Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 62(17): 4684-4705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33511849

RESUMEN

Phenolic compounds, omnipresent in plants, are a crucial part of the human diet and are of considerable interest due to their antioxidant properties and other potential beneficial health effects, for instance, antidiabetic, antihypertensive, anti-inflammatory, and anticancer properties. The consumption of a variety of plant-based foods containing various phenolic compounds has increased due to published scientific verification of several health benefits. The release of phenolic compounds and change in their bioactivities examined through in vitro simulated gastrointestinal digestion could provide information on the biological potency of bioactive components, which will allow us to elucidate their metabolic pathways and bioactivities at target sites. This review reports on the recent research results focused on changes during the gastro and/or intestinal phase. The effect of digestive enzymes and digestive pH conditions during simulated digestion accounted for the variations in bioaccessibility and bioavailability of phenolic antioxidants as well as the corresponding antioxidant activities were also summarized and presented in the review.


Asunto(s)
Antioxidantes , Digestión , Antiinflamatorios , Antioxidantes/química , Humanos , Fenoles/química , Extractos Vegetales
2.
Sci Rep ; 10(1): 6701, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317686

RESUMEN

Saba banana, a popular fruit crop grown in Southeast Asia, is an economical source of a variety of beneficial agents. This study examined the variations in total phenolic, flavonoid, and antioxidant activities of five maturity stages of Saba banana, and their changes during simulated in vitro gastrointestinal digestion as affected by varying structural compositions. Antioxidant activities were evaluated using ferric reducing antioxidant power (FRAP), metal ion chelating (MIC) activity, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Results of DPPH and ABTS were compared in terms of TEAC (Trolox Equivalent Antioxidant Capacity) and VCEAC (Vitamin C Equivalent Antioxidant Capacity) values. Bio-properties were found to be highest in mature green stage with values slightly decreased as ripening proceeded. Simulated digestion showed a continuous increase in total phenolic with comparatively faster release in structure-less state (slurry) than samples with intact structure (cut). The trend of antioxidant activities was increased in the gastric phase and then decreased at the onset of intestinal phase, except for MIC which showed a reverse effect. Our study indicated that the bio-properties of Saba banana were affected by maturity and modifications in its physical structure and composition could influence the release behaviors of food components during simulated digestion.


Asunto(s)
Digestión/fisiología , Tracto Gastrointestinal/fisiología , Musa/química , Musa/crecimiento & desarrollo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Quelantes/análisis , Hierro/metabolismo , Oxidación-Reducción , Capacidad de Absorbancia de Radicales de Oxígeno , Fenoles/análisis
3.
Sci Rep ; 10(1): 1811, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019983

RESUMEN

The digestibility of starch in Saba banana as affected by maturity and physical properties of digesta was investigated. Five maturity stages were identified based on peel color index which also showed significant differences in physicochemical properties and starch granule morphology. The effect of physical properties of digesta was evaluated by monitoring the viscosity throughout the simulated digestion process and comparing two different physical structures of banana: (1) unhomogenized cut samples which have intact tissue structure and (2) homogenized slurry representing disrupted cellular structure. During ripening process, a decrease in starch content was noted with a concomitant formation of sugars and increasing concentration of acids. Green unripe stages showed the highest rate of starch hydrolysis in both physical structures and a decreasing trend was observed as ripening proceeded. The high digesta viscosity values of ripe stages was found to have an inhibitory effect on starch hydrolysis. Similarly, the differences in physical structure of food affected the digestive enzymes efficiency in breaking down starch. These results suggested that the physicochemical changes accompanying maturation and the physical properties (i.e. high viscosity and presence of intact cell structure) of food could significantly impact the rate of starch digestion.


Asunto(s)
Digestión , Musa/química , Almidón/química , Frutas/química , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA