Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Exp Parasitol ; 260: 108747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518969

RESUMO

Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Leishmaniose/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Antiprotozoários/química , Leishmania/efeitos dos fármacos , Animais , Humanos , Avaliação Pré-Clínica de Medicamentos , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/uso terapêutico
2.
In Silico Pharmacol, v. 12, n. 55, 1-12, jun. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5420

RESUMO

Multiple drug-resistant fungal species are associated with the development of diseases. Thus, more efcient drugs for the treatment of these aetiological agents are needed. Rondonin is a peptide isolated from the haemolymph of the spider Acanthoscurria rondoniae. Previous studies have shown that this peptide has antifungal activity against Candida sp. and Trichosporon sp. strains, acting on their genetic material. However, the molecular targets involved in its biological activity have not yet been described. Bioinformatics tools were used to determine the possible targets involved in the biological activity of Rondonin. The PharmMapper server was used to search for microorganismal targets of Rondonin. The PatchDock server was used to perform the molecular docking. UCSF Chimera software was used to evaluate these intermolecular interactions. In addition, the I-TASSER server was used to predict the target ligand sites. Then, these predictions were contrasted with the sites previously described in the literature. Molecular dynamics simulations were conducted for two promising complexes identifed from the docking analysis. Rondonin demonstrated consistency with the ligand sites of the following targets: outer membrane proteins F (id: 1MPF) and A (id: 1QJP), which are responsible for facilitating the passage of small molecules through the plasma membrane; the subunit of the favoprotein fumarate reductase (id: 1D4E), which is involved in the metabolism of nitrogenous bases; and the ATP-dependent Holliday DNA helicase junction (id: 1IN4), which is associated with histone proteins that package genetic material. Additionally, the molecular dynamics results indicated the stability of the interaction of Rondonin with 1MPF and 1IN4 during a 10 ns simulation. These interactions corroborate with previous in vitro studies on Rondonin, which acts on fungal genetic material without causing plasma membrane rupture. Therefore, the bioprospecting methods used in this research were considered satisfactory since they were consistent with previous results obtained via in vitro experimentation.

3.
Mol Microbiol ; 120(2): 178-193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392318

RESUMO

Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors, resembling the trypsin-like superfamily of serine proteases. SPATEs accomplish multiple functions associated to disease development of their hosts, which could be the consequence of SPATE cleavage of host cell components. SPATEs have been divided into class-1 and class-2 based on structural differences and biological effects, including similar substrate specificity, cytotoxic effects on cultured cells, and enterotoxin activity on intestinal tissues for class-1 SPATEs, whereas most class-2 SPATEs exhibit a lectin-like activity with a predilection to degrade a variety of mucins, including leukocyte surface O-glycoproteins and soluble host proteins, resulting in mucosal colonization and immune modulation. In this review, the structure of class-1 and class-2 are analyzed, making emphasis on their putative functional subdomains as well as a description of their function is provided, including prototypical mechanism of action.


Assuntos
Proteínas de Escherichia coli , Serina Proteases , Serina Proteases/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Sistemas de Secreção Tipo V , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Células Cultivadas , Glicoproteínas de Membrana
4.
Front Pharmacol ; 14: 1098448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033630

RESUMO

Cancer is a multifactorial process associated with changes in signaling pathways leading to cell cycle variations and gene expression. The transient receptor potential melastatin 8 (TRPM8) channel is a non-selective cation channel expressed in neuronal and non-neuronal tissues, where it is involved in several processes, including thermosensation, differentiation, and migration. Cancer is a multifactorial process associated with changes in signaling pathways leading to variations in cell cycle and gene expression. Interestingly, it has been shown that TRPM8 channels also participate in physiological processes related to cancer, such as proliferation, survival, and invasion. For instance, TRPM8 channels have an important role in the diagnosis, prognosis, and treatment of prostate cancer. In addition, it has been reported that TRPM8 channels are involved in the progress of pancreatic, breast, bladder, colon, gastric, and skin cancers, glioblastoma, and neuroblastoma. In this review, we summarize the current knowledge on the role of TRPM8 channels in cancer progression. We also discuss the therapeutic potential of TRPM8 in carcinogenesis, which has been proposed as a molecular target for cancer therapy.

