RESUMO
Otitis externa is an inflammatory disease of the external ear canal of complex and multifactorial etiology associated with recurrent bacterial infection. This study aimed to assess the antimicrobial and antibiofilm activity of promethazine against bacterial isolates from dogs with otitis externa, as well as the effect of this compound on the dynamics of biofilm formation over 120 h. Planktonic bacterial susceptibility to promethazine was evaluated to determine the minimum inhibitory concentrations (MIC). The minimum biofilm eradication concentration (MBEC) was also determined by broth microdilution. To evaluate the effect on biofilm growth, promethazine was tested at three concentrations MIC, MIC/2 and MIC/8, with daily readings at 48, 72, 96 and 120 h. The MICs of promethazine ranged from 48.83 to 781.25 µg mL-1. Promethazine significantly (P < 0.05) reduced mature biofilm biomass, with MBECs ranging from 48.8 to 6250 µg mL-1 and reduced (P < 0.01) biofilm formation for up to the 120-h, at concentrations corresponding to the MIC obtained against each isolate. Promethazine was effective against microorganisms associated with canine otitis externa. The data suggest that promethazine presents antimicrobial and antibiofilm activity and is a potential alternative to treat and prevent recurrent bacterial otitis in dogs. These results emphasize the importance of drug repurposing in veterinary otology as an alternative to reduce antimicrobial resistance.
Assuntos
Antibacterianos , Biofilmes , Doenças do Cão , Testes de Sensibilidade Microbiana , Otite Externa , Prometazina , Animais , Cães , Biofilmes/efeitos dos fármacos , Prometazina/farmacologia , Doenças do Cão/microbiologia , Doenças do Cão/tratamento farmacológico , Antibacterianos/farmacologia , Otite Externa/microbiologia , Otite Externa/veterinária , Otite Externa/tratamento farmacológico , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificaçãoRESUMO
Antimicrobial resistance is an increasing worldwide public health burden that threatens to make existent antimicrobials obsolete. An important mechanism of antimicrobial resistance is the overexpression of efflux pumps, which reduce the intracellular concentration of antimicrobials. TolC is the outer membrane protein of an efflux pump that has gained attention as a therapeutic target. Little is known about the immune response against TolC. Here we evaluated the immune response against TolC from Escherichia coli. TolC in silico epitope prediction showed several residues that could bind to human antibodies, and we showed that human plasma presented higher titers of anti-TolC IgG and IgA, than IgM. E. coli recombinant TolC protein stimulated macrophages in vitro to produce nitric oxide, as well as IL-6 and TNF-α, assessed by Griess assay and ELISA, respectively. Immunization of mice with TolC intraperitoneally and an in vitro re-stimulation led to increased T cell proliferation and IFNγ production, evaluated by flow cytometry and ELISA, respectively. TolC mouse immunization stimulated anti-TolC IgM and IgG production, with higher levels of IgG1 and IgG2, amongst the IgG subclasses. Anti-TolC murine antibodies could bind to live E. coli and increase bacterial uptake and elimination by macrophages in vitro. Intraperitoneal or intranasal, but not oral, immunizations with inactivated E. coli also led to anti-TolC antibody production. Finally, TolC immunization increased mouse survival rates to antimicrobial-sensitive or resistant E. coli infection. Our results showed that TolC is immunogenic, leading to the production of protective antibodies against E. coli, reinforcing its value as a therapeutic target.
RESUMO
Staphylococcus aureus is a bacterium responsible for resistance to multiple drugs and the efflux system is widely studied among the resistance mechanisms developed by this species. The present study evaluates the inhibition of the MepA efflux pump by thiadiazine-derived compounds. For this purpose, thiadiazine-derived compounds (IJ-14 to IJ-20) were tested against S. aureus K2068 strains. Microdilution tests were initially conducted to assess the Minimum Inhibitory Concentration (MIC) of the compounds and their efflux pump inhibition activity. In addition, fluorimetry tests were performed using BrEt emission and tests were conducted to inhibit the expression of the mepA gene. This involved comparing the bacterial gene expression with the antibiotic alone to the gene expression after combining compounds (IJ-17 and IJ-20) with the antibiotic. Furthermore, membrane permeability assessment tests and in silico molecular docking tests were performed. It was observed that the IJ17 and IJ20 compounds exhibited direct activity against the tested strain. The IJ17 compound produced significant results in the gene inhibition tests, which was also evidenced through the membrane permeability alteration test. These findings suggest that thiadiazine-derived compounds have promising effects against one of the main resistance mechanisms, with the IJ17 compound presenting observable mechanisms of action.
Assuntos
Antibacterianos , Proteínas de Bactérias , Permeabilidade da Membrana Celular , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Tiazinas/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genéticaRESUMO
This study investigated crotamine (CTA), a peptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, known for its exceptional cell penetration potential. The objective was to explore the antibacterial and antifungal activity of CTA, its ability to inhibit efflux pumps and evaluate the effectiveness of its pharmacological combination with antibiotics and antifungals. In microbiological assays, CTA in combination with antibiotics was tested against strains of S. aureus and the inhibition of NorA, Tet(K) and MepA efflux pumps was also evaluated. CTA alone did not present clinically relevant direct antibacterial action, presenting MIC > 209.7 µM against strains S. aureus 1199B, IS-58, K2068. The standard efflux pump inhibitor CCCP showed significant effects in all negative relationships to assay reproducibility. Against the S. aureus 1199B strain, CTA (20.5 µM) associated with norfloxacin diluted 10 × (320.67 µM) showed a potentiating effect, in relation to the control. Against the S. aureus IS-58 strain, the CTA associated with tetracycline did not show a significant combinatorial effect, either with 2304 or 230.4 µM tetracycline. CTA at a concentration of 2.05 µM associated with ciprofloxacin at a concentration of 309.4 µM showed a significant potentiating effect. In association with EtBr, CTA at concentrations of 2.05 and 20.5 µM potentiated the effect in all strains tested, reducing the prevention of NorA, Tet(K) and MepA efflux pumps. In the C. albicans strain, a potentiating effect of fluconazole (334.3 µM) was observed when combined with CTA (2.05 µM). Against the C. tropicalis strain, a significant effect was also observed in the association of fluconazole 334.3 µM, where CTA 2.05 µM considerably reduced fungal growth and decreased the potentiation of fluconazole. Against the C. krusei strain, no significant potentiating effect of fluconazole was obtained by CTA. Our results indicate that CTA in pharmacological combination potentiates the effects of antibiotics and antifungal. This represents a new and promising antimicrobial strategy for treating a wide variety of infections.
Assuntos
Antibacterianos , Antifúngicos , Venenos de Crotalídeos , Crotalus , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Antibacterianos/farmacologia , Venenos de Crotalídeos/farmacologia , Animais , Staphylococcus aureus/efeitos dos fármacos , Sinergismo Farmacológico , Candida albicans/efeitos dos fármacos , Serpentes PeçonhentasRESUMO
Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to discover therapeutic targets and repurpose commercial existing drugs. Using subtractive proteomics, we refined the dataset to discard redundant proteins and minimize potential cross-interactions with human proteins and the microbiome proteins. We identified 12 key proteins, including a histidine kinase and members of the RND efflux pump family, known for their roles in antibiotic resistance, virulence, and antigenicity. Predictive modeling of the three-dimensional structures of these RND proteins and subsequent molecular ensemble-docking simulations led to the identification of MK-3207, R-428, and Suramin as promising inhibitor candidates. These compounds demonstrated high binding affinities and effective inhibition across multiple metrics. Further refinement using non-covalent interaction index methods provided deeper insights into the electronic effects in protein-ligand interactions, with Suramin exhibiting superior binding energies, suggesting its broad-spectrum inhibitory potential. Our findings confirm the critical role of RND efflux pumps in antibiotic resistance and suggest that MK-3207, R-428, and Suramin could be effectively repurposed to target these proteins. This approach highlights the potential of drug repurposing as a viable strategy to combat P. aeruginosa infections.
Assuntos
Antibacterianos , Proteínas de Bactérias , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Proteoma , Proteômica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Proteômica/métodos , Proteoma/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Suramina/farmacologia , Suramina/química , HumanosRESUMO
Candida tropicalis is regarded as an opportunistic pathogen, causing diseases ranging from superficial infections to life-threatening disseminated infections. The ability of this yeast to form biofilms and develop resistance to antifungals represents a significant therapeutic challenge. Herein, the effect of geraniol (GER), alone and combined with fluconazole (FLZ), was evaluated in the planktonic and sessile cells of azole-resistant C. tropicalis. GER showed a time-dependent fungicidal effect on the planktonic cells, impairing the cell membrane integrity. Additionally, GER inhibited the rhodamine 6G efflux, and the molecular docking analyzes supported the binding affinity of GER to the C. tropicalis Cdr1 protein. GER exhibited a synergism with FLZ against the planktonic and sessile cells, inhibiting the adhesion of the yeast cells and the viability of the 48-h biofilms formed on abiotic surfaces. C. tropicalis biofilms treated with GER, alone or combined with FLZ, displayed morphological and ultrastructural alterations, including a decrease in the stacking layers and the presence of wilted cells. Moreover, neither GER alone nor combined with FLZ caused toxicity, and both treatments prolonged the survival of the Galleria mellonella larvae infected with azole-resistant C. tropicalis. These findings indicate that the combination of GER and FLZ may be a promising strategy to control azole-resistant C. tropicalis infections.
RESUMO
The emergence and propagation of bacteria resistant to antimicrobial drugs is a serious public health threat worldwide. The current antibacterial arsenal is becoming obsolete and the pace of drug development is decreasing, highlighting the importance of investment in alternative approaches to treat or prevent infections caused by antimicrobial-resistant bacteria. A significant mechanism of antimicrobial resistance employed by Gram-negative bacteria is the overexpression of efflux pumps that can extrude several compounds from the bacteria, including antimicrobials. The overexpression of efflux pump proteins has been detected in several multidrug resistant (MDR) Gram-negative bacteria, drawing attention to these proteins as potential targets against these pathogens. This review will focus on the role of outer membrane proteins (OMPs) from efflux pumps as potential vaccine candidates against clinically relevant MDR Gram-negative bacteria, discussing advantages and pitfalls. Additionally, we will explore the relevance of efflux pump OMP diversity and the possible impact of vaccination on microbiota.
RESUMO
Acinetobacter baumannii belongs to the ESKAPE group. It is classified as a critical priority group by the World Health Organization and a global concern on account of its capacity to acquire and develop resistance mechanisms to multiple antibiotics. Data from the United States indicates 500 deaths annually. Resistance mechanisms of this bacterium include enzymatic pathways such as ß-lactamases, carbapenemases, and aminoglycoside-modifying enzymes, decreased permeability, and overexpression of efflux pumps. A. baumannii has been demonstrated to possess efflux pumps, which are classified as members of the MATE family, RND and MFS superfamilies, and SMR transporters. The aim of our work was to assess the distribution of efflux pumps and their regulatory gene expression in clinical strains of A. baumannii isolated from burned patients. METHODS: From the Clinical Microbiology Laboratory at the Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra collection in Mexico, 199 strains were selected. Antibiotics susceptibilities were performed by broth microdilutions to determine minimal inhibitory concentrations. Phenotypic assays with efflux pump inhibitors were conducted using carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and phenylalanine-arginine ß-naphthylamide (PAßN) in conjunction with amikacin, ceftazidime, imipenem, meropenem and levofloxacin. A search was conducted for structural genes that are linked to efflux pumps, and the relative expression of the adeR, adeS, and adeL genes was analyzed. RESULTS: Among a total of 199 strains, 186 exhibited multidrug resistance (MDR). Fluoroquinolones demonstrated the highest resistance rates, while minocycline and amikacin displayed comparatively reduced resistance rates (1.5 and 28.1, respectively). The efflux activity of fluorquinolones exhibited the highest phenotypic detection (from 85 to 100%), while IMP demonstrated the lowest activity of 27% with PAßN and 43.3% with CCCP. Overexpression was observed in adeS and adeL, with adeR exhibiting overexpression. Concluding that clinical strains of A. baumannii from our institution exhibited efflux pumps as one of the resistance mechanisms.
RESUMO
Pseudomonas aeruginosa infections have become a serious threat to public health due to the increasing emergence of extensively antibiotic-resistant strains and high mortality rates. Therefore, the search for new therapeutic alternatives has become crucial. In this study, the antivirulence and antibacterial activity of methyl gallate was evaluated against six clinical isolates of extensively antibiotic-resistant P. aeruginosa. Methyl gallate exhibited minimal inhibitory concentrations of 256-384 µg/mL; moreover, the use of subinhibitory concentrations of the compound inhibited biofilm formation, swimming, swarming, proteolytic activity, and pyocyanin production. Methyl gallate plus antipseudomonal antibiotics showed a synergistic effect by reduced the MICs of ceftazidime, gentamicin and meropenem. Furthermore, the potential therapeutic effect of methyl gallate was demonstrated in an infection model. This study evidenced the antivirulence and antimicrobial activity of methyl gallate as a therapeutic alternative against P. aeruginosa.
Assuntos
Antibacterianos , Biofilmes , Sinergismo Farmacológico , Ácido Gálico , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Virulência/efeitos dos fármacos , Humanos , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Piocianina/metabolismo , Meropeném/farmacologia , Ceftazidima/farmacologia , Camundongos , Gentamicinas/farmacologia , Modelos Animais de DoençasRESUMO
Fusarium oxysporum is a cross-kingdom pathogen that infects humans, animals, and plants. The primary concern regarding this genus revolves around its resistance profile to multiple classes of antifungals, particularly azoles. However, the resistance mechanism employed by Fusarium spp. is not fully understood, thus necessitating further studies to enhance our understanding and to guide future research towards identifying new drug targets. Here, we employed an untargeted proteomic approach to assess the differentially expressed proteins in a soil isolate of Fusarium oxysporum URM7401 cultivated in the presence of amphotericin B and fluconazole. In response to antifungals, URM7401 activated diverse interconnected pathways, such as proteins involved in oxidative stress response, proteolysis, and lipid metabolism. Efflux proteins, antioxidative enzymes and M35 metallopeptidase were highly expressed under amphotericin B exposure. Antioxidant proteins acting on toxic lipids, along with proteins involved in lipid metabolism, were expressed during fluconazole exposure. In summary, this work describes the protein profile of a resistant Fusarium oxysporum soil isolate exposed to medical antifungals, paving the way for further targeted research and discovering new drug targets.
Assuntos
Anfotericina B , Antifúngicos , Fluconazol , Proteínas Fúngicas , Fusarium , Proteômica , Microbiologia do Solo , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Fusarium/genética , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fluconazol/farmacologia , Anfotericina B/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Proteoma/análiseRESUMO
BACKGROUND: Currently, the Enterobacteriaceae species are responsible for a variety of serious infections and are already considered a global public health problem, especially in underdeveloped countries, where surveillance and monitoring programs are still scarce and limited. Analyses were performed on the complete genome of an extensively antibiotic-resistant strain of Enterobater hormaechei, which was isolated from a patient with non-Hodgkin's lymphoma, who had been admitted to a hospital in the city of Manaus, Brazil. METHODS: Phenotypical identification and susceptibility tests were performed in automated equipment. Total DNA extraction was performed using the PureLink genomic DNA mini-Kit. The genomic DNA library was prepared with Illumina Microbial Amplicon Prep and sequenced in the MiSeq Illumina Platform. The assembly of the whole-genome and individual analyses of specific resistance genes extracted were carried out using online tools and the Geneious Prime software. RESULTS: The analyses identified an extensively resistant ST90 clone of E. hormaechei carrying different genes, including blaCTX-M-15, blaGES-2, blaTEM-1A, blaACT-15, blaOXA-1 and blaNDM-1, [aac(3)-IIa, aac(6')-Ian, ant(2â³)-Ia], [aac(6')-Ib-cr, (qnrB1)], dfrA25, sul1 and sul2, catB3, fosA, and qnrB, in addition to resistance to chlorhexidine, which is widely used in patient antisepsis. CONCLUSIONS: These findings highlight the need for actions to control and monitor these pathogens in the hospital environment.
Assuntos
Farmacorresistência Bacteriana Múltipla , Enterobacter , Genoma Bacteriano , Linfoma não Hodgkin , Sequenciamento Completo do Genoma , Humanos , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/microbiologia , Linfoma não Hodgkin/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento Completo do Genoma/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana , BrasilRESUMO
Aim: To evaluate the action of promethazine, fluoxetine and carbonyl cyanide 3-chlorophenylhydrazone as efflux pump inhibitors (EPIs) against multidrug-resistant Pseudomonas aeruginosa. Methods: The effect of the compounds was evaluated in planktonic cells and bacterial biofilms. Accumulation tests were performed with ethidium bromide to prove their action as EPIs. Then, they were associated with antimicrobials. Results: Effect on planktonic cells and biofilms was found. Assays with ethidium bromide indicate their action as EPIs. Significant reductions in the metabolic activity of biofilms were observed after the association with the antimicrobials, especially for meropenem. Conclusion: It is possible to prove the action of these compounds as EPIs for P. aeruginosa and demonstrate the relevance of efflux pumps in antimicrobial resistance.
[Box: see text].
Assuntos
Antibacterianos , Biofilmes , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Prometazina/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , HidrazonasRESUMO
This study aimed to evaluate the antibacterial and inhibitory action of NorA, Tet(K), MsrA and MepA efflux pumps in S. aureus strains using the sesquiterpenes named trans-caryophyllene and caryophyllene oxide, both isolated and encapsulated in liposomes. The antibacterial and inhibitory action of these efflux pumps was evaluated through the serial microdilution test in 96-well microplates. Each sesquiterpene and liposome/sesquiterpene was combined with antibiotics and ethidium bromide (EtBr). The antibiotics named norfloxacin, tetracycline and erythromycin were used. The 1199 B, IS-58, RN4220 and K2068 S. aureus strains carrying NorA, Tet(K), MsrA and MepA, respectively, were tested. In the fluorescence measurement test, K2068 S. aureus was incubated with the sesquiterpenes and EtBr, and the fluorescence emission by EtBr was measured. The tested substances did not show direct antibacterial activity, with MIC >1024 µg/mL. Nonetheless, the isolated trans-caryophyllene and caryophyllene oxide reduced the MIC of antibiotics and EtBr, indicating inhibition of NorA, Tet(K) and MsrA. In the fluorescence test, these same sesquiterpenes increased fluorescence emission, indicating inhibition of MepA. Therefore, the sesquiterpenes named trans-caryophyllene and caryophyllene oxide did not show direct antibacterial action; however, in their isolated form, they showed possible inhibitory action on NorA, Tet(K), MsrA and MepA efflux pumps. They may also act in antibiotic potentiation. Further studies are needed to identify the mechanisms involved in antibiotic potentiation and efflux pump inhibitory action.
Assuntos
Lipossomos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Sesquiterpenos Policíclicos , Etídio , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos MedicamentosRESUMO
Chalcones have an open chain flavonoid structure that can be obtained from natural sources or by synthesis and are widely distributed in fruits, vegetables, and tea. They have a simple and easy to handle structure due to the α-ß-unsaturated bridge responsible for most biological activities. The facility to synthesize chalcones combined with its efficient in combating serious bacterial infections make these compounds important agents in the fight against microorganisms. In this work, the chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HDZPNB) was characterized by spectroscopy and electronic methods. In addition, microbiological tests were performed to investigate the modulator potential and efflux pump inhibition on S. aureus multi-resistant strains. The modulating effect of HDZPNB chalcone in association with the antibiotic norfloxacin, on the resistance of the S. aureus 1199 strain, resulted in increase the MIC. In addition, when HDZPNB was associated with ethidium bromide (EB), it caused an increase in the MIC value, thus not inhibiting the efflux pump. For the strain of S. aureus 1199B, carrying the NorA pump, the HDZPNB associated with norfloxacin showed no modulatory, and when the chalcone was used in association with EB, it had no inhibitory effect on the efflux pump. For the tested strain of S. aureus K2068, which carries the MepA pump, it can be observed that the chalcone together the antibiotic resulted in an increase the MIC. On the other hand, when chalcone was used in association with EB, it caused a decrease in bromide MIC, equal to the reduction caused by standard inhibitors. Thus, these results indicate that the HDZPNB could also act as an inhibitor of the S. aureus gene overexpressing pump MepA. The molecular docking reveals that chalcone has a good binding energies -7.9 for HDZPNB/MepA complexes, molecular dynamics simulations showed that Chalcone/MetA complexes showed good stability of the structure in an aqueous solution, and ADMET study showed that the chalcone has a good oral bioavailability, high passive permeability, low risk of efflux, low clearance rate and low toxic risk by ingestion. The microbiological tests show that the chalcone can be used as a possible inhibitor of the Mep A efflux pump.Communicated by Ramaswamy H. Sarma.
Assuntos
Chalcona , Chalconas , Nitrofenóis , Antibacterianos/química , Staphylococcus aureus , Norfloxacino/farmacologia , Norfloxacino/metabolismo , Simulação de Acoplamento Molecular , Chalcona/farmacologia , Chalconas/farmacologia , Testes de Sensibilidade Microbiana , Etídio/metabolismo , Proteínas de Bactérias/química , Proteínas Associadas à Resistência a Múltiplos MedicamentosRESUMO
The efflux systems are considered important mechanisms of bacterial resistance due to their ability to extrude various antibiotics. Several naturally occurring compounds, such as sesquiterpenes, have demonstrated antibacterial activity and the ability to inhibit efflux pumps in resistant strains. Therefore, the objective of this research was to analyze the antibacterial and inhibitory activity of the efflux systems NorA, Tet(K), MsrA, and MepA by sesquiterpenes nerolidol, farnesol, and α-bisabolol, used either individually or in liposomal nanoformulation, against multi-resistant Staphylococcus aureus strains. The methodology consisted of in vitro testing of the ability of sesquiterpenes to reduce the Minimum Inhibitory Concentration (MIC) and enhance the action of antibiotics and ethidium bromide (EtBr) in broth microdilution assays. The following strains were used: S. aureus 1199B carrying the NorA efflux pump, resistant to norfloxacin; IS-58 strain carrying Tet(K), resistant to tetracyclines; RN4220 carrying MsrA, conferring resistance to erythromycin. For the EtBr fluorescence measurement test, K2068 carrying MepA was used. It was observed the individual sesquiterpenes exhibited better antibacterial activity as well as efflux pump inhibition. Farnesol showed the lowest MIC of 16.5 µg/mL against the S. aureus RN4220 strain. Isolated nerolidol stood out for reducing the MIC of EtBr to 5 µg/mL in the 1199B strain, yielding better results than the positive control CCCP, indicating strong evidence of NorA inhibition. The liposome formulations did not show promising results, except for liposome/farnesol, which reduced the MIC of EtBr against 1199B and RN4220. Further research is needed to evaluate the mechanisms of action involved in the inhibition of resistance mechanisms by the tested compounds.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Sesquiterpenos , Farneseno Álcool/farmacologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Lipossomos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Antibacterianos/farmacologia , Sesquiterpenos/farmacologia , Etídio/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismoRESUMO
Multidrug resistance is a significant health problem worldwide, with increasing mortality rates, especially in the last few years. In this context, a consistent effort has been made to discover new antibacterial agents, and evidence points to natural products as the most promising source of bioactive compounds. This research aimed to characterize the antibacterial effect of the essential oil of Etlingera elatior (EOEE) and its major constituents against efflux pump-carrying Staphylococcus aureus strains. The essential oil was extracted from fresh inflorescences by hydrodistillation. Chemical analysis was performed using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography equipped with a flame ionization detector (GC-FID). The strains RN-4220, 1199B, IS-58, and 1199 of S. aureus were used to evaluate the antibacterial activity and the inhibition of efflux pumps. A total of 23 compounds were identified, including dodecanal and 1-dodecanol as major compounds. EOEE and dodecanal showed weak activity against the strains, while 1-dodecanol inhibited bacterial growth at low concentrations, indicating strong antibacterial activity. In addition, this compound potentiated the activity of norfloxacin against S. aureus 1199. In conclusion, 1-dodecanol was identified as the most effective compound of EOEE, showing significant potential to be used in antibacterial drug development.
Assuntos
Óleos Voláteis , Staphylococcus aureus , Cromatografia Gasosa-Espectrometria de Massas , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Dodecanol/farmacologiaRESUMO
Valencene and nootkatone are aromatic sesquiterpenes with known biological activities, such as antimicrobial, antioxidant, anti-inflammatory, and antitumor. Given the evidence that encapsulation into nanosystems, such as liposomes, could improve the properties of several compounds, the present study aimed to evaluate the activity of these sesquiterpenes in their isolated state or in liposomal formulations against strains of Staphylococcus aureus carrying efflux pumps. The broth microdilution method evaluated the antibiotic-enhancing activity associated with antibiotics and ethidium bromide (EtBr). The minimum inhibitory concentration was assessed in strains of S. aureus 1199B, IS-58, and RN4220, which carry the efflux proteins NorA, Tet(K), and MsrA. In tests with strain 1199B, valencene reduced the MIC of norfloxacin and EtBr by 50%, while the liposomal formulation of this compound did not show a significant effect. Regarding the strain IS-58, valencene, and its nanoformulation reduced norfloxacin MIC by 60.3% and 50%, respectively. In the non-liposomal form, the sesquiterpene reduced the MIC of EtBr by 90%. Against the RN4220 strain, valencene reduced the MIC of the antibiotic and EtBr by 99% and 93.7%, respectively. Nootkatone and its nanoformulation showed significant activity against the 1199B strain, reducing the EtBr MIC by 21.9%. Against the IS-58 strain, isolated nootkatone reduced the EtBr MIC by 20%. The results indicate that valencene and nootkatone potentiate the action of antibiotics and efflux inhibitors in strains carrying NorA, Tet(K), and MsrA proteins, which suggests that these sesquiterpenes act as efflux pump inhibitors in S. aureus. Therefore, further studies are needed to assess the impact of incorporation into liposomes on the activity of these compounds in vivo.
RESUMO
Antimicrobial resistance is a major global public health problem, with fluoroquinolone-resistant strains of Escherichia coli posing a significant threat. This study examines the genetic characterization of ESBL-producing E. coli isolates in Mexican hospitals, which are resistant to both cephalosporins and fluoroquinolones. A total of 23 ESBL-producing E. coli isolates were found to be positive for the qepA gene, which confers resistance to fluoroquinolones. These isolates exhibited drug resistance phenotypes and belonged to specific sequence types and phylogenetic groups. The genetic context of the qepA gene was identified in a novel genetic context flanked by IS26 sequences. Mating experiments showed the co-transfer of qepA1 and chrA determinants alongside blaCTX-M-15 genes, emphasizing the potential for these genetic structures to spread among Enterobacterales. The emergence of multidrug-resistant Gram-negative bacteria carrying these resistance genes is a significant clinical concern for public healthcare systems.
Assuntos
Infecções por Escherichia coli , Fluoroquinolonas , Humanos , Fluoroquinolonas/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Filogenia , México , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética , beta-Lactamases/genéticaRESUMO
Fungicides are indispensable for high-quality crops, but the rapid emergence and evolution of fungicide resistance have become the most important issues in modern agriculture. Hence, the sustainability and profitability of agricultural production have been challenged due to the limited number of fungicide chemical classes. Resistance to site-specific fungicides has principally been linked to target and non-target site mechanisms. These mechanisms change the structure or expression level, affecting fungicide efficacy and resulting in different and varying resistance levels. This review provides background information about fungicide resistance mechanisms and their implications for developing anti-resistance strategies in plant pathogens. Here, our purpose was to review changes at the target and non-target sites of quinone outside inhibitor (QoI) fungicides, methyl-benzimidazole carbamate (MBC) fungicides, demethylation inhibitor (DMI) fungicides, and succinate dehydrogenase inhibitor (SDHI) fungicides and to evaluate if they may also be associated with a fitness cost on crop pathogen populations. The current knowledge suggests that understanding fungicide resistance mechanisms can facilitate resistance monitoring and assist in developing anti-resistance strategies and new fungicide molecules to help solve this issue. © 2023 Society of Chemical Industry.
Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica , Doenças das Plantas/prevenção & controle , Succinato Desidrogenase , Produtos AgrícolasRESUMO
INTRODUCTION: Candida tropicalis is a common non-albicans Candida (NAC) species that causes numerous fungal infections. Increasing antifungal resistance to azoles in NAC is becoming a major health problem worldwide; however, in Egypt, almost no data is available regarding fluconazole resistance mechanisms in C. tropicalis. The current study aims to investigate two possible important molecular mechanisms involved in fluconazole resistance in C. tropicalis isolates. MATERIALS: Fifty-four clinical C. tropicalis isolates were included. Identification and antifungal susceptibility profiles of the isolates were carried out using the VITEK 2 compact system. The molecular investigation of fluconazole resistance included the expression of the CDR1 and MDR1 genes by quantitative real-time RT-PCR as well as the sequence analysis of the ERG11 gene. RESULTS: Antifungal susceptibility testing identified 30 fluconazole-non-susceptible isolates. Statistically, CDR1 gene expression in fluconazole-non-susceptible isolates was significantly higher than that in fluconazole-susceptible isolates, with MDR1 gene expression levels that were similar in both non-susceptible and susceptible isolates. Sequence analysis of the ERG11 gene of 26 fluconazole-resistant isolates identified two missense mutations: A395T (Y132F) and G1390A (G464S). CONCLUSIONS: This study has highlighted the role of overexpression of the CDR1 gene and ERG11 gene mutations in fluconazole non-susceptibility. Further studies in Egypt are required to investigate other possible molecular mechanisms involved in azole resistance.