Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Foods ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272464

RESUMEN

This study investigated the effects of incorporating sprouted chickpeas, at a 25% enrichment level, into bread production as either grits (90% of particles ≥500 µm) or flour (90% of particles ≤250 µm). The focus was to investigate the role of particle size on dough and bread. In addition to the functional, mixing and pasting properties of ingredients, gluten aggregation, mixing, extensional, leavening, and pasting properties of the blends were assessed during bread-making, as well as bread volume and texture. Chickpea particle size influenced water absorption capacity (1.8 for grits vs. 0.75 g/g for flour) and viscosity (245 for grits vs. 88 BU for flour), with flour showing a greater decrease in both properties. With regard to dough properties, dough development time (16.6 vs. 5.3 min), stability (14.6 vs. 4.6 min), and resistance to extension (319 vs. 235 BU) was higher, whereas extensibility was lower (105 vs. 152 mm) with grits, compared to flour. During bread-making, grits resulted in a higher specific volume (2.5 vs. 2.1 mL/g) and softer crumb (6.2 vs. 17.4 N) at all the considered storage times. In conclusion, sprouted chickpea grits can be effectively used as a new ingredient in bread-making favouring the consumption of chickpea, without compromising product quality.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38393579

RESUMEN

New xylanase (XylUS570) was purified from the Bacillus pumilus US570 strain. It has a molecular mass of about 232 kDa. This is the first report on the highest molecular weight monomeric xylanase produced by bacteria. The optimum pH and temperature recorded for enzyme activity were 7 and 55 °C, respectively with a half-life time of 10 min at 60 °C. At 37 °C, the enzyme retains more than 50% of its activity at a pH ranging from 6 to 9.5 for 24 h. The XylUS570 exhibited a high activity on xylan, but no activity was detected for cellulosic substrates. The Vmax and Km values exhibited by the purified enzyme on beechwood xylan were 37.05 U mL-1 and 4.189 mg mL-1, respectively. The XylUS570 was used in banana and orange peels hydrolysis and showed potential efficiency to liberate reducing sugars. It could be a good candidate for bio-ethanol production from fruit waste. The purified enzyme was used also as an additive in breadmaking. A decrease in water absorption, an increase in dough rising and improvements in volume and specific volume of the bread were recorded.

3.
Foods ; 13(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338595

RESUMEN

In this study, the morpho-textural features, total phenolic content (TPC), and antioxidant capacity (AOC) of bread fortified with olive (Olea europaea L.) pomace were evaluated. Fresh olive pomace was subjected to microbiological and chemical (TPC, AOC, and fiber) analyses; then, the same olive pomace was analyzed during 1 to 6 months of storage at 4 °C or -20 °C. All olive pomace samples were used in 10%, 15%, or 20% amounts to produce type 0 soft wheat (Triticum aestivum) and whole wheat bread samples. The volatile organic compounds (VOCs) in the bread samples were also analyzed to assess the effect of the addition of the olive pomace on the flavor profile of the baked products. The TPC and AOC evaluation of olive pomace showed no differences among the analyzed samples (fresh, refrigerated, or frozen). Regarding the bread containing olive pomace, the specific volume was not affected by the amount or the storage methods of the added pomace. Bread samples produced with soft wheat flour showed the lowest hardness values relative to those produced with whole wheat flour, irrespective of the amount or storage method of the olive pomace. Regarding color, the crust and crumb of the bread samples containing 20% olive pomace were significantly darker. The bread samples containing 20% olive pomace had the highest TPC. The bread samples with fresh olive pomace were characterized by terpenoids, ketones, and aldehydes, whereas the bread samples containing refrigerated olive pomace were characterized by alcohols (mainly ethanol), acids, esters, and acetate. Finally, the bread samples with frozen olive pomace showed a volatile profile similar to that of bread produced with fresh olive pomace. Olive pomace was shown to be a suitable ingredient for producing bread with high nutritional value.

4.
Annu Rev Food Sci Technol ; 15(1): 265-282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38271645

RESUMEN

Using sourdough in breadmaking can enhance bread's shelf-life and flavor compared to exclusive baker's yeast use and is believed to increase its nutritional quality and healthiness. Previous research established insight into the microbial ecology of sourdough, but the link between leavening agent use, processing, and bread quality remains elusive. However, such knowledge is key for standardization, research on the health benefits, and the definition of sourdough bread. In this systematic scoping review, we analyzed 253 studies and identified large variations in the type and amount of leavening agent, fermentation conditions, and bread quality (specific loaf volume and acidification). The interrelation between these elements and their effect on the extent of fermentation is discussed, together with issues preventing proper comparison of breadmaking procedures. With this review, we want to contribute to the dialogue concerning the definition of sourdough-type bread products and the research into the health benefits attributed to them.


Asunto(s)
Pan , Fermentación , Triticum , Pan/microbiología , Manipulación de Alimentos , Humanos , Microbiología de Alimentos , Gusto , Valor Nutritivo
5.
Metabolites ; 14(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38248838

RESUMEN

Germination is a simple and cost-effective technology that enhances the technological, sensory, and nutritional potential of grains, making them more attractive for use in the food industry. Germinating indigenous seeds is an alternative to increase noticeability and add value to these grains, which hold social and economic significance in the regions where they are cultivated, such as creole purple pericarp corn (PPCC) from the Couto Magalhães de Minas region in Brazil. This study aimed to optimize the germination parameters of time (24-96 h) and temperature (18-32 °C) for PPCC to produce water-soluble extracts and bread. Endogenous enzymes resulting from the germination process significantly enhanced (p < 0.10) the technological (total reducing sugars, total soluble solids, and soluble proteins) and biological properties (γ-aminobutyric acid, total soluble phenolic compounds, and antioxidant capacity) of the water-soluble extracts. The optimum point for obtaining the extracts was found to be at 85.3 h at 30.46 °C (with desirability of 90.42%), and this was statistically validated. The incorporation of germinated PPCC flours into bread was also promising (p < 0.10) and had a positive impact on the dough property (dough volume increase) and the final product, especially in terms of instrumental texture (springiness, cohesiveness, gumminess, chewiness, and resilience), resulting in a softer texture (lower firmness and hardness). The addition of PPCC flours did not alter instrumental color parameters, which may lead to greater consumer acceptance due to imperceptible differences in color to untrained individuals, with the optimized point at 96 h at 29.34 °C, with a desirability of 92.60%. Therefore, germinated PPCC shows promise for use as a base for obtaining water-soluble extracts and in bread as a replacement for commercial flour improvers, while also adding value to a raw material that is part of the local culture and agrobiodiversity.

6.
Adv Mater ; 36(2): e2309719, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985138

RESUMEN

Stem cell-based therapies have exhibited significant promise in the treatment of diabetic ulcers (DU). Nevertheless, enhancing the survival rate and functionality of transplanted stem cells poses a substantial challenge. In this study, inspired by the breadmaking process, yeast microcarriers (YMC) are devised as vehicles for stem cells to address these challenges. The fabrication of YMC involves the amalgamation of microfluidic emulsification with yeast-mediated fermentation, yielding microcarriers with outstanding biocompatibility, high porosity, and antioxidant activity. Adipose-derived stem cells (ADSCs) seeded onto YMC display remarkable cell viability and retain their cellular functions effectively. Additionally, YMC boast a rich glutathione content and exhibit remarkable ROS scavenging ability, thus shielding the ADSCs from oxidative stress. In vivo experiments further substantiate that ADSC@YMC implementation significantly lowered ROS levels in diabetic wounds, resulting in enhanced stem cell retention and improved angiogenesis, collagen deposition, and tissue regeneration. These results highlight the potential of ADSC@YMC as a promising platform for delivering stem cell in the treatment of diabetic wounds.


Asunto(s)
Antioxidantes , Diabetes Mellitus , Humanos , Saccharomyces cerevisiae , Porosidad , Especies Reactivas de Oxígeno , Células Madre , Diabetes Mellitus/terapia , Tejido Adiposo
7.
Foods ; 12(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685113

RESUMEN

BACKGROUND: Sour cassava starch is used as an alternative to wheat flour in breadmaking. However, its nutritional and technological properties are limited. To remedy this, the use of legumes has proved to be very successful. Thus, the present study aimed to determine the optimal condition for the production of bread made from sour cassava starch, peanut, cowpea and soybean flour. METHODS: The I-optimal design was employed to obtain an optimal proportion of the mixture with the variables sour cassava starch, cowpea, soy and peanut flour. The responses evaluated were overall acceptability, specific volume and protein content. RESULTS: It resulted that the incorporation of sour cassava starch positively influenced the volume but negatively influenced the protein content and overall acceptability. While the addition of legumes increased protein content and overall consumer acceptability, the specific volume was reduced. The optimal proportions of sour cassava starch, cowpea, soybean and peanut flour were 64.11%, 18.92%, 0% and 16.96%, respectively. Under this condition, it led to a desirability of 1, specific volume of 1.35, overall acceptability of 6.13, protein content of 9.72%, carbohydrate content of 67.89%, fat content of 9.39%, fiber content of 2.10% and ash content of 1.04%. CONCLUSIONS: The findings suggest that cowpea and peanut can be used for the improvement of the technological, nutritional and sensory properties of sour cassava starch bread and thus increase its consumption and application in the food processing industry.

8.
Foods ; 12(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37627995

RESUMEN

Spelt wheat (Triticum aestivum L. ssp. spelta Thell.) is an ancient wheat that has been widely cultivated for hundreds of years. Recently, this species has been neglected in most of Europe; however, the desire for more natural and traditional foods has driven a revival of the crop. In the current study, eighty-eight traditional spelt genotypes from Spain, together with nine common wheat cultivars and one modern spelt (cv. Anna Maria) were grown during a period of two years in Andalucia (southern Spain). In each, several traits were measured in to evaluate their milling, processing, and end-use quality (bread-making). The comparison between species suggested that, in general, spelt and common wheat showed differences for most of the measured traits; on average, spelt genotypes had softer grains, higher protein content (14.3 vs. 11.9%) and gluten extensibility (alveograph P/L 0.5 vs. 1.8), and lower gluten strength (alveograph W 187 vs. 438 × 10-4 J). In the baking test, both species showed similar values. Nevertheless, the analysis of this set of spelt genotypes showed a wide range for all measured traits, with higher values than common wheat in some spelt genotypes for some traits. This opens up the possibility of using these materials in future breeding programs, to develop either new spelt or common wheat cultivars.

9.
J Sci Food Agric ; 103(15): 7664-7672, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37458104

RESUMEN

BACKGROUND: Nitrogen fertiliser is the major input and cost for wheat production, being required to support the development of the canopy to maximise yield and for the synthesis of the gluten proteins that are necessary for breadmaking. Consequently, current high-yielding cultivars require the use of nitrogen fertilisation levels above the yield optimum to achieve the grain protein content needed for breadmaking. This study aimed to reduce this requirement by identifying traits that allow the use of lower levels of nitrogen fertiliser to produce wheat for breadmaking. RESULTS: A range of commercial wheat genotypes (cultivars) were grown in multiple field trials (six sites over 3 years) in the UK with optimal (200 kg Ha-1 ) and suboptimal (150 kg Ha-1 ) application of nitrogen. Bulked grain samples from four sites per year were milled and white flours were baked using three types of breadmaking process. This identified five cultivars that consistently exhibited good breadmaking quality when grown with the lower nitrogen application. Chemical and biochemical analyses showed that the five cultivars were characterised by exhibiting grain protein deviation (GPD) and high dough elasticity. CONCLUSIONS: It is possible to develop novel types of wheat that exhibit good breadmaking quality by selecting for GPD and high dough strength. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Proteínas de Granos , Triticum/química , Nitrógeno/metabolismo , Fertilizantes , Pan/análisis , Fertilización
10.
Foods ; 12(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37444354

RESUMEN

Focus on local food production and supply chains has heightened in recent years, as evidenced and amplified by the COVID-19 pandemic. This study aimed to assess the suitability of soft red winter (SRW) wheat breeding lines for local artisan bakers interested in locally sourced, strong gluten wheat for bread. Seventy-six genotyped SRW wheat breeding lines were milled into whole wheat flour and baked into small loaves. Bread aroma, flavor, and texture were evaluated by a sensory panel, and bread quality traits, including sedimentation volume, dough extensibility, and loaf volume, were measured to estimate heritability. SE-HPLC was performed on white flour, and breeding lines were characterized for different protein fraction ratios. Heritability of loaf volume was moderately high (h2 = 0.68), while heritability of sedimentation volume, a much easier trait to measure, was slightly lower (h2 = 0.55). Certain protein fraction ratios strongly related to loaf volume had high heritability (h2 = 0.7). Even though only a moderate heritability estimate of dough extensibility was found in our study, high positive correlations were found between this parameter and sedimentation volume (r = 0.6) and loaf volume (r = 0.53). This low-input and highly repeatable parameter could be useful to estimate dough functionality characteristics. Flavor and texture heritability estimates ranged from 0.16 to 0.37, and the heritability estimate of aroma was not significantly different from zero. However, the sensorial characteristics were significantly correlated with each other, suggesting that we might be able to select indirectly for aroma by selecting for flavor or texture characteristics. From a genome-wide association study (GWAS), we identified six SNPs (single nucleotide polymorphisms) associated with loaf volume that could be useful in breeding for this trait. Producing high-quality strong gluten flour in our high rainfall environment is a challenge, but it provides local growers and end users with a value-added opportunity.

11.
Physiol Mol Biol Plants ; 29(6): 889-902, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37520809

RESUMEN

High molecular weight glutenin subunits (HMW-GSs) at the Glu-1 loci play an important role in the variation of dough strength, elasticity, and end-use quality of bread wheat. Multilocation trials in a wide range of climatic conditions and crop management practices help explain the role of HMW-GSs in the rheological properties of dough. In the current study, allelic variation of HMWs and quality scores were determined in 28 bread wheat cultivars across a wide range of climates and locations in Iran. Twelve HMW-GSs subunits (3 at Glu-A1, 7 at Glu-B1 and 2 at Glu D-1) in 16 unique combinations were identified in the studied cultivars. In the most rheological properties associated with good bread-making quality, the compositions of 1/17 + 18/5 + 10, 1/13 + 16/5 + 10 and 2*/7 + 9/5 + 10 (all with a quality score of 10) had significantly higher values than the other allelic compositions. While, the lowest values were observed in 1/21 + 19/2 + 12 (quality score of 6). The degree of dough softening was significantly greater in 1/21 + 19/2 + 12 than other allelic combinations. At Glu-A1, Glu-B1 and Glu-D1, 2*, 17 + 18 and 5 + 10 had significantly greater qualitative and rheological properties than the other subunits, which are related to the good quality of wheat flour. While null at Glu-A1, subunits 21 + 19 at Glu-B1 and 2 + 12 at Glu-D1 were associated with weak baking quality. Moreover, the highest dough softening values at Glu-A1, Glu-B1 and Glu-D1 were observed in null, 21 + 19 and 2 + 12 subunits, respectively. A negative and significant correlation (P < 0.05) was observed between the degree of dough softening and other qualitative and rheological properties related to good bread-making performance. The results of this study demonstrated the role of HMW-GSs in determining the end-use quality of bread wheat across a wide range of climates and environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01324-6.

12.
Foods ; 12(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37509763

RESUMEN

The shelf-life of bread is influenced by flour components, such as starch, composed of amylose and amylopectin. The aim was to test the effect of different balances of N (45, 90, 135 kg/ha) and P (48, 96 kg/ha) fertilizers on the flour characteristics and consequently the shelf-life of PDO Tuscan bread, stored in different modified atmosphere packaging (Ar, N2, Air). The amylose and phytochemical compounds were increased by N and decreased by the addition of P, but excessive doses of N (135 kg/ha) had a negative effect on flour quality. In the bread, the study highlighted the tendency of N2 and Ar, as storage filler gases, to reduce water loss, slow down the staling process, and prolong shelf-life. However, the most significant influence on shelf-life was related to the different fertilizations of wheat. In fact, when N was present in equal dose to P (90/96 or 45/48 kg/ha) or slightly higher (90/48 kg/ha), the bread tended to last longer over time. Instead, when these ratios were unbalanced in favor of N (135/48 or 135/96 kg/ha) and in favor of P (45/96 kg/ha), the shelf-life decreased considerably.