5.
Front Pharmacol ; 14: 1101452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817126

RESUMO

Alzheimer's disease (AD) is the most common type of dementia in the elderly. Several hypotheses emerged from AD pathophysiological mechanisms. However, no neuronal protective or regenerative drug is available nowadays. Researchers still work in drug development and are finding new molecular targets to treat AD. Therefore, this study aimed to summarize main advances in AD pharmacological therapy. Clinical trials registered in the National Library of Medicine database were selected and analyzed accordingly to molecular targets, therapeutic effects, and safety profile. The most common outcome was the lack of efficacy. Only seven trials concluded that tested drugs were safe and induced any kind of therapeutic improvement. Three works showed therapeutic effects followed by toxicity. In addition to aducanumab recent FDA approval, antibodies against amyloid-ß (Aß) showed no noteworthy results. 5-HT6 antagonists, tau inhibitors and nicotinic agonists' data were discouraging. However, anti-Aß vaccine, BACE inhibitor and anti-neuroinflammation drugs showed promising results.

6.
Cancer Biomark ; 32(2): 147-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151841

RESUMO

BACKGROUND: Penile cancer (PeCa) is a rare disease, but its incidence has increased worldwide, mostly in HPV+ patients. Nevertheless, there is still no targeted treatment for this carcinoma. OBJECTIVE: To predict the main signaling pathways involved in penile tumorigenesis and its potential drug targets. METHODS: Genome-wide copy number profiling was performed in 28 PeCa. Integration analysis of CNAs and miRNAs and mRNA targets was performed by DIANA-TarBase v.8. The potential impact of the miRNAs/target genes on biological pathways was assessed by DIANA-miRPath v.3.0. For each miRNA, KEGG pathways were generated based on the tarbase and microT-CDS algorithms. Pharmaco-miR was used to identify associations between miRNAs and their target genes to predict druggable targets. RESULTS: 269 miRNAs and 2,395 genes were mapped in cytobands with CNAs. The comparison of the miRNAs mapped at these cytobands and the miRNAs that were predicted to regulate the genes also mapped in these regions, resulted in a set of common 35 miRNAs and 292 genes. Enrichment pathway revealed their involvement in five top signaling pathways. EGFR and COX2 were identified as potential druggable targets. CONCLUSION: Our data indicate the potential use of EGFR and COX2 inhibitors as a target treatment for PeCa patients.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma/genética , Infecções por Papillomavirus/genética , Neoplasias Penianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Carcinoma/virologia , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Variações do Número de Cópias de DNA , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Neoplasias Penianas/tratamento farmacológico , Neoplasias Penianas/patologia , Neoplasias Penianas/virologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
7.
Front Pharmacol ; 12: 624704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935717

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.

8.
An. bras. dermatol ; An. bras. dermatol;96(2): 228-230, Mar.-Apr. 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1248737

RESUMO

Abstract As the treatment of infectious and parasitic diseases improved, the prevalence of these conditions declined. However, with the expansion of the use of immunobiologicals, opportunistic infections have emerged, especially under atypical presentations. The present study reports the case of a patient treated with infliximab for Crohn's disease, who presented diarrhea, weight loss, abdominal pain, fever, and subcutaneous erythematous nodules that evolved with spontaneous fluctuation and ulceration. With the finding of alcohol-resistant bacilli and Mycobacterium tuberculosis DNA in a cutaneous fragment, through polymerase chain reaction, the diagnosis of gummatous tuberculosis was confirmed, probably secondary to hematogenous dissemination from an intestinal focus.


Assuntos
Humanos , Tuberculose Cutânea/diagnóstico , Tuberculose Cutânea/induzido quimicamente , Tuberculose Cutânea/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Sífilis , Pele , Infliximab/efeitos adversos
9.
An Bras Dermatol ; 96(2): 228-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33593700

RESUMO

As the treatment of infectious and parasitic diseases improved, the prevalence of these conditions declined. However, with the expansion of the use of immunobiologicals, opportunistic infections have emerged, especially under atypical presentations. The present study reports the case of a patient treated with infliximab for Crohn's disease, who presented diarrhea, weight loss, abdominal pain, fever, and subcutaneous erythematous nodules that evolved with spontaneous fluctuation and ulceration. With the finding of alcohol-resistant bacilli and Mycobacterium tuberculosis DNA in a cutaneous fragment, through polymerase chain reaction, the diagnosis of gummatous tuberculosis was confirmed, probably secondary to hematogenous dissemination from an intestinal focus.


Assuntos
Doença de Crohn , Sífilis , Tuberculose Cutânea , Doença de Crohn/tratamento farmacológico , Humanos , Infliximab/efeitos adversos , Pele , Tuberculose Cutânea/induzido quimicamente , Tuberculose Cutânea/diagnóstico , Tuberculose Cutânea/tratamento farmacológico
10.
Front Pharmacol ; 11: 777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547391

RESUMO

INTRODUCTION: Pain is considered an unpleasant sensory and emotional experience, being considered as one of the most important causes of human suffering. Computational chemistry associated with bioinformatics has stood out in the process of developing new drugs, through natural products, to manage this condition. OBJECTIVE: To analyze, through literature data, recent molecular coupling studies on the antinociceptive activity of essential oils and monoterpenes. DATA SOURCE: Systematic search of the literature considering the years of publications between 2005 and December 2019, in the electronic databases PubMed and Science Direct. ELIGIBILITY CRITERIA: Were considered as criteria of 1) Biological activity: non-clinical effects of an OE and/or monoterpenes on antinociceptive activity based on animal models and in silico analysis, 2) studies with plant material: chemically characterized essential oils and/or their constituents isolated, 3) clinical and non-clinical studies with in silico analysis to assess antinociceptive activity, 4) articles published in English. Exclusion criteria were literature review, report or case series, meta-analysis, theses, dissertations, and book chapter. RESULTS: Of 16,006 articles, 16 articles fulfilled all the criteria. All selected studies were non-clinical. The most prominent plant families used were Asteraceae, Euphorbiaceae, Verbenaceae, Lamiaceae, and Lauraceae. Among the phytochemicals studied were α-Terpineol, 3-(5-substituted-1,3,4-oxadiazol-2-yl)-N'-[2-oxo-1,2-dihydro-3H-indol-3-ylidene] propane hydrazide, ß-cyclodextrin complexed with citronellal, (-)-α-bisabolol, ß-cyclodextrin complexed with farnesol, and p-Cymene. The softwares used for docking studies were Molegro Virtual Docker, Sybyl®X, Vlife MDS, AutoDock Vina, Hex Protein Docking, and AutoDock 4.2 in PyRx 0.9. The molecular targets/complexes used were Nitric Oxide Synthase, COX-2, GluR2-S1S2, TRPV1, ß-CD complex, CaV1, CaV2.1, CaV2.2, and CaV2.3, 5-HT receptor, delta receptor, kappa receptor, and MU (µ) receptor, alpha adrenergic, opioid, and serotonergic receptors, muscarinic receptors and GABAA opioid and serotonin receptors, 5-HT3 and M2 receptors. Many of the covered studies used molecular coupling to investigate the mechanism of action of various compounds, as well as molecular dynamics to investigate the stability of protein-ligand complexes. CONCLUSIONS: The studies revealed that through the advancement of more robust computational techniques that complement the experimental studies, they may allow some notes on the identification of a new candidate molecule for therapeutic use.

11.
Front Chem ; 8: 605307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490037

RESUMO

The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.

12.
Front Genet ; 10: 930, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695721

RESUMO

Traditional approaches to cancer therapy seek common molecular targets in tumors from different patients. However, molecular profiles differ between patients, and most tumors exhibit inherent heterogeneity. Hence, imprecise targeting commonly results in side effects, reduced efficacy, and drug resistance. By contrast, personalized medicine aims to establish a molecular diagnosis specific to each patient, which is currently feasible due to the progress achieved with high-throughput technologies. In this report, we explored data from human RNA-seq and protein-protein interaction (PPI) networks using bioinformatics to investigate the relationship between tumor entropy and aggressiveness. To compare PPI subnetworks of different sizes, we calculated the Shannon entropy associated with vertex connections of differentially expressed genes comparing tumor samples with their paired control tissues. We found that the inhibition of up-regulated connectivity hubs led to a higher reduction of subnetwork entropy compared to that obtained with the inhibition of targets selected at random. Furthermore, these hubs were described to be participating in tumor processes. We also found a significant negative correlation between subnetwork entropies of tumors and the respective 5-year survival rates of the corresponding cancer types. This correlation was also observed considering patients with lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) based on the clinical data from The Cancer Genome Atlas database (TCGA). Thus, network entropy increases in parallel with tumor aggressiveness but does not correlate with PPI subnetwork size. This correlation is consistent with previous reports and allowed us to assess the number of hubs to be inhibited for therapy to be effective, in the context of precision medicine, by reference to the 100% patient survival rate 5 years after diagnosis. Large standard deviations of subnetwork entropies and variations in target numbers per patient among tumor types characterize tumor heterogeneity.

13.
Endocr Relat Cancer ; 26(9): R499-R518, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252403

RESUMO

Medullary thyroid carcinoma (MTC) is a rare type of tumor that originates from thyroid C cells and accounts for 2-4% of all malignant thyroid neoplasms. MTC may occur sporadically or be inherited, as part of the MEN 2 syndrome. Germline mutations of the RET (REarranged during Transfection) proto-oncogene cause hereditary cancer, whereas somatic RET mutations and, less frequently, RAS mutations have been described in sporadic MTC samples. Since early surgery with complete resection of tumor mostly determines the likelihood of attaining cure for MTC, the broader use of RET genetic screening has dramatically changed the prognostic of gene carriers in hereditary MTC. Nevertheless, despite recent advances, the management of advanced, progressive MTC remains challenging. The multikinase inhibitors (MKI), vandetanib and cabozantinib, were approved for the treatment of progressive or symptomatic MTC, and several other compounds have exhibited variable efficacy. Although these drugs have been shown to improve progression-free survival, no MKI has been shown to increase the overall survival. As these drugs are nonselective, significant off-target toxicities may occur, limiting achievement of the required TK-specific inhibition. Recently, next-generation small-molecule TKI has been developed. These TKI are specifically designed for highly potent and selective targeting of oncogenic RET alterations, making them promising drugs for the treatment of advanced MTC. Here, we summarize the current understanding of the intracellular signaling pathways involved in MTC pathogenesis as well as the therapeutic approaches and challenges for the management of advanced MTC, focusing on targeted molecular therapies.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Glândula Tireoide , Antineoplásicos/uso terapêutico , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/terapia , Genótipo , Humanos , Imunoterapia , Terapia de Alvo Molecular , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Proto-Oncogene Mas , Transdução de Sinais , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/terapia
14.
Curr Med Chem ; 26(23): 4380-4402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28875841

RESUMO

Malaria remains a major health problem, especially because of the emergence of resistant P. falciparum strains to artemisinin derivatives. In this context, safe and affordable antimalarial drugs are desperately needed. New proteins have been investigated as molecular targets for research and development of innovative compounds with welldefined mechanism of action. In this review, we highlight genetically and clinically validated plasmodial proteins as drug targets for the next generation of therapeutics. The enzymes described herein are involved in hemoglobin hydrolysis, the invasion process, elongation factors for protein synthesis, pyrimidine biosynthesis, post-translational modifications such as prenylation, phosphorylation and histone acetylation, generation of ATP in mitochondrial metabolism and aminoacylation of RNAs. Significant advances on proteomics, genetics, structural biology, computational and biophysical methods provided invaluable molecular and structural information about these drug targets. Based on this, several strategies and models have been applied to identify and improve lead compounds. This review presents the recent progresses in the discovery of antimalarial drug candidates, highlighting the approaches, challenges, and perspectives to deliver affordable, safe and low single-dose medicines to treat malaria.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Humanos
15.
Curr Drug Targets ; 20(1): 70-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29697027

RESUMO

BACKGROUND: The discovery of new chemotherapeutic agents still remains a continuous goal to achieve. DNA polymerases and topoisomerases act in nucleic acids metabolism modulating different processes like replication, mitosis, damage repair, DNA topology and transcription. It has been widely documented that Polymerases serve as molecular targets for antiviral and antitumoral chemotherapy. Furthermore, telomerase is a ribonucleoprotein with exacerbated activity in most of the tumor cell lines, becoming as an emergent target in Cancer treatment. METHODS: We undertook an exhaustive search of bibliographic databases for peer-reviewed research literature related to the last decade. The characteristics of screened bibliography describe structure activity relationships and show the principal moieties involved. This work tries to summarize the investigation about natural and semi-synthetic products with natural origin with the faculty to inhibit key enzymes that play a crucial role in DNA metabolism. RESULTS: Eighty-five data references were included in this review, showing natural products widely distributed throughout the plant kingdom and their bioactive properties such as tumor growing inhibitory effects, and anti-AIDS activity. CONCLUSION: The findings of this review confirm the importance to find new drugs and biologically active natural products, and their potential medicinally useful benefits.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Topoisomerase/farmacologia , Viroses/tratamento farmacológico , Antivirais/química , Antivirais/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , DNA/metabolismo , DNA Topoisomerases/química , DNA Topoisomerases/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Relação Estrutura-Atividade , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/uso terapêutico , Viroses/genética , Viroses/virologia
16.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(1): e7718, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-974272

RESUMO

Pancreatic cancer is well known to be the most deadly malignancy with the worst survival rate of all cancers. High temperature requirement factor A1 (HtrA1) plays an important role in cancer cell proliferation, migration, apoptosis, and differentiation. This study aimed to explore the function of HtrA1 in pancreatic cancer cell growth and its underlying mechanism. We found that the expression of HtrA1 was lower in pancreatic cancer tissue compared to the adjacent normal tissue. Consistently, HtrA1 levels were also decreased in two human pancreatic cancer cell lines, PANC-1 and BXPC-3. Moreover, enforced expression of HtrA1 inhibited cell viability and colony formation of PANC-1 and BXPC-3 cells. Overexpression of HtrA1 promoted apoptosis and suppressed migratory ability of tumor cells. On the contrary, siRNA-mediated knockdown of HtrA1 promoted the growth potential of pancreatic cancer cells. In addition, we found that up-regulation of HtrA1 reduced the expression of Notch-1 in pancreatic cancer cells. On the contrary, knockdown of HtrA1 increased the expression levels of Notch-1. Furthermore, overexpression of Notch-1 abolished the anti-proliferative effect of HtrA1 on pancreatic cancer cells. Taken together, our findings demonstrated that HtrA1 could inhibit pancreatic cancer cell growth via regulating Notch-1 expression, which implied that HtrA1 might be developed as a novel molecular target for pancreatic cancer therapy.


Assuntos
Humanos , Neoplasias Pancreáticas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Receptor Notch1/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Diferenciação Celular , Regulação para Cima , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Receptor Notch1/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética
17.
Front Microbiol ; 9: 880, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765372

RESUMO

The emergence of strains of Mycobacterium tuberculosis resistant to isoniazid (INH) has underscored the need for the development of new anti-tuberculosis agents. INH is activated by the mycobacterial katG-encoded catalase-peroxidase, forming an acylpyridine fragment that is covalently attached to the C4 of NADH. This isonicotinyl-NAD adduct inhibits the activity of 2-trans-enoyl-ACP(CoA) reductase (InhA), which plays a role in mycolic acid biosynthesis. A metal-based INH analog, Na3[FeII(CN)5(INH)]·4H2O, IQG-607, was designed to have an electronic redistribution on INH moiety that would lead to an intramolecular electron transfer to bypass KatG activation. HPLC and EPR studies showed that the INH moiety can be oxidized by superoxide or peroxide yielding similar metabolites and isonicotinoyl radical only when associated to IQG-607, thereby supporting redox-mediated drug activation as a possible mechanism of action. However, IQG-607 was shown to inhibit the in vitro activity of both wild-type and INH-resistant mutant InhA enzymes in the absence of KatG activation. IQG-607 given by the oral route to M. tuberculosis-infected mice reduced lung lesions. Experiments using early and late controls of infection revealed a bactericidal activity for IQG-607. HPLC and voltammetric methods were developed to quantify IQG-607. Pharmacokinetic studies showed short half-life, high clearance, moderate volume of distribution, and low oral bioavailability, which was not altered by feeding. Safety and toxic effects of IQG-607 after acute and 90-day repeated oral administrations in both rats and minipigs showed occurrence of mild to moderate toxic events. Eight multidrug-resistant strains (MDR-TB) were resistant to IQG-607, suggesting an association between katG mutation and increasing MIC values. Whole genome sequencing of three spontaneous IQG-607-resistant strains harbored katG gene mutations. MIC measurements and macrophage infection experiments with a laboratorial strain showed that katG mutation is sufficient to confer resistance to IQG-607 and that the macrophage intracellular environment cannot trigger the self-activation mechanism. Reduced activity of IQG-607 against an M. tuberculosis strain overexpressing S94A InhA mutant protein suggested both the need for KatG activation and InhA as its target. Further efforts are suggested to be pursued toward attempting to translate IQG-607 into a chemotherapeutic agent to treat tuberculosis.

18.
Anticancer Agents Med Chem ; 18(4): 541-549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29141555

RESUMO

BACKGROUND: NF-κB is a transcription factor involved in the transcriptional regulation of a large number of genes related to tumorigenesis in several cancer cell types, and its inhibition has been related to anticancer effect. DHMEQ (Dehydroxymethylepoxyquinomicin) is a compound that blocks the translocation of NF-κB from the cytoplasm to the nucleus, thus inhibiting its activity as a transcriptional activator. Several studies have shown the antineoplastic effects of DHMEQ in numerous tumor types, however, there are no surveys that tested their effects in MB. OBJECTIVES: The aim of the present study was to evaluate the effects of DHMEQ as NF-κB inhibitor in pediatric MB cell lines. METHOD: We used the UW402, UW473 and ONS-76 medulloblastoma (MB) cell lines to verify the effect of DHMEQ on proliferation, clonogenic capacity, apoptosis, cell invasion and migration, and evaluated the effect of the combination with other drugs and the potential as a radiosensitizator. RESULTS: A significant decrease in the cell growth, a strong inhibition of the clonogenic capacity, migration and cell invasion was observed after NF-κB inhibition in the three MB cell lines. Conversely, increased level of apoptosis rates were demonstrated. Additionally, treatments with DHMEQ combined with other chemotherapeutic agents were synergic in most points, and a strong radiosensitization by this compound was observed in the three MB cell lines. CONCLUSION: DHMEQ has potential antitumor effect on MB cells, and it may be considered a new therapeutic agent to improve treatment approaches in MB.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Cicloexanonas/farmacologia , Meduloblastoma/terapia , NF-kappa B/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicloexanonas/síntese química , Cicloexanonas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Meduloblastoma/metabolismo , Estrutura Molecular , NF-kappa B/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Medicina (B Aires) ; 77(6): 497-504, 2017.
Artigo em Espanhol | MEDLINE | ID: mdl-29223942

RESUMO

Rho GTPases are molecular switches that control the different cellular processes. Deregulation of these proteins is associated to transformation and malignant progression in several cancer types. Given the evidence available of the role of Rho GTPases in cancer it is suggested that these proteins can serve as potential therapeutic targets. This review focuses on the strategies used to develop Rho GTPases modulators and their potential use in therapeutic settings.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Humanos , Neoplasias/enzimologia , Proteínas rho de Ligação ao GTP/fisiologia
20.
Medicina (B.Aires) ; Medicina (B.Aires);77(6): 497-504, dic. 2017. ilus
Artigo em Espanhol | LILACS | ID: biblio-894528

RESUMO

Las Rho GTPasas son una familia de proteínas que actúan como interruptores moleculares en diversas vías de señalización coordinando la regulación de distintos procesos celulares. La desregulación de dichas proteínas se vincula con transformación maligna y progresión tumoral en distintos tipos de cáncer. Por estos motivos, en los últimos años las Rho GTPasas fueron postuladas como blancos moleculares interesantes. En este trabajo describimos las distintas estrategias estudiadas utilizando a las Rho GTPasas como blanco y su grado de avance, mostrando una estrategia novedosa para el tratamiento del cáncer.


Rho GTPases are molecular switches that control the different cellular processes. Deregulation of these proteins is associated to transformation and malignant progression in several cancer types. Given the evidence available of the role of Rho GTPases in cancer it is suggested that these proteins can serve as potential therapeutic targets. This review focuses on the strategies used to develop Rho GTPases modulators and their potential use in therapeutic settings.


Assuntos
Humanos , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Proteínas rho de Ligação ao GTP/fisiologia , Neoplasias/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA