perception and identification. However, food studies involving the manipulation of product color face inevitable limitations, from extrinsic flavors introduced by food coloring to the cost in development time and resources in order to produce different product variants. One solution lies in modern virtual reality (VR) technology, which has become increasingly accessible, sophisticated, and widespread over the past years. In the present study, we investigated whether making a coffee look milkier in a VR environment can alter its perceived flavor and liking. Thirty-two United Kingdom (UK) consumers were given four samples of black cold brew coffee at 4 and 8% sucrose concentration. They wore VR headsets throughout the study and viewed the same coffee in a virtual setting. The color of the beverage was manipulated in VR, such that participants saw either a dark brown or light brown liquid as they sipped the coffee. A full factorial design was used so that each participant tasted each sweetness x color combination, Participants reported sweetness, creaminess, and liking for each sample. Results revealed that beverage color as viewed in VR significantly influenced perceived creaminess, with the light brown coffee rated to be creamier than dark brown coffee. However, beverage color did not influence perceived sweetness or liking. The present study supports the role of VR as a means of conducting food perception studies, either to gain a better understanding of multisensory integration, or, from an industry perspective, to enable rapid product testing when it may be time-intensive or costly to produce the same range of products in the real-world. Furthermore, it opens potential future opportunities for VR to promote healthy eating behavior by manipulating the visual appearance of foods.

17.
J Agric Food Chem ; 67(44): 12273-12282, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31610122

RESUMEN

Solid lipid nanoparticles (SLNs) containing up to 37.5 wt % all-trans ß-carotene in the lipid phase are potential water-dispersible food colorants. SLNs have been made by hot-melt high-pressure homogenization with fully hydrogenated sunflower oil and with polysorbate 80 and sunflower lecithin as stabilizers. Atomic force microscopy revealed the SLNs had thin platelet structures most likely derived from the triglyceride crystal ß-form, as detected by X-ray diffraction. No indications of crystalline ß-carotene were detected. High-performance liquid chromatography analysis showed the extensive isomerization of ß-carotene into more than 10 cis isomers, suggesting that it is present as an amorphous mixture. The high ß-carotene loadings did not affect the triglyceride crystal structure and the morphology of the SLNs. It is suggested the SLNs consist of a platelet core of crystalline triglyceride surrounded by an amorphous ß-carotene-containing layer. The layered structure is suggested to affect the coloring power of the SLNs at ß-carotene loadings above 15 wt % of the lipid phase.


Asunto(s)
Portadores de Fármacos/química , Lípidos/química , Nanopartículas/química , Aceite de Girasol/química , beta Caroteno/química , Rastreo Diferencial de Calorimetría , Composición de Medicamentos , Tamaño de la Partícula , Polisorbatos/química , Solubilidad , Difracción de Rayos X
18.
Regul Toxicol Pharmacol ; 108: 104479, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31539566

RESUMEN

Sunset Yellow FCF was tested for 28-days in male Hsd:SD® rats for its potential effect on sperm quality parameters at dietary concentrations of 6,000, 12,000 and 18,000 ppm, corresponding to target doses of 500, 1000, and 1500 mg/kg bw/day. The measured average daily intake was 490, 944, and 1,475 mg/kg bw/day, based on feed consumption and stability of Sunset Yellow FCF in the diet. The animals fed diets with Sunset Yellow FCF presented no clinical signs of toxicity and no differences in feed consumption, body weights, organ weights, ophthalmology, hematology, clinical chemistry, urinalysis, or coagulation parameters that were considered adverse. No mortality or abnormalities were observed at necropsy, and no microscopic changes were observed in histopathology. Increased testes weights relative to body weight in animals of the middle and high intake groups were not associated with any abnormal findings in histopathology. Sperm quality evaluation presented no adverse effects on sperm motility, epididymal sperm count, homogenization-resistant spermatid count, or sperm morphological development. Therefore, in the absence of any adverse effects under the conditions of this study, the NOAEL for Sunset Yellow FCF was 1,475 mg/kg bw/day in male rats, corresponding to 18,000 ppm in the diet.


Asunto(s)
Compuestos Azo/toxicidad , Colorantes de Alimentos/toxicidad , Espermatozoides/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Masculino , Nivel sin Efectos Adversos Observados , Ratas Sprague-Dawley , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Espermatozoides/fisiología
19.
Food Chem ; 293: 15-22, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31151595

RESUMEN

High consumer demand has led global food color manufacturers and food companies to dramatically increase the development and use of natural colors. We have previously reported that avocado (Persea americana) seeds, when crushed in the presence of air, develop a red-orange color in a polyphenol oxidase-dependent reaction. The objective of this study was to identify the major colored compound in colored avocado seed extract (CASE). Column chromatography and high performance liquid chromatography were used to isolate the most abundant colored compound in CASE. This compound, henceforth referred to as perseorangin, was a yellow-orange solid. Structural analysis was performed using high-resolution mass spectrometry, and infrared and nuclear magnetic resonance spectroscopy. We determined that perseorangin is a glycosylated benzotropone-containing compound with a molecular formula of C29H30O14. Liquid chromatography with electrospray ionization mass spectrometry-based metabolomic analysis of CASE and uncolored avocado seed extract showed that perseorangin was unique to CASE.


Asunto(s)
Persea/química , Pigmentos Biológicos/análisis , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Conformación Molecular , Persea/metabolismo , Pigmentos Biológicos/aislamiento & purificación , Extractos Vegetales/química , Análisis de Componente Principal , Semillas/química , Semillas/metabolismo , Espectrometría de Masa por Ionización de Electrospray
20.
Front Nutr ; 6: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30891448

RESUMEN

Developing new colors for the food industry is challenging, as colorants need to be compatible with a food flavors, safety, and nutritional value, and which ultimately have a minimal impact on the price of the product. In addition, food colorants should preferably be natural rather than synthetic compounds. Micro-organisms already produce industrially useful natural colorants such as carotenoids and anthocyanins. Microbial food colorants can be produced at scale at relatively low costs. This review highlights the significance of color in the food industry, why there is a need to shift to natural food colors compared to synthetic ones and how using microbial pigments as food colorants, instead of colors from other natural sources, is a preferable option. We also summarize the microbial derived food colorants currently used and discuss their classification based on their chemical structure. Finally, we discuss the challenges faced by the use and development of food grade microbial pigments and how to deal with these challenges, using advanced techniques including metabolic engineering and nanotechnology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA