Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
3.
Front Physiol ; 14: 1217815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576343

RESUMO

Mitochondrial dysfunction is a central event in the pathogenesis of several degenerative brain disorders. It entails fission and fusion dynamics disruption, progressive decline in mitochondrial clearance, and uncontrolled oxidative stress. Many therapeutic strategies have been formulated to reverse these alterations, including replacing damaged mitochondria with healthy ones. Spontaneous mitochondrial transfer is a naturally occurring process with different biological functions. It comprises mitochondrial donation from one cell to another, carried out through different pathways, such as the formation and stabilization of tunneling nanotubules and Gap junctions and the release of extracellular vesicles with mitochondrial cargoes. Even though many aspects of regulating these mechanisms still need to be discovered, some key enzymatic regulators have been identified. This review summarizes the current knowledge on mitochondrial dysfunction in different neurodegenerative disorders. Besides, we analyzed the usage of mitochondrial transfer as an endogenous revitalization tool, emphasizing the enzyme regulators that govern this mechanism. Going deeper into this matter would be helpful to take advantage of the therapeutic potential of mitochondrial transfer.

4.
Mitochondrion ; 70: 41-53, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921832

RESUMO

Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.


Assuntos
Senilidade Prematura , Neoplasias , RNA Longo não Codificante , Envelhecimento da Pele , Humanos , RNA Longo não Codificante/genética , Envelhecimento da Pele/genética , Senilidade Prematura/metabolismo , Neoplasias/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo
5.
Cell Mol Life Sci ; 79(3): 177, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247083

RESUMO

There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.


Assuntos
Mitocôndrias/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Pneumopatias/terapia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/transplante , Dinâmica Mitocondrial , Comunicação Parácrina
6.
Genetica ; 149(5-6): 267-281, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609625

RESUMO

The Zygothrica genus group of Drosophilidae encompasses more than 437 species and five genera. Although knowledge regarding its diversity has increased, uncertainties about its monophyly and position within Drosophilidae remain. Genomic approaches have been widely used to address different phylogenetic questions and analyses involving the mitogenome have revealed a cost-efficient tool to these studies. Thus, this work aims to characterize mitogenomes of three species of the Zygothrica genus group (from the Hirtodrosophila, Paraliodrosophila and Zygothrica genera), while comparing them with orthologous sequences from other 23 Drosophilidae species and addressing their phylogenetic position. General content concerning gene order and overlap, nucleotide composition, start and stop codon, codon usage and tRNA structures were compared, and phylogenetic trees were constructed under different datasets. The complete mitogenomes characterized for H. subflavohalterata affinis H002 and P. antennta present the PanCrustacea gene order with 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, 13 protein coding genes and an A+T rich region with two T-stretched elements. Some peculiarities such as the almost complete overlap of genes tRNAH/ND4, tRNAF/ND5 and tRNAS2/ND1 are reported for different Drosophilidae species. Non-canonical secondary structures were encountered for tRNAS1 and tRNAY, revealing patterns that apply at different phylogenetic scales. According to the best depiction of the mitogenomes evolutionary history, the three Neotropical species of the Zygothrica genus group encompass a monophyletic lineage sister to Zaprionus, composing with this genus a clade that is sister to the Drosophila subgenus.


Assuntos
Drosophilidae/classificação , Drosophilidae/genética , Evolução Molecular , Genoma Mitocondrial/genética , Genômica , Animais , Uso do Códon , Drosophilidae/citologia , Ordem dos Genes , Filogenia
7.
EMBO Rep ; 21(2): e48052, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31984629

RESUMO

Mesenchymal stem cells (MSCs) have fueled ample translation for the treatment of immune-mediated diseases. They exert immunoregulatory and tissue-restoring effects. MSC-mediated transfer of mitochondria (MitoT) has been demonstrated to rescue target organs from tissue damage, yet the mechanism remains to be fully resolved. Therefore, we explored the effect of MitoT on lymphoid cells. Here, we describe dose-dependent MitoT from mitochondria-labeled MSCs mainly to CD4+ T cells, rather than CD8+ T cells or CD19+ B cells. Artificial transfer of isolated MSC-derived mitochondria increases the expression of mRNA transcripts involved in T-cell activation and T regulatory cell differentiation including FOXP3, IL2RA, CTLA4, and TGFß1, leading to an increase in a highly suppressive CD25+ FoxP3+ population. In a GVHD mouse model, transplantation of MitoT-induced human T cells leads to significant improvement in survival and reduction in tissue damage and organ T CD4+ , CD8+ , and IFN-γ+ expressing cell infiltration. These findings point to a unique CD4+ T-cell reprogramming mechanism with pre-clinical proof-of-concept data that pave the way for the exploration of organelle-based therapies in immune diseases.


Assuntos
Células-Tronco Mesenquimais , Linfócitos T CD8-Positivos , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias , Linfócitos T Reguladores
8.
Stem Cell Rev Rep ; 13(4): 491-498, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28214945

RESUMO

Intercellular communication is one of the most important events in cell population behavior. In the last decade, tunneling nanotubes (TNTs) have been recognized as a new form of long distance intercellular connection. TNT function is to allow molecular and subcellular structure exchange between neighboring cells via the transfer of molecules and organelles such as calcium ions, prions, viral and bacterial pathogens, small lysosomes and mitochondria. New findings support the concept that mesenchymal stem cells (MSCs) can affect cell microenvironment by the release of soluble factors or the transfer of cellular components to neighboring cells, in a way which significantly contributes to cell regulation and tissue repair, although the underlying mechanisms remain poorly understood. MSCs have many advantages for their implementation in regenerative medicine. The TNTs in these cell types are heterogeneous in both structure and function, probably due to their highly dynamic behavior. In this work we report an extensive and detailed description of types, structure, components, dynamics and functionality of the TNTs bridging neighboring human umbilical cord MSCs obtained from Wharton"s jelly. Characterization studies were carried out through phase contrast, fluorescence, electron microscopy and time lapse images with the aim of describing cells suitable for an eventual regenerative medicine.


Assuntos
Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Nanotubos/química , Humanos , Células-Tronco Mesenquimais/citologia
9.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(5): 645-649, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159723

RESUMO

Canine transmissible venereal tumour (CTVT) has been transmitted by cell transplantation from dog to dog, for over 10 000 years. Although initial studies report a single genetic origin for CTVT, recent samples from around the world reveal high genetic diversity. An elevated number of polymorphisms have been determined in mitochondrial DNA (mtDNA) of CTVT. The recent discovery of mtDNA transference from the host into tumoural cells could be a novel source of genetic diversity in CTVT. The aim of this study was to determine the presence of host mtDNA in samples of CTVT in Mexican dogs. Genotyping of 49 samples of CTVT and 49 samples of blood cells pertaining to affected dogs was performed by direct sequencing from the mtDNA D-loop region. Exogenous mtDNA was observed in 6% of the analysed tumours. This is the first investigation reporting the prevalence of exogenous mtDNA in CTVT in the Mexican dog population.


Assuntos
DNA Mitocondrial/genética , Doenças do Cão/transmissão , Tumores Venéreos Veterinários/genética , Animais , Doenças do Cão/genética , Cães , Genótipo , México , Análise de Sequência de DNA/veterinária
10.
Acta bioeth ; 22(2): 203-211, nov. 2016.
Artigo em Espanhol | LILACS | ID: biblio-827607

RESUMO

En febrero de 2015 el Reino Unido dio el primer paso para la aprobación de la transferencia mitocondrial como técnica terapéutica. Teóricamente, gracias a eso será posible para muchas mujeres engendrar descendencia libre de patologías asociadas a defectos mitocondriales. Sin embargo, esta práctica enfrenta severas dudas desde un punto de vista ético. Entre las objeciones destacan: su estrecha vinculación con la clonación humana; la alteración de los genes de la línea germinal; la modificación de la identidad del ser humano al que dará lugar; la destrucción de embriones humanos que envuelve, o el elevado riesgo que encierra para la salud del ser humano resultante. En este texto se analiza la solvencia de todas estas objeciones de forma crítica, resaltando las fortalezas de algunas de ellas. En particular, se aboga por una restricción cuidadosa del uso de esta técnica, que promueva el empleo de alternativas más respetuosas con la salud del futuro ser humano.


In February 2015 the United Kingdom took the first step towards the adoption of mitochondrial transfer as a therapeutic technique. Theoretically, it will make it possible for many women to get rid of pathologies associated with mitochondrial defects. However, this practice has been subjected to severe doubts from an ethical standpoint. Among these objections, we could highlight the following: its close association with human cloning; the alteration of the germline genes; the modification in the identity of the human being involved; the destruction of human embryos; or the high risk to the health of the human being. In this text we will analyze these objections critically, highlighting the strength of all of them. As a result, we will call for a careful restriction of the use of this technique, and the promotion of the use of alternative options much more respectful of the human future.


Em fevereiro de 2015 o Reino Unido deu o primeiro passo para a aprovação da transferência mitocondrial como técnica terapêutica. Teoricamente, graças a isso será possível a muitas mulheres engendrar descendência livre de patologias associadas a defeitos mitocondriais. No entanto, esta prática enfrenta severas dúvidas a partir de um ponto de vista ético. Entre as objeções destacam: sua estreita vinculação com a clonagem humana; a alteração dos genes da linha germinal; a modificação da identidade do ser humano ao qual dará lugar; a destruição de embriões humanos que envolve, ou o elevado risco que encerra para a saúde do ser humano resultante. Neste texto se analisa a solvência de todas estas objeções de forma crítica, ressaltando as fortalezas de algumas delas. Em particular, se advoga por uma restrição cuidadosa do uso desta técnica, que se promova o emprego de alternativas mais respeitosas com a saúde do futuro ser humano.


Assuntos
Humanos , Clonagem de Organismos/ética , Terapia Genética/ética , Terapia de Substituição Mitocondrial/ética , Mitocôndrias/transplante , Técnicas de Transferência Nuclear/ética , Bioética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA