RESUMO
BACKGROUND: Dengue is a serious public health problem worldwide, including Panama. During the last years, the number of dengue cases has increased. This may be due to the presence of mosquito populations resistant to insecticides. The aim of this study was to characterize the resistance status, its enzymatic mechanisms and Kdr mutations in wild populations of Aedes aegypti and Aedes albopictus. METHODS: Standard WHO bioassays were performed using insecticide-treated filter papers to determine resistance in populations Ae. aegypti and Ae. albopictus to pyrethroids insecticides, organophosphates, to the carbamate propoxur and to the organochlorine DDT. Biochemical assays were conducted to detect metabolic resistance mechanisms and real-time PCR was performed to determine the frequencies of the Kdr mutations Val1016IIe and F1534C. RESULTS: The strains Ae. aegypti El Coco showed confirmed resistance to deltamethrin (78.5% mortality) and lambda-cyhalothrin (81%), Aguadulce to deltamethrin (79.3%), David to deltamethrin (74.8%) and lambda-cyhalothrin (87.5%) and Puerto Armuelles to permethrin (83%). Aedes aegypti El Empalme showed confirmed resistance to pirimiphos-methyl (62.3% mortality), chlorpyrifos-methyl (55.5%) and propoxur (85.3%). All strains of Ae. albopictus showed possible resistance to PYs and five strains to DDT. Only Ae. albopictus Canto del Llano showed confirmed resistance to pirimiphos-methyl (70% mortality) and malathion (62%). Esterase activity was variable across sites with the most frequent expression of α-EST compared to ß-EST in Ae. aegypti populations. In Ae. Albopictus, the expressed enzymes were ß-EST and MFOs. Through ANOVA, significant differences were established in the levels of enzymatic activity of α- and ß-EST, MFOs and GST, with p < 0.001 in the Ae. aegypti and Ae. albopictus. The Kdr Val1016IIe mutation was detected in Ae. aegypti Aguadulce, El Coco and David. The odds ratio for the Val1016Ile mutation ranged from 0.8 to 20.8 in resistant mosquitoes, indicating the association between pyrethroid phenotypic resistance and the kdr mutation. CONCLUSION: The presence of a varied and generalized resistance, enzymatic mechanisms and the Val1016IIe mutation may be associated with the intensive use and possibly misuse of the different insecticides applied to control Aedes populations. These results highlight the need to develop a program for resistance management. Also, alternative approaches to mosquito control that do not involve insecticides should be explored.
RESUMO
Otitis externa is an inflammatory disease of the external ear canal of complex and multifactorial etiology associated with recurrent bacterial infection. This study aimed to assess the antimicrobial and antibiofilm activity of promethazine against bacterial isolates from dogs with otitis externa, as well as the effect of this compound on the dynamics of biofilm formation over 120 h. Planktonic bacterial susceptibility to promethazine was evaluated to determine the minimum inhibitory concentrations (MIC). The minimum biofilm eradication concentration (MBEC) was also determined by broth microdilution. To evaluate the effect on biofilm growth, promethazine was tested at three concentrations MIC, MIC/2 and MIC/8, with daily readings at 48, 72, 96 and 120 h. The MICs of promethazine ranged from 48.83 to 781.25 µg mL-1. Promethazine significantly (P < 0.05) reduced mature biofilm biomass, with MBECs ranging from 48.8 to 6250 µg mL-1 and reduced (P < 0.01) biofilm formation for up to the 120-h, at concentrations corresponding to the MIC obtained against each isolate. Promethazine was effective against microorganisms associated with canine otitis externa. The data suggest that promethazine presents antimicrobial and antibiofilm activity and is a potential alternative to treat and prevent recurrent bacterial otitis in dogs. These results emphasize the importance of drug repurposing in veterinary otology as an alternative to reduce antimicrobial resistance.
Assuntos
Antibacterianos , Biofilmes , Doenças do Cão , Testes de Sensibilidade Microbiana , Otite Externa , Prometazina , Animais , Cães , Biofilmes/efeitos dos fármacos , Prometazina/farmacologia , Doenças do Cão/microbiologia , Doenças do Cão/tratamento farmacológico , Antibacterianos/farmacologia , Otite Externa/microbiologia , Otite Externa/veterinária , Otite Externa/tratamento farmacológico , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificaçãoRESUMO
The results of in vitro and in vivo studies have shown the pro-tumor effects of TNF-α, and this cytokine's increased expression is associated with poor prognosis in patients with some types of cancer. Our study objective was to evaluate the possible association of TNF-α genetic polymorphisms and serum levels with susceptibility and prognosis in a cohort of Mexican patients with NB. We performed PCR-RFLP and ELISA methods to analyze the genetics of these SNPs and determine serum concentrations, respectively. The distribution of the -308 G>A and -238 G>A polymorphisms TNFα genotypes was considerably different between patients with NB and the control group. The SNP rs1800629 GG/GA genotypes were associated with a decreased risk of NB (OR = 0.1, 95% CI = 0.03-0.393, p = 0.001) compared with the AA genotype, which was associated with susceptibility to NB (OR = 2.89, 95% CI = 1.45-5.76, p = 0.003) and related to unfavorable histology and high-risk NB. The rs361525 polymorphism GG genotype was associated with a lower risk of developing NB compared with the GA and AA genotypes (OR = 0.2, 95% CI = 0.068-0.63, p = 0.006). Circulating TNF-α serum concentrations were significantly different (p < 0.001) between patients with NB and healthy controls; however, we found no relationship between the analyzed TNF-α serum levels and SNP genotypes. We found associations between the rs1800629AA genotype and lower event-free survival (p = 0.026); SNP rs361525 and TNF-α levels were not associated with survival in patients with NB. Our results suggest the TNF-α SNP rs1800629 as a probable factor of NB susceptibility. The -308 G/A polymorphism AA genotype has a probable role in promoting NB development and poor prognosis associated with unfavorable histology, high-risk tumors, and lower EFS in Mexican patients with NB. It should be noted that it is important to conduct research on a larger scale, through inter-institutional studies, to further evaluate the contribution of TNF-α genetic polymorphisms to the risk and prognosis of NB.
Assuntos
Predisposição Genética para Doença , Neuroblastoma , Polimorfismo de Nucleotídeo Único , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/sangue , Neuroblastoma/genética , Neuroblastoma/sangue , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Masculino , Feminino , México , Pré-Escolar , Lactente , Criança , Prognóstico , Genótipo , Estudos de Coortes , Estudos de Casos e ControlesRESUMO
BACKGROUND: Recurrent vulvovaginal candidosis (RVVC) is a chronic infection affecting 8-10% of women worldwide. Biofilm production of the infecting species and reduced sensitivity to antimycotics could contribute to the recurrence of this infection. This study aimed to examine the biofilm production ability and antifungal susceptibility of genital yeast isolates to determine their virulence potential. METHODS: Matrix-assisted laser desorption in ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to identify 300 Candida species. Using crystal violet method, strains were categorized into non-producers, weak, moderate, and strong biofilm producers (BFP). Antifungal susceptibility testing was performed using commercial Integral System YEASTS Plus test (ISYPT) and broth microdilution method (BMM). RESULTS: MALDI-TOF MS identified 150 Candida albicans, 124 non-albicans Candida (NAC), and 26 Saccharomyces cerevisiae strains. Within 138 (46.0%) BFP, 23 (16.7%) were strong, 44 (31.9%) moderate, and 71 (51.4%) weak. BMM was done for 43 BFP selected isolates with nystatin MIC Ë1.25 µl, fluconazole MIC Ë64 µl, and clotrimazole MIC Ë1.0 µl determined by ISYPT. Compared to all examined isolates, BMM confirmed that: i) C. albicans and NAC BFP showed low sensitivity to fluconazole (12% and 4%, respectively); ii) all BFP showed low sensitivity to nystatin (12.7% C. albicans, 14.5% NAC, and 23.1% S. cerevisiae); iii) clotrimazole in vitro was the most efficient regarding C. albicans and S. cerevisiae strains, but in 4.0% NAC BFP for this antimycotic higher MIC was established. CONCLUSION: Novel antimycotics or possible combinations of antifungal agents and natural products could be a new treatment option for RVVC.
RESUMO
Staphylococcus aureus and a few species of coagulase negative are frequently associated with food poisoning. Raw milk and dairy products are among the foods usually associated with outbreaks due to staphylococcal intoxication. This study aimed to determine phenotypic and genotypic antimicrobial resistance profiles to beta-lactam drugs in Staphylococcus coagulase positive (CoPS) and negative (CoNS) isolates. A total of 58 CoPS and 45 CoNS isolates recovered from raw milk and artisanal cheese from Santa Catarina were analyzed. All isolates (n = 103) were subjected to antimicrobial susceptibility testing. High levels of resistance to penicillin (41% of CoPS and 31% of CoNS), amoxicillin (40% CoPS), ampicillin (36% CoPS), and sulfamethoxazole-trimethoprim (35% CoNS) were observed. Twenty six percent of the isolates (18 CoPS and 9 CoNS) exhibited multiresistance profile; which means, they were resistant to at least three different classes of the antimicrobial drugs. Detection of resistance genes (mecA, mecC, and blaZ) was performed using multiplex polymerase chain reaction. Twelve isolates (9 CoPS and 3 CoNS) were positive for mecA, whereas 10 strains (4 CoPS and 6 CoNS) were positive for blaZ. The detection of resistant and multidrug resistant isolates emphasizes the necessity to develop strategies to better comply with good manufacturing practices and health care guidelines.
RESUMO
We studied yeast hand carriage of 260 healthcare students. We isolated yeasts in 27 students (10.4%), without differences between medicine, nursing, and medical laboratory science programs and gender. A significant lower prevalence of carriage was shown in the clinical cycle (2.7%) compared to the basic cycle (13.5%) (p = 0.022) and the preclinical cycle (13.5%) (p = 0.014). Increased handwashing frequency and the use of alcohol gel and antiseptic soap decreased yeast carriage. Students who applied moisturizing hand cream two or more times a day had a lower frequency of yeast carriage (3.4%) than those who did not use it or used it once a day (16.5%), showing a significant difference (p = 0.016). The most prevalent species was C. parapsilosis sensu stricto (81.5%), followed by Meyerozyma guilliermondii (C. guillermondii) (7.4%), Trichosporon mucoides (7.4%), and R. mucilagenosa (3.7%). One case showed mixed carriage of C. parapsilosis and C. albicans. All strains were sensitive to voriconazole, caspofungin, and anidulafungin. This study shows hand carriage of yeast in health students, mainly by C. parapsilosis, and the frequency of infection control measures and moisturizing hand cream is associated with colonization control.
RESUMO
Over the past two decades, zoonotic sporotrichosis transmitted by naturally infected cats has become hyperendemic in Rio de Janeiro, Brazil. Sporothrix brasiliensis is the main agent involved. However, there are other forms of transmission of sporotrichosis. The aim of this study was to evaluate and associate the epidemiological, clinical and therapeutic data and the susceptibility of Sporothrix spp. to antifungal drugs in 43 non-zoonotic sporotrichosis cases. Forty-three clinical strains of Sporothrix were identified by partial sequencing of the calmodulin gene. An antifungal susceptibility test of amphotericin B, terbinafine, itraconazole, posaconazole and isavuconazole was performed according to the broth microdilution method. Most patients were male (55.8%). Regarding the source of infection, 21 patients (48.8%) reported trauma involving plants and/or contact with soil. Sporothrix brasiliensis was the predominant species (n = 39), followed by S. globosa (n = 3) and S. schenckii (n = 1). Sporothrix brasiliensis was associated with all the sources of infection, reinforcing previous data showing the presence of this species in environmental sources, as well as with all the clinical forms, including severe cases. One clinical strain of Sporothrix brasiliensis was classified as a non-wild-type strain for amphotericin B and another for itraconazole. S. schenckii was classified as non-WT for all the antifungals tested. In this context, it is important to emphasize that non-zoonotic sporotrichosis still occurs in the state of Rio de Janeiro, with S. brasiliensis as the main etiological agent, primarily associated with infections acquired after traumatic inoculation with plants and/or soil contact, followed by S. globosa and S. schenckii. In addition, non-WT strains were found, indicating the need to monitor the antifungal susceptibility profile of these species. It is crucial to investigate other natural sources of S. brasiliensis to better understand this fungal pathogen and its environment and host cycle.
RESUMO
In this work, we investigate the influence of curvature on the dynamic susceptibility in FeGe nanowires, both curved and straight, hosting a skyrmionic tube texture under the action of an external bias field, using micromagnetic simulations. Our results demonstrate that both the resonance frequencies and the number of resonant peaks are highly dependent on the curvature of the system. To further understand the nature of the spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases, describing the differences among resonance modes observed. The ability to control the dynamic properties and frequencies of these nanostructures underscores their potential application in frequency-selective magnetic devices.
RESUMO
Klebsiella pneumoniae strains that produce Klebsiella pneumoniae Carbapenemase (KPC) variants displaying resistance to ceftazidime-avibactam (CZA) often remain susceptible to meropenem (MEM), suggesting a potential therapeutic use of this carbapenem antibiotic. However, in vitro studies indicate that these sorts of strains can mutate becoming MEM-resistant, raising concerns about the effectiveness of carbapenems as treatment option. We have studied mutation rates occurring from the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae belonging to ST11. Two-step fluctuation assays (FAs) were conducted. In brief, initial cultures of KPC-114-producing K. pneumoniae showing 1 µg/mL MEM MIC were spread on Mueller-Hinton agar plates containing 2-8 µg/mL MEM. A second step of FA, at 4-16 µg/mL MEM was performed from a mutant colony obtained at 2 µg/mL MEM. Mutation rates were calculated using maximum likelihood estimation. Parental and mutant strains were sequenced by Illumina NextSeq, and mutations were predicted by variant-calling analysis. At 8 µg/mL MEM, mutants derived from parental CZA-resistant (MIC ≥ 64 µg/mL)/MEM-susceptible (MIC = 1 µg/mL) KPC-114-positive K. pneumoniae exhibited an accumulative mutation rate of 3.05 × 10-19 mutations/cell/generation, whereas at 16 µg/mL MEM an accumulative mutation rate of 1.33 × 10-19 mutations/cell/generation resulted in the reversion of KPC-114 (S181_P182 deletion) to KPC-2. These findings highlight that the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae ST11 is related to low mutation rates suggesting a low risk of therapeutic failure. In vivo investigations are necessary to confirm the clinical potential of MEM against CZA-resistant KPC variants.IMPORTANCEThe emergence of ceftazidime-avibactam (CZA) resistance among carbapenem-resistant Klebsiella pneumoniae is a major concern due to the limited therapeutic options. Strikingly, KPC mutations mediating CZA resistance are generally associated with meropenem susceptibility, suggesting a potential therapeutic use of this carbapenem antibiotic. However, the reversion of meropenem-susceptible to meropenem-resistant could be expected. Therefore, knowing the mutation rate related to this genetic event is essential to estimate the potential use of meropenem against CZA-resistant KPC-producing K. pneumoniae. In this study, we demonstrate, in vitro, that under high concentrations of meropenem, reversion of KPC-114 to KPC-2 in CZA-resistant/meropenem-susceptible K. pneumoniae belonging to the global high-risk ST11 is related to low mutation rates.
Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , Meropeném , Testes de Sensibilidade Microbiana , Taxa de Mutação , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meropeném/farmacologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , MutaçãoRESUMO
Yersiniosis, caused by Yersinia ruckeri, has become the most common disease in farmed rainbow trout Oncorhynchus mykiss in Peru, affecting Puno and Junín Regions, important aquaculture areas in the country. Florfenicol (FLO) and oxytetracycline (OXY) are the antimicrobials most frequently used to mitigate losses attributed to this pathogen. This study presents an analysis of the susceptibility patterns of 60 Y. ruckeri isolates (30 isolates each from Puno and Junín), including the type strain CECT 4319T and the strains CECT 955 and CECT 956, against FLO and OXY. Minimum inhibitory concentrations (MICs) were determined following the guideline for standard broth dilution method published by the Clinical and Laboratory Standards Institute. MIC results ranged from 4.0 to 8.0 µg ml-1 for FLO and 0.5 to 4.0 µg ml-1 for OXY. Normalized resistance interpretation (NRI) analysis identified epidemiological cut-off values of ≤16.0 µg ml-1 for FLO and ≤4.0 µg ml-1 for OXY. All Peruvian isolates, including the collection strains, were categorized as wild-type for both antimicrobials. Even though the number of Y. ruckeri isolates with MIC values of 8 µg ml-1 for FLO is more than double in Puno than in Junín (15 vs. 7 isolates), the NRI analysis showed the same epidemiological cutoff of 16 µg ml-1; while for OXY, it was 4.0 µg ml-1 for Puno and 2.0 µg ml-1 for Junín. This study establishes the basis for monitoring susceptibility to FLO and OXY in new Y. ruckeri isolates in Peruvian rainbow trout farming.
Assuntos
Antibacterianos , Doenças dos Peixes , Testes de Sensibilidade Microbiana , Oxitetraciclina , Tianfenicol , Yersinia ruckeri , Antibacterianos/farmacologia , Tianfenicol/análogos & derivados , Tianfenicol/farmacologia , Yersinia ruckeri/efeitos dos fármacos , Peru/epidemiologia , Oxitetraciclina/farmacologia , Animais , Doenças dos Peixes/microbiologia , Farmacorresistência Bacteriana , Yersiniose/veterinária , Yersiniose/microbiologia , Oncorhynchus mykissRESUMO
We present a case of a 34-year-old patient with abdominal sepsis caused by an infrequent species: Chimaeribacter arupi. Genomic analysis confirmed the identification which is difficult to achieve by other methods so far. To our knowledge, this represents the first case of infection by this species reported in Argentina.
Assuntos
Sepse , Humanos , Adulto , Sepse/microbiologia , Sepse/diagnóstico , Masculino , Argentina , RNA Ribossômico 16S/genética , Filogenia , Antibacterianos/uso terapêutico , DNA Bacteriano/genética , Infecções por Fusobacteriaceae/microbiologia , Infecções por Fusobacteriaceae/diagnóstico , Análise de Sequência de DNARESUMO
The recently Food and Drug Administration (FDA)-approved cabotegravir (CAB) has demonstrated efficacy as an antiretroviral agent for HIV treatment and prevention, becoming an important tool to stop the epidemic in the United States of America (USA). However, the effectiveness of CAB can be compromised by the presence of specific integrase natural polymorphisms, including T97A, L74M, M50I, S119P, and E157Q, particularly when coupled with the primary drug-resistance mutations G140S and Q148H. CAB's recent approval as a pre-exposure prophylaxis (PrEP) may increase the number of individuals taking CAB, which, at the same time, could increase the number of epidemiological implications. In this context, where resistance mutations, natural polymorphisms, and the lack of drug-susceptibility studies prevail, it becomes imperative to comprehensively investigate concerns related to the use of CAB. We used molecular and cell-based assays to assess the impact of T218I and T218S in the context of major resistance mutations G140S/Q148H on infectivity, integration, and resistance to CAB. Our findings revealed that T218I and T218S, either individually or in combination with G140S/Q148H, did not significantly affect infectivity, integration, or resistance to CAB. Notably, these polymorphisms also exhibited neutrality concerning other widely used integrase inhibitors, namely raltegravir, elvitegravir, and dolutegravir. Thus, our study suggests that the T218I and T218S natural polymorphisms are unlikely to undermine the effectiveness of CAB as a treatment and PrEP strategy.
RESUMO
PURPOSE: The structural similarity index measure (SSIM) has become a popular quality metric to evaluate QSM in a way that is closer to human perception than RMS error (RMSE). However, SSIM may overpenalize errors in diamagnetic tissues and underpenalize them in paramagnetic tissues, resulting in biasing. In addition, extreme artifacts may compress the dynamic range, resulting in unrealistically high SSIM scores (hacking). To overcome biasing and hacking, we propose XSIM: SSIM implemented in the native QSM range, and with internal parameters optimized for QSM. METHODS: We used forward simulations from a COSMOS ground-truth brain susceptibility map included in the 2016 QSM Reconstruction Challenge to investigate the effect of QSM reconstruction errors on the SSIM, XSIM, and RMSE metrics. We also used these metrics to optimize QSM reconstructions of the in vivo challenge data set. We repeated this experiment with the QSM abdominal phantom. To validate the use of XSIM instead of SSIM for QSM quality assessment across a range of different reconstruction techniques/algorithms, we analyzed the reconstructions submitted to the 2019 QSM Reconstruction Challenge 2.0. RESULTS: Our experiments confirmed the biasing and hacking effects on the SSIM metric applied to QSM. The XSIM metric was robust to those effects, penalizing the presence of streaking artifacts and reconstruction errors. Using XSIM to optimize QSM reconstruction regularization weights returned less overregularization than SSIM and RMSE. CONCLUSION: XSIM is recommended over traditional SSIM to evaluate QSM reconstructions against a known ground truth, as it avoids biasing and hacking effects and provides a larger dynamic range of scores.
RESUMO
Gastric cancer (GC) is the fourth most deadly cancer globally. The adducin 1 (ADD1) protein is involved in oncogenic signal transduction pathways in several types of cancer, and the rs4961 variant (c.1378 G>T, p.Gly460Trp) of the ADD1 gene is associated with salt-sensitive hypertension, renal cell cancer and breast cancer susceptibility; however, it has not been investigated in GC. The aim of the present study was to evaluate the association between the rs4961 variant and the development of GC and preneoplastic gastric lesions (PGLs) in a population from western Mexico. A total of 225 individuals who underwent an endoscopy were evaluated, of which 71 patients had histopathologically diagnosed GC and 53 patients had PGLs, with 101 patients used as controls. The rs4961 variant was genotyped by using PCR and DNA sequencing. The frequency of the mutated homozygous genotype (TT) of the rs4961 variant was <10% in the three evaluated groups, and the frequency of the minor allele (T) was <21% in the GC, PGL and control groups. Genotypic and allelic frequencies were similarly distributed in all of the studied groups (P>0.05). In summary, in the study population, the rs4961 variant was not associated with GC risk; however, its role in other populations and in other types of cancer is worthy of future research.
RESUMO
OBJECTIVES: Candida spp. is an opportunistic pathogen that causes superficial and invasive infections with nosocomial outbreaks without strict hygiene protocols. Herein, we assessed oral colonisation by Candida spp. in 209 Intensive Care Unit (ICU) patients between July 2021 and April 2022, conducting clinical, epidemiological, and microbiological characterisation of those developing oral or invasive candidiasis. METHODS: Initial oral swabs were collected within 24 h of admission in the ICU, followed by collections on Days 2, 4, 6 and 8. Swabs from denture-wearing patients, abiotic surfaces, healthcare professionals' hands, and retroauricular regions were also obtained. Recovered yeasts and filamentous fungi were identified using MALDI-TOF MS and morphological characteristics, respectively. Genetic similarity of Candida spp. isolates was evaluated using Amplified fragment length polymorphism (AFLP), and the antifungal susceptibility profile was determined by broth microdilution. RESULTS: In the study, 64.11% of patients were orally colonised by Candida spp. Of these, 80.59% were colonised within the first 24 h. Oral colonisation also occurred on subsequent days: 50%/Day 2, 26.92%/Day 4, and 11.53%/Days 6 and 8. Of the patients, 8.61% had oral candidiasis, mainly pseudomembranous. Among orally colonised patients, 2.23% developed invasive candidiasis. Besides, 89.47% of healthcare professionals evaluated were colonised. MALDI-TOF MS identified different yeast species, and C. albicans (45.34%), C. tropicalis (15.7%), and C. parapsilosis sensu stricto (9.88%) were the most prevalent. AFLP analysis indicated a high genetic correlation (≥97%) between C. parapsilosis sensu stricto isolates from patients and professionals. Three resistant C. albicans isolates were also found. CONCLUSION: This study reported a diversity of yeast and filamentous fungi species in ICU patients and highlighted early Candida spp. colonisation risks for invasive candidiasis, as well as the potential horizontal transmission in the nosocomial setting, emphasising the need for effective infection control measures.
Assuntos
Candida , Pessoal de Saúde , Unidades de Terapia Intensiva , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Candida/genética , Candida/isolamento & purificação , Candida/efeitos dos fármacos , Candida/classificação , Idoso , Adulto , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Testes de Sensibilidade Microbiana , Candidíase Bucal/microbiologia , Candidíase Bucal/epidemiologia , Candidíase Invasiva/microbiologia , Candidíase Invasiva/epidemiologia , Idoso de 80 Anos ou mais , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Boca/microbiologiaRESUMO
BACKGROUND: In the present study, we evaluated whether DEFB1 gene polymorphisms are associated with the presence of coronary artery disease (CAD). METHODS: Two rs11362 A/G, and rs1800972 C/G gene polymorphisms of DEFB1 gene were genotyped by 5'exonuclease TaqMan assays in 219 patients with CAD and 522 control individuals. RESULTS: The distribution of rs1800972 C/G polymorphisms was similar in patients with CAD and healthy controls. Nonetheless, under the co-dominant, dominant, recessive, and additive models, the AA genotype of the rs11362 A/G polymorphism was associated with the risk of developing CAD (OR = 1.89 pCCo-Dom = 0.041, OR = 1.46, pCDom = 0.034, OR = 1.69, pCRes = 0.039, and OR = 1.37, pCAdd = 0.012, respectively). In addition, the linkage disequilibrium showed that the 'AG' haplotype was associated with an increased risk of developing CAD (OR = 1.23, p = 0.042). According, with the Genotype-Tissue Expression (GTEx) consortium data, the rs11362 AA genotype is associated with a low mRNA expression of the ß-defensin-1 in tissues, such as artery aorta, artery coronary, heart left ventricle, and heart atrial appendage (p < 0.001). CONCLUSION: This study demonstrates that rs11362 A/G polymorphism of the DEFB1 gene is involved in the risk of developing CAD, and with a low RNA expression of the ß-defensin-1 in heart tissue.
Assuntos
Doença da Artéria Coronariana , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , beta-Defensinas , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , beta-Defensinas/genética , Genótipo , Fatores de Risco , Idoso , Desequilíbrio de Ligação , DNA/genética , China/epidemiologia , HaplótiposRESUMO
Copper selenide nanoparticles (Cu2-x Se NPs) have received a lot of attention in recent decades due to their interesting properties and potential applications in various areas such as electronics, health, solar cells, etc. In this study, details of the synthesis and characterization of copper selenide nanoparticles modified with gum arabic (GA) are reported. Also, through transmission electronic microscopy (TEM) analysis, the transformation of the morphology and particle size of copper selenide nanoparticles in aqueous solution was studied. In addition, we present an antimicrobial study with different microorganisms such as Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albiacans (C. albicans). Copper selenide nanoparticles were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry analysis (DSC) and TEM. XRD confirmed the crystal-line structure of the nanoparticles such as cubic berzelanite with a particle size of 6 nm ± 0.5. FTIR and TGA corroborated the surface modification of copper selenide nanoparticles with gum arabic, and DSC suggested a change in the structural phase from cubic to hexagonal. TEM analysis demonstrated that the surface modification of the Cu2-x Se NPs stabilized the nanostructure of the particles, preventing changes in the morphology and particle size. The antimicrobial susceptibility analysis of copper selenide nanoparticles indicated that they have the ability to inhibit the microbial growth of Staphylococcus aureus, Escherichia coli and Candida albicans.
RESUMO
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.
RESUMO
INTRODUCTION: Furoxan and benzofuroxan are compounds containing an N-oxide function, known for their diverse pharmacological properties, including antimicrobial and antiinflammatory effects. This study aimed to investigate these activities using an in-house library of N-oxide compounds. METHOD: Twenty compounds were tested against both Gram-positive and Gram-negative bacteria, including Cutibacterium acnes (C. acnes), a microorganism implicated in the development of acne vulgaris. One compound, (E)-4-(3-((2-(3-hydroxybenzoyl)hydrazone)methyl)phenoxy)-3- (phenylsulfonyl)-1,2,5-oxadiazol-2-N-oxide (compound 15), exhibited selective antimicrobial activity against C. acnes, with a Minimum Inhibitory Concentration (MIC) value of 2 µg/mL. Indirect measurement of Nitric Oxide (NO) release showed that compound 15 and isosorbide dinitrate, when treated with L-cysteine, produced nitrite levels of 20.1% and 9.95%, respectively. Using a NO scavenger (PTIO) in combination with compound 15 in a culture of C. acnes resulted in reduced antimicrobial activity, indicating that NO release is part of its mechanism of action. Cytotoxicity assessments using murine macrophages showed cellular viability above 70% at concentrations up to 0.78 µg/mL. RESULTS: Measurements of Interleukin-1 beta (IL1-ß) and Tumor Necrosis Factor-alpha (TNF-α) indicated that compound 15 did not reduce the levels of these pro-inflammatory cytokines. Sustained NO production by inducible Nitric Oxide Synthase (iNOS) in macrophages or neutrophils has been found to be involved in the inflammatory process in acne vulgaris and lead to toxicity in surrounding tissues. Nitrite levels in the supernatant of murine macrophages were found to be decreased at a concentration of 0.78 µg/mL of compound 15, indicating an anti-inflammatory effect. In vivo studies were conducted using Balb/c nude mice inoculated subcutaneously with C. acnes. Cream and gel formulations of compound 15 were applied to treat the animals, along with commercially available anti-acne drugs, for 14 days. Animals treated with a cream base containing 5% of compound 15 exhibited less acanthosis with mild inflammatory infiltration compared to other groups, highlighting its anti-inflammatory properties. CONCLUSION: Similar results were observed in the benzoyl peroxide group, demonstrating that compound 15 presented comparable anti-inflammatory activity to the FDA-approved drug. These promising results suggest that compound 15 has a dual mechanism of action, with selective antimicrobial activity against C. acnes and notable anti-inflammatory properties, making it a potential prototype for developing new treatments for acne vulgaris.
RESUMO
BACKGROUND: Candida vulturna is an emerging pathogen belonging to the Metshnikowiaceae family together with Candida auris and Candida haemulonii species complex. Some strains of this species were reported to be resistant to several antifungal agents. OBJECTIVES: This study aims to address identification difficulties, evaluate antiungal susceptibilities and explore the molecular mechanisms of azole resistance of Candida vulturna. METHODS: We studied five C. vulturna clinical strains isolated in three Colombian cities. Identification was performed by phenotypical, proteomic and molecular methods. Antifungal susceptibility testing was performed following CLSI protocol. Its ERG11 genes were sequenced and a substitution was encountered in azole resistant isolates. To confirm the role of this substitution in the resistance phenotype, Saccharomyces cerevisiae strains with a chimeric ERG11 gene were created. RESULTS: Discrepancies in identification methods are highlighted. Sequencing confirmed the identification as C. vulturna. Antifungal susceptibility varied among strains, with four strains exhibiting reduced susceptibility to azoles and amphotericin B. ERG11 sequencing showed a point mutation (producing a P135S substitution) that was associated with the azole-resistant phenotype. CONCLUSIONS: This study contributes to the understanding of C. vulturna's identification challenges, its susceptibility patterns, and sheds light on its molecular mechanisms of azole resistance.