13.
Food Res Int ; 168: 112756, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120207

RESUMEN

Wheat gluten proteins, especially high-molecular-weight glutenin subunits (HMW-GS), are the main contributor to flour processing quality. Tannic acid (TA) consisting of a central glucose unit and ten gallic acid molecules is a phenolic acid that improves the processing quality. However, the underlying mechanism of TA's improvement remains largely unknown. Here, we showed that TA's improving effects on gluten aggregation, dough-mixing and bread-making properties were directly associated with the kinds of HMW-GS expressed in wheat seeds in HMW-GS near-isogenic lines (NILs). We established a biochemical framework, elucidated the additive effects of HMW-GS-TA interaction and discovered that TA cross-linked specifically with wheat glutenins but not gliadins, and reduced gluten surface hydrophobicity and SH content depending on the kinds of expressed HMW-GS in the wheat seeds. We also demonstrated that hydrogen bonds play an essential role in TA-HMW-GS interactions and improvement of wheat processing quality. Additionally, the effects of TA on the antioxidant capacity and on nutrient (protein and starch) digestibility were also investigated in the NILs of HMW-GS. TA increased antioxidant capacity but did not affect the digestion of starches and proteins. Our results revealed that TA more effectively strengthened wheat gluten in the presence of more HMW-GS kinds, highlighting TA's potential as an improver toward healthy and quality bread and demonstrating that manipulating hydrogen bonds was a previously overlooked approach to improve wheat quality.


Asunto(s)
Antioxidantes , Triticum , Triticum/química , Antioxidantes/metabolismo , Peso Molecular , Glútenes/química
14.
Int J Food Microbiol ; 396: 110193, 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37054654

RESUMEN

The final quality of wholemeal wheat bread is determined by the process parameter settings and leavening strategy. We hypothesise that the used leavening strategy may influence the optimal process parameter settings and, as such, the specific volume of the bread loaf. To analyse this interaction, bread was leavened with (i) a type 1 sourdough (SB), (ii) a type 1 sourdough combined with baker's yeast (YSB), or (iii) baker's yeast (YB). For each leavening strategy, the specific volume of bread, in response to variations in mixing time (4-10/4-14 min), water absorption (60-85 %), and proofing time (1-7/1-3 h), was analysed using an I-optimal response surface experimental design. Data modelling identified a substantially lower maximal specific volume of SB (2.13 mL/g), compared to YSB (3.30 mL/g) and YB (3.26 mL/g). The proofing time and water absorption mostly influenced the specific volume of the SB and YSB, respectively. However, the mixing and proofing times mainly affected the specific volume of YB. The type 1 sourdough reduced the mixing time and water absorption required for an optimal specific volume of bread compared to baker's yeast. These results challenge the idea of yielding higher volumes upon using sourdough compared to baker's yeast and highlight the importance of optimisation of bread dough formulations and breadmaking processes.


Asunto(s)
Saccharomyces cerevisiae , Triticum , Pan , Fermentación
15.
J Sci Food Agric ; 103(10): 4975-4982, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36960792

RESUMEN

BACKGROUND: Continuous development of new wheat varieties is necessary to satisfy the demands of farmers, industry, and consumers. The evaluation of candidate genotypes for commercial release under different on-farm conditions is a strategy that has been strongly recommended to assess the performance and stability of new cultivars in heterogeneous environments and under different farming systems. The main objectives of this study were to evaluate the grain yield and quality performance of ten different genotypes across six contrasting farmers' field conditions with different irrigation and nitrogen fertilization levels, and to develop suggestions to aid breeding programs and farmers to use resources more efficiently. Genotype and genotype by environment (GGE) interaction biplot analyses were used to identify the genotypes with the strongest performance and greatest stability in the Yaqui Valley. RESULTS: Analyses showed that some traits were mainly explained by the genotype effect, others by the field management conditions, and the rest by combined effects. The most representative and diverse field conditions in the Yaqui Valley were also identified, a useful strategy when breeders have limited resources. The independent effects of irrigation and nitrogen levels and their interaction were analyzed for each trait. The results showed that full irrigation was not always necessary to maximize grain yield in the Yaqui Valley. Other suggestions for more efficient use of resources are proposed. CONCLUSIONS: The combination of on-farm trials with GGE interaction analyses is an effective strategy to include in breeding programs to improve processes and resources. Identifying the most outstanding and stable genotypes under real on-farm systems is key to the development of novel cultivars adapted to different management and environmental conditions. © 2023 Society of Chemical Industry.


Asunto(s)
Pan , Triticum , Triticum/genética , Granjas , Pan/análisis , Fitomejoramiento , Genotipo , Grano Comestible , Nitrógeno
16.
Foods ; 12(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36832911

RESUMEN

Brewers' spent grain (BSG) is the main by-product of the brewing industry, corresponding to ~85% of its solid residues. The attention of food technologists towards BSG is due to its content in nutraceutical compounds and its suitability to be dried, ground, and used for bakery products. This work was aimed to investigate the use of BSG as a functional ingredient in bread-making. BSGs were characterised for formulation (three mixtures of malted barley and unmalted durum (Da), soft (Ri), or emmer (Em) wheats) and origin (two cereal cultivation places). The breads enriched with two different percentages of each BSG flour and gluten were analysed to evaluate the effects of replacements on their overall quality and functional characteristics. Principal Component Analysis homogeneously grouped BSGs by type and origin and breads into three sets: the control bread, with high values of crumb development, a specific volume, a minimum and maximum height, and cohesiveness; Em breads, with high values of IDF, TPC, crispiness, porosity, fibrousness, and wheat smell; and the group of Ri and Da breads, which have high values of overall smell intensity, toasty smell, pore size, crust thickness, overall quality, a darker crumb colour, and intermediate TPC. Based on these results, Em breads had the highest concentrations of nutraceuticals but the lowest overall quality. Ri and Da breads were the best choice (intermediate phenolic and fibre contents and overall quality comparable to that of control bread). Practical applications: the transformation of breweries into biorefineries capable of turning BSG into high-value, low-perishable ingredients; the extensive use of BSGs to increase the production of food commodities; and the study of food formulations marketable with health claims.

17.
Foods ; 12(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36766124

RESUMEN

Extending the shelf life of gluten-free bread (GFB) is a challenge. Mainly due to the ingredients used and their characteristics, GFB has numerous drawbacks such as unsatisfactory texture and rapid staling beyond a low nutritional value. In the present study, flaxseed oil cake extract (FOCE) was used to replace water (25-100%) in GFB formulations in order to test FOCE's potential to reduce GFB staling and extend microbial stability. Texture (TPA test), water activity (LF NMR), acidity (pH measurements) and microbiological quality of GFBs were tested. Moreover, the content of a lignan with broad health-promoting potential, secoisolariciresinol diglucoside (SDG), in GFB with FOCE was analyzed. The results showed that the use of FOCE enriched experimental GFB in valuable SDG (217-525 µg/100 g DM) while not causing adverse microbiological changes. A moderate level (25-50%) of FOCE did not change the main texture parameters of GFB stored for 72 h, the quality of which was comparable to control bread without FOCE. Meanwhile, higher proportions of FOCE (75-100% of water replacement) shortened GFB shelf life as determined by water activity and texture profile, suggesting that GFB with FOCE should be consumed fresh. To summarize, FOCE at moderate levels can add value to GFBs without causing a drop in quality, while still fitting in with the idea of zero waste and the circular economy.

18.
Int J Biol Macromol ; 225: 701-714, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402392

RESUMEN

Wheat gluten proteins serve as the largest protein molecules in nature and play key roles in breadmaking quality formation. In this study, we used a pair of Glu-A1 allelic variation lines to perform a comprehensive investigation on the effects of Glu-A1a encoded 1Ax1 subunit on gluten physicochemical properties, molecular structures and breadmaking quality. The results showed that the presence of the 1Ax1 subunit significantly increased gluten content, leading to marked improvement of dough rheological properties. Meanwhile, gluten physicochemical properties such as foaming ability and foaming stability, oil/water-holding capacity, emulsifying activity, disulfide bond content, and gluten degradation temperature were significantly improved. A confocal laser scanning microscope analysis revealed that the 1Ax1 subunit drastically enhanced gluten microstructure. Gluten secondary structure analysis by Fourier transform infrared spectroscopy and laser scanning microscope-Raman spectroscopy indicated that 1Ax1 subunit significantly promoted ß-turn and ß-sheet content and reduced α-helix content. Three-dimensional structure analysis by AlphaFold2 revealed a similar structural feature of 1Ax1 with the superior quality subunit 1Ax2*. Correlation and principal component analyses demonstrated that α-helix and ß-sheet content had a significant correlation with dough rheological properties, gluten physicochemical properties and breadmaking quality. Our results showed that 1Ax1 subunit positively affected gluten molecular structure and quality formation.


Asunto(s)
Glútenes , Triticum , Glútenes/química , Triticum/química , Estructura Molecular , Estructura Secundaria de Proteína , Conformación Proteica en Lámina beta , Pan/análisis , Harina
19.
Foods ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36553727

RESUMEN

This study aimed to determine the impact of ancient wheat varieties (emmer, spelt and khorasan) and spontaneous sourdough fermentation on the bioaccessibility of total phenolic content (TPC) and the DPPH antioxidant capacity evolution during breadmaking and in vitro digestion. Sourdough and yeast-fermented modern wheat breads were used as controls. After 6 h of fermentation, the total titrable acidity of the sourdough increased from 139 to 167%. The wheat variety, type of fermentation and processing affected TPC, antioxidant activity and bioaccessibility. Antioxidant activity and TPC were reduced by dough mixing, increased after sourdough fermentation and slightly decreased or remained the same after baking. Although wheat flour had the highest TPC, the modeling of TPC kinetic revealed that emmer and spelt sourdough exhibited a higher bound phenolics release rate due to the higher acidity, which contributed to increased phenolics solubility. Although wheat bread, both before and after digestion, had the lowest TPC, especially the one prepared with yeast, high TPC bioaccessibilities and antioxidant activities after the digestion suggested that, except phenolics, digestion process improved the release of additional compounds with different bioaccessibility and biological activity. The results of this study proved that the application of sourdough fermentation can increase the potential of ancient wheats in the developing of functional bakery products.

20.
Vavilovskii Zhurnal Genet Selektsii ; 26(6): 537-543, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36313828

RESUMEN

The 7DL-7Ae#1L·7Ae#1S translocation with the Lr29 gene attracts the attention of bread wheat breeders by its effectiveness against Puccinia triticina. However, its impact on useful agronomic traits has been little studied. In this report, the prebreeding value of 7DL-7Ae#1L·7Ae#1S was studied in analogue lines (ALs) of spring bread wheat cultivars Saratovskaya 68 and Saratovskaya 70 during 2019-2021. The presence of the Lr29 gene was conf irmed by using molecular marker Lr29F24. The ALs with the Lr29 gene were highly resistant to P. triticina against a natural epiphytotics background and in laboratory conditions. 7DL-7Ae#1L·7Ae#1S in Saratovskaya 68 ALs reduced grain productivity in all years of research. On average, the decrease was 35 and 42 %, or in absolute f igures 1163 and 1039 against 1802 kg/ha in the cultivar-recipient. In Saratovskaya 70 ALs, there was a decrease in grain yield in 2019 and 2020, and there were no differences in 2021. On average, the decrease was 18 and 32 %, or in absolute f igures 1101 and 912 against 1342 kg/ha in the cultivar-recipient. The analogues of both cultivars showed a signif icant decrease in the weight of 1000 grains, which ranged from 14 to 20 % for Saratovskaya 68 and 17-18 % for Saratovskaya 70. An increase in the period of germination-earing was noted only in Saratovskaya 68 lines, which averaged 1.3 days. ALs of Saratovskaya 70 had no differences in this trait. 7DL-7Ae#1L·7Ae#1S did not affect plant height and lodging resistance in all ALs. Studies of the bread-making quality in lines with 7DL-7Ae#1L·7Ae#1S revealed a signif icant increase in grain protein and gluten content. As for the effect on the alveograph indicators, there were differences between ALs of both cultivars. While Saratovskaya 68 ALs had a decrease in elasticity and in the ratio of dough tenacity to the extensibility, Saratovskaya 70 lines had an increase in these indicators. All lines increased the f lour strength and the loaves volume, but while Saratovskaya 68 ALs had an increased porosity rating, Saratovskaya 70 ALs had the same rating as the recipient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA