RESUMO
The most common causes of congenital neutropenia are mutations in the ELANE (Elastase, Neutrophil Expressed) gene (19p13.3), mostly in exon 5 and the distal portion of exon 4, which result in different clinical phenotypes of neutropenia. Here, we report two pathogenic mutations in ELANE, namely, c.607G>C (p.Gly203Arg) and a novel variant c.416C>G (p.Pro139Arg), found in two Mexican families ascertained via patients with congenital neutropenia who responded positively to the granulocyte colony-stimulating factor (G-CSF) treatment. These findings highlight the usefulness of identifying variants in patients with inborn errors of immunity for early clinical management and the need to rule out mosaicism in noncarrier parents with more than one case in the family.
Assuntos
Neutropenia , Humanos , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Elastase de Leucócito/genética , Mutação , Neutropenia/congênitoRESUMO
Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a congenitally reduced head circumference (-3 to -5 SD) and non-progressive intellectual disability. The objective of the study was to evaluate pathogenic mutations in the ASPM gene to understand etiology and molecular mechanism of primary microcephaly. Blood samples were collected from various families across different remote areas of Pakistan from February 2017 to May 2019 who were identified to be affected with primary microcephaly. DNA extraction was performed using the salting-out method; the quality and quantity of DNA were evaluated using spectrophotometry and 1% agarose gel electrophoresis, respectively in University of the Punjab. Mutation analysis was performed by whole exome sequencing from the Cologne Center for Genomics, University of Cologne. Sanger sequencing was done in University of the Punjab to confirm the pathogenic nature of mutation. A novel 4-bp deletion mutation c.3877_3880delGAGA was detected in exon 17 of the ASPM gene in two primary microcephaly affected families (A and B), which resulted in a frame shift mutation in the gene followed by truncated protein synthesis (p.Glu1293Lysfs*10), as well as the loss of the calmodulin-binding IQ domain and the Armadillo-like domain in the ASPM protein. Using the in-silico tools Mutation Taster, PROVEAN, and PolyPhen, the pathogenic effect of this novel mutation was tested; it was predicted to be "disease causing", with high pathogenicity scores. One previously reported mutation in exon 24 (c.9730C>T) of the ASPM gene resulting in protein truncation (p.Arg3244*) was also observed in family C. Mutations in the ASPM gene are the most common cause of MCPH in most cases. Therefore, enrolling additional affected families from remote areas of Pakistan would help in identifying or mapping novel mutations in the ASPM gene of primary microcephaly.
Microcefalia primária autossômica recessiva (MCPH) é um distúrbio do neurodesenvolvimento caracterizado por uma redução congênita do perímetro cefálico (-3 a -5 DP) e deficiência intelectual não progressiva. O objetivo do estudo foi avaliar mutações patogênicas no gene ASPM a fim de compreender a etiologia e o mecanismo molecular da microcefalia primária. Amostras de sangue foram coletadas de várias famílias em diferentes áreas remotas do Paquistão de fevereiro de 2017 a maio de 2019, que foram identificadas como afetadas com microcefalia primária. A extração do DNA foi realizada pelo método salting-out; a qualidade e a quantidade de DNA foram avaliadas por espectrofotometria e eletroforese em gel de agarose a 1%, respectivamente, na Universidade de Punjab. A análise de mutação foi realizada por sequenciamento completo do exoma do Cologne Center for Genomics, University of Cologne. O sequenciamento de Sanger foi feito na Universidade do Punjab para confirmar a natureza patogênica da mutação. Uma nova mutação de deleção de 4 bp c.3877_3880delGAGA foi detectada no exon 17 do gene ASPM em duas famílias afetadas por microcefalia primária (A e B), que resultou em uma mutação de frame shift no gene seguida por síntese de proteína truncada (pGlu1293Lysfs * 10), bem como a perda do domínio IQ de ligação à calmodulina e o domínio do tipo Armadillo na proteína ASPM. Usando as ferramentas in-silico Mutation Taster, PROVEAN e PolyPhen, o efeito patogênico dessa nova mutação foi testado; foi previsto ser "causador de doenças", com altos escores de patogenicidade. Uma mutação relatada anteriormente no exon 24 (c.9730C > T) do gene ASPM, resultando em truncamento de proteína (p.Arg3244 *) também foi observada na família C. Mutações no gene ASPM são a causa mais comum de MCPH na maioria dos casos . Portanto, a inscrição de famílias afetadas adicionais de áreas remotas do Paquistão ajudaria a identificar ou mapear novas mutações no gene ASPM da microcefalia primária.
Assuntos
Humanos , Microcefalia/etiologia , Microcefalia/genética , Microcefalia/sangue , Sequenciamento do ExomaRESUMO
Abstract Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a congenitally reduced head circumference (-3 to -5 SD) and non-progressive intellectual disability. The objective of the study was to evaluate pathogenic mutations in the ASPM gene to understand etiology and molecular mechanism of primary microcephaly. Blood samples were collected from various families across different remote areas of Pakistan from February 2017 to May 2019 who were identified to be affected with primary microcephaly. DNA extraction was performed using the salting-out method; the quality and quantity of DNA were evaluated using spectrophotometry and 1% agarose gel electrophoresis, respectively in University of the Punjab. Mutation analysis was performed by whole exome sequencing from the Cologne Center for Genomics, University of Cologne. Sanger sequencing was done in University of the Punjab to confirm the pathogenic nature of mutation. A novel 4-bp deletion mutation c.3877_3880delGAGA was detected in exon 17 of the ASPM gene in two primary microcephaly affected families (A and B), which resulted in a frame shift mutation in the gene followed by truncated protein synthesis (p.Glu1293Lysfs*10), as well as the loss of the calmodulin-binding IQ domain and the Armadillo-like domain in the ASPM protein. Using the in-silico tools Mutation Taster, PROVEAN, and PolyPhen, the pathogenic effect of this novel mutation was tested; it was predicted to be disease causing, with high pathogenicity scores. One previously reported mutation in exon 24 (c.9730C>T) of the ASPM gene resulting in protein truncation (p.Arg3244*) was also observed in family C. Mutations in the ASPM gene are the most common cause of MCPH in most cases. Therefore, enrolling additional affected families from remote areas of Pakistan would help in identifying or mapping novel mutations in the ASPM gene of primary microcephaly.
Resumo Microcefalia primária autossômica recessiva (MCPH) é um distúrbio do neurodesenvolvimento caracterizado por uma redução congênita do perímetro cefálico (-3 a -5 DP) e deficiência intelectual não progressiva. O objetivo do estudo foi avaliar mutações patogênicas no gene ASPM a fim de compreender a etiologia e o mecanismo molecular da microcefalia primária. Amostras de sangue foram coletadas de várias famílias em diferentes áreas remotas do Paquistão de fevereiro de 2017 a maio de 2019, que foram identificadas como afetadas com microcefalia primária. A extração do DNA foi realizada pelo método salting-out; a qualidade e a quantidade de DNA foram avaliadas por espectrofotometria e eletroforese em gel de agarose a 1%, respectivamente, na Universidade de Punjab. A análise de mutação foi realizada por sequenciamento completo do exoma do Cologne Center for Genomics, University of Cologne. O sequenciamento de Sanger foi feito na Universidade do Punjab para confirmar a natureza patogênica da mutação. Uma nova mutação de deleção de 4 bp c.3877_3880delGAGA foi detectada no exon 17 do gene ASPM em duas famílias afetadas por microcefalia primária (A e B), que resultou em uma mutação de frame shift no gene seguida por síntese de proteína truncada (pGlu1293Lysfs * 10), bem como a perda do domínio IQ de ligação à calmodulina e o domínio do tipo Armadillo na proteína ASPM. Usando as ferramentas in-silico Mutation Taster, PROVEAN e PolyPhen, o efeito patogênico dessa nova mutação foi testado; foi previsto ser causador de doenças, com altos escores de patogenicidade. Uma mutação relatada anteriormente no exon 24 (c.9730C > T) do gene ASPM, resultando em truncamento de proteína (p.Arg3244 *) também foi observada na família C. Mutações no gene ASPM são a causa mais comum de MCPH na maioria dos casos . Portanto, a inscrição de famílias afetadas adicionais de áreas remotas do Paquistão ajudaria a identificar ou mapear novas mutações no gene ASPM da microcefalia primária.
RESUMO
Abstract Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a congenitally reduced head circumference (-3 to -5 SD) and non-progressive intellectual disability. The objective of the study was to evaluate pathogenic mutations in the ASPM gene to understand etiology and molecular mechanism of primary microcephaly. Blood samples were collected from various families across different remote areas of Pakistan from February 2017 to May 2019 who were identified to be affected with primary microcephaly. DNA extraction was performed using the salting-out method; the quality and quantity of DNA were evaluated using spectrophotometry and 1% agarose gel electrophoresis, respectively in University of the Punjab. Mutation analysis was performed by whole exome sequencing from the Cologne Center for Genomics, University of Cologne. Sanger sequencing was done in University of the Punjab to confirm the pathogenic nature of mutation. A novel 4-bp deletion mutation c.3877_3880delGAGA was detected in exon 17 of the ASPM gene in two primary microcephaly affected families (A and B), which resulted in a frame shift mutation in the gene followed by truncated protein synthesis (p.Glu1293Lysfs*10), as well as the loss of the calmodulin-binding IQ domain and the Armadillo-like domain in the ASPM protein. Using the in-silico tools Mutation Taster, PROVEAN, and PolyPhen, the pathogenic effect of this novel mutation was tested; it was predicted to be "disease causing," with high pathogenicity scores. One previously reported mutation in exon 24 (c.9730C>T) of the ASPM gene resulting in protein truncation (p.Arg3244*) was also observed in family C. Mutations in the ASPM gene are the most common cause of MCPH in most cases. Therefore, enrolling additional affected families from remote areas of Pakistan would help in identifying or mapping novel mutations in the ASPM gene of primary microcephaly.
Resumo Microcefalia primária autossômica recessiva (MCPH) é um distúrbio do neurodesenvolvimento caracterizado por uma redução congênita do perímetro cefálico (-3 a -5 DP) e deficiência intelectual não progressiva. O objetivo do estudo foi avaliar mutações patogênicas no gene ASPM a fim de compreender a etiologia e o mecanismo molecular da microcefalia primária. Amostras de sangue foram coletadas de várias famílias em diferentes áreas remotas do Paquistão de fevereiro de 2017 a maio de 2019, que foram identificadas como afetadas com microcefalia primária. A extração do DNA foi realizada pelo método salting-out; a qualidade e a quantidade de DNA foram avaliadas por espectrofotometria e eletroforese em gel de agarose a 1%, respectivamente, na Universidade de Punjab. A análise de mutação foi realizada por sequenciamento completo do exoma do Cologne Center for Genomics, University of Cologne. O sequenciamento de Sanger foi feito na Universidade do Punjab para confirmar a natureza patogênica da mutação. Uma nova mutação de deleção de 4 bp c.3877_3880delGAGA foi detectada no exon 17 do gene ASPM em duas famílias afetadas por microcefalia primária (A e B), que resultou em uma mutação de frame shift no gene seguida por síntese de proteína truncada (pGlu1293Lysfs * 10), bem como a perda do domínio IQ de ligação à calmodulina e o domínio do tipo Armadillo na proteína ASPM. Usando as ferramentas in-silico Mutation Taster, PROVEAN e PolyPhen, o efeito patogênico dessa nova mutação foi testado; foi previsto ser "causador de doenças", com altos escores de patogenicidade. Uma mutação relatada anteriormente no exon 24 (c.9730C > T) do gene ASPM, resultando em truncamento de proteína (p.Arg3244 *) também foi observada na família C. Mutações no gene ASPM são a causa mais comum de MCPH na maioria dos casos . Portanto, a inscrição de famílias afetadas adicionais de áreas remotas do Paquistão ajudaria a identificar ou mapear novas mutações no gene ASPM da microcefalia primária.
Assuntos
Humanos , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Paquistão , Consanguinidade , Mutação/genéticaRESUMO
Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a congenitally reduced head circumference (-3 to -5 SD) and non-progressive intellectual disability. The objective of the study was to evaluate pathogenic mutations in the ASPM gene to understand etiology and molecular mechanism of primary microcephaly. Blood samples were collected from various families across different remote areas of Pakistan from February 2017 to May 2019 who were identified to be affected with primary microcephaly. DNA extraction was performed using the salting-out method; the quality and quantity of DNA were evaluated using spectrophotometry and 1% agarose gel electrophoresis, respectively in University of the Punjab. Mutation analysis was performed by whole exome sequencing from the Cologne Center for Genomics, University of Cologne. Sanger sequencing was done in University of the Punjab to confirm the pathogenic nature of mutation. A novel 4-bp deletion mutation c.3877_3880delGAGA was detected in exon 17 of the ASPM gene in two primary microcephaly affected families (A and B), which resulted in a frame shift mutation in the gene followed by truncated protein synthesis (p.Glu1293Lysfs*10), as well as the loss of the calmodulin-binding IQ domain and the Armadillo-like domain in the ASPM protein. Using the in-silico tools Mutation Taster, PROVEAN, and PolyPhen, the pathogenic effect of this novel mutation was tested; it was predicted to be "disease causing", with high pathogenicity scores. One previously reported mutation in exon 24 (c.9730C>T) of the ASPM gene resulting in protein truncation (p.Arg3244*) was also observed in family C. Mutations in the ASPM gene are the most common cause of MCPH in most cases. Therefore, enrolling additional affected families from remote areas of Pakistan would help in identifying or mapping novel mutations in the ASPM gene of primary microcephaly.(AU)
Microcefalia primária autossômica recessiva (MCPH) é um distúrbio do neurodesenvolvimento caracterizado por uma redução congênita do perímetro cefálico (-3 a -5 DP) e deficiência intelectual não progressiva. O objetivo do estudo foi avaliar mutações patogênicas no gene ASPM a fim de compreender a etiologia e o mecanismo molecular da microcefalia primária. Amostras de sangue foram coletadas de várias famílias em diferentes áreas remotas do Paquistão de fevereiro de 2017 a maio de 2019, que foram identificadas como afetadas com microcefalia primária. A extração do DNA foi realizada pelo método salting-out; a qualidade e a quantidade de DNA foram avaliadas por espectrofotometria e eletroforese em gel de agarose a 1%, respectivamente, na Universidade de Punjab. A análise de mutação foi realizada por sequenciamento completo do exoma do Cologne Center for Genomics, University of Cologne. O sequenciamento de Sanger foi feito na Universidade do Punjab para confirmar a natureza patogênica da mutação. Uma nova mutação de deleção de 4 bp c.3877_3880delGAGA foi detectada no exon 17 do gene ASPM em duas famílias afetadas por microcefalia primária (A e B), que resultou em uma mutação de frame shift no gene seguida por síntese de proteína truncada (pGlu1293Lysfs * 10), bem como a perda do domínio IQ de ligação à calmodulina e o domínio do tipo Armadillo na proteína ASPM. Usando as ferramentas in-silico Mutation Taster, PROVEAN e PolyPhen, o efeito patogênico dessa nova mutação foi testado; foi previsto ser "causador de doenças", com altos escores de patogenicidade. Uma mutação relatada anteriormente no exon 24 (c.9730C > T) do gene ASPM, resultando em truncamento de proteína (p.Arg3244 *) também foi observada na família C. Mutações no gene ASPM são a causa mais comum de MCPH na maioria dos casos . Portanto, a inscrição de famílias afetadas adicionais de áreas remotas do Paquistão ajudaria a identificar ou mapear novas mutações no gene ASPM da microcefalia primária.(AU)
Assuntos
Humanos , Microcefalia/sangue , Microcefalia/etiologia , Microcefalia/genética , Sequenciamento do ExomaRESUMO
BACKGROUND: Dyskeratosis congenita is a rare disease characterized by bone marrow failure and a clinical triad of oral leukoplakia, nail dystrophy, and abnormal skin pigmentation. The genetics of dyskeratosis congenita include mutations in genes involved in telomere maintenance, including TINF2. CASE SUMMARY: Here, we report a female patient who presented thrombocytopenia, anemia, reticulate hyperpigmentation, dystrophy in fingernails and toenails, and leukoplakia on the tongue. A histopathological study of the skin showed dyskeratocytes; however, a bone marrow biopsy revealed normal cell morphology. The patient was diagnosed with dyskeratosis congenita, but her family history did not reveal significant antecedents. Whole-exome sequencing showed a novel heterozygous punctual mutation in exon 6 from the TINF2 gene, namely, NM_001099274.1:c.854delp.(Val285Alafs*32). An analysis of telomere length showed short telomeres relative to the patient's age. CONCLUSION: The disease in this patient was caused by a germline novel mutation of TINF2 in one of her parents.
RESUMO
BACKGROUND: Lissencephaly (LIS) is a cortical malformation, characterized by smooth or nearly smooth cerebral surface and a shortage of gyral and sulcal development, which is caused by deficient neuronal migration during embryogenesis. Neuronal migration involves many gene products, among which is the product of the PAFAH1B1 gene, associated with this disease. LIS is a rare disease, characterized by low population frequency, and with non-specific clinical symptoms such as early epilepsy, developmental delay or cerebral palsy-like motor problems. Given that high-throughput sequencing techniques have been improving diagnosis, we have chosen this technique for addressing this patient. CASE PRESENTATION: We present the case of a seven years old male patient with an undiagnosed rare disease, with non-specific clinical symptoms possibly compatible with lissencephaly. The patient was enrolled in a study that included the sequencing of his whole genome. Sequence data was analyzed following a bioinformatic pipeline. The variants obtained were annotated and then subjected to different filters for prioritization. Also mitochondrial genome was analyzed. A novel candidate frameshift insertion in known PAFAH1B1 gene was found, explaining the index case phenotype. The assessment through in silico tools reported that it causes nonsense mediated mechanisms and that it is damaging with high confidence scores. The insertion causes a change in the reading frame, and produces a premature stop codon, severely affecting the protein function and probably the silencing of one allele. The healthy mother did not carry the mutation, and the unaffected father was not available for analysis. CONCLUSIONS: Through this work we found a novel de novo mutation in LIS1/PAFAH1B1 gene, as a likely cause of a rare disease in a young boy with non-specific clinical symptoms. The mutation found correlates with the phenotype studied since the loss of function in the gene product has already been described in this condition. Since there are no other variants in the PAFAH1B1 gene with low population frequency and due to family history, a de novo disease mechanism is proposed.
Assuntos
Mutação da Fase de Leitura , Lisencefalia , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Humanos , Lisencefalia/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Doenças RarasRESUMO
BACKGROUND: Our aims were to describe the first Mexican patient with abetalipoproteinemia and to perform a comparative analysis of biochemical, clinical, and genetic characteristics of 100 cases reported in the literature. METHODS: We performed biochemical and molecular screenings in a Mexican girl with extremely low lipid levels and in her family. Further, we integrated and evaluated the characteristics of the cases with abetalipoproteinemia described in the literature. RESULTS: Our patient is a six-year-old girl who presented vomiting, chronic diarrhea, failure to thrive, malabsorption, acanthocytosis, anemia, transaminases elevation, and extremely low lipid levels. MTTP gene sequencing revealed homozygosity for a novel mutation p.Gly417Valfs*12 (G deletion c.1250). With the analysis of the reported cases, 60 clinical features (14 classical and 46 non-classical) were observed, being the most common acanthocytosis (57.5%), malabsorption (43.7%), and diarrhea (42.5%); 48.8% of the patients presented only classic clinical features, while the remaining 51.2% developed secondary effects due to a fat-soluble vitamin deficiency. An odds ratio analysis disclosed that patients diagnosed after 10 years of age have an increased risk for presenting clinical complications (OR = 18.0; 95% CI 6.0-54.1, p < 0.0001). A great diversity of mutations in MTTP has been observed (n = 76, being the most common p.G865X and p.N139_E140) and some of them with possible residual activity. CONCLUSION: The first Mexican patient with abetalipoproteinemia presents a novel MTTP mutation p.Gly417Valfs*12. Three factors that could modulate the phenotype in abetalipoproteinemia were identified: age at diagnosis, treatment, and the causal mutation.
Assuntos
Abetalipoproteinemia/genética , Proteínas de Transporte/genética , Mutação , Abetalipoproteinemia/etiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , México , Pessoa de Meia-Idade , LinhagemRESUMO
Xia-Gibbs syndrome (XGS) is a rare neurological disorder characterized by global developmental delay, hypotonia, intellectual disability, seizures, and sleep apnea. XGS is defined by monoallelic pathogenic variants in AHDC1. In this study, we identified a Brazilian patient carrying a likely de novo AHDC1 nonsense mutation (c.451C>T; p.Arg151*) which was absent in both parents. All disease-causative variants already associated with XGS have been reviewed and the mutation described here corresponds to the closest one to the N-terminal region. Our findings were discussed based on the suggested genotype-phenotype correlation of the disease.
RESUMO
Chronic granulomatous disease (CGD) is an inherited, genetically heterogeneous disease characterized by defective phagocytic cell microbicidal function, leading to increased susceptibility to bacterial and fungal infections. CGD is caused by mutations in components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, which is responsible for reactive oxygen species production during phagocytosis. Mutations in the neutrophil cytosolic factor 2 (NCF2) gene account for <5% of all cases. Here, we report a case of a 2-year-old female with persistent recurrent pneumopathy, even under trimethoprim-sulfamethoxazole (TMP-SMX) and itraconazole prophylaxis combined with IFNγ treatment. Genetic analysis revealed a novel homozygous mutation in NCF2, sequence depletion in a splicing region (c.256_257+2delAAGT NM_000433), leading to a K86Ifs*2 residue change in the p67-phox protein.
RESUMO
BACKGROUND: Congenital leptin deficiency is a recessive genetic disorder associated with severe early-onset obesity. It is caused by mutations in the leptin (LEP) gene, which encodes the protein product leptin. These mutations may cause nonsense-mediated mRNA decay, defective secretion or the phenomenon of biologically inactive leptin, but typically lead to an absence of circulating leptin, resulting in a rare type of monogenic extreme obesity with intense hyperphagia, and serious metabolic abnormalities. METHODS: We present two severely obese sisters from Colombia, members of the same lineal consanguinity. Their serum leptin was measured by MicroELISA. DNA sequencing was performed on MiSeq equipment (Illumina) of a next-generation sequencing (NGS) panel involving genes related to severe obesity, including LEP. RESULTS: Direct sequencing of the coding region of LEP gene in the sisters revealed a novel homozygous missense mutation in exon 3 [NM_002303.3], C350G>T [p.C117F]. Detailed information and clinical measurements of these sisters were also collected. Their serum leptin levels were undetectable despite their markedly elevated fat mass. CONCLUSIONS: The mutation of LEP, absence of detectable leptin, and the severe obesity found in these sisters provide the first evidence of monogenic leptin deficiency reported in the continents of North and South America.
Assuntos
Leptina/genética , Mutação de Sentido Incorreto/genética , Obesidade Mórbida/genética , Adulto , Colômbia , Consanguinidade , Éxons/genética , Feminino , Humanos , Leptina/deficiência , Obesidade Mórbida/fisiopatologia , Linhagem , IrmãosRESUMO
Chronic granulomatous disease (CGD) is an innate immune deficiency of phagocytic cells caused by mutations that affect components of the NADPH oxidase system, with resulting impairment in reactive oxygen species production. Patients with CGD are susceptible to recurrent infections and hyperinflammatory responses. Mutations in CYBB lead to the X-linked form of CGD and are responsible for ~ 70% of cases. In this study, we report the case of a 2.5-year-old male patient with recurrent pneumonia and Bacillus Calmette-Guérin infection (BCGitis). As his first clinical manifestation, he presented with bullous impetigo at 18 days of age, which was followed by recurrent pneumonia and regional BCGitis. Genetic analysis revealed a de novo mutation in exon 5 of the CYBB gene: a single-nucleotide substitution, c.376T > C, leading to a C126R change.
RESUMO
The alacrima, achalasia, and mental retardation syndrome (AAMR) is a newly described autosomal recessive disorder characterized by the onset of these 3 main features at birth or in early infancy. At present, only 16 cases have been reported. Recently, it was shown that AAMR is due to mutations in the guanosine diphosphate (GDP)-mannose pyrophosphorylase A (GMPPA) gene. These mutations induce a significant GDP-mannose overload, which may affect protein glycosylation. Herein, for the first time, we describe 2 adult sisters with AAMR with a previously not reported deleterious homozygous missense mutation c.1118G>C (p.Arg373Pro) in the GMPPA gene, born to healthy consanguineous heterozygous parents from an ancient endogamous population. The main symptoms in both sisters started soon after birth with achalasia and feeding difficulties, requiring surgical treatment. Both sisters showed alacrima identified during the first months of life, delayed psychomotor development, speech delay, facial dysmorphism, limb defects, short stature, and moderate intellectual disability. Alacrima and feeding difficulties due to achalasia during the neonatal period or first months of life, in the absence of adrenal cortical insufficiency, should spur to investigate AAMR by sequencing the GMPPA gene.
RESUMO
BACKGROUND: Familial hypercholesterolemia (FH) is an autosomal dominant disorder that causes accumulation of serum low-density lipoprotein cholesterol and premature cardiovascular disease. It is mainly related to mutations in the LDLR gene. Homozygous FH (HoFH) patients have the most severe form of the disease accounting for a worldwide prevalence of 1:1,000,000. In Mexico, at least 5 cases of HoFH have been reported. OBJECTIVE: The aim of this study was to describe the clinical, biochemical, and molecular data observed in patients with HoFH phenotype. METHODS: We included 13 patients, belonging to 11 families, with clinical and biochemical diagnoses suggestive of HoFH. Molecular analyses of the LDLR and APOB genes were performed by means of polymerase chain reaction followed by Sanger sequencing. RESULTS: The causal mutation of HoFH was found in 8 of 11 unrelated patients. Excepting 1, all were true homozygotes. Six different variants in LDLR were identified: c.-139delCTCCCCCTGC, p.Glu140Lys, p.Asp360His, p.Asn405Lys, p.Ala755Glyfs*7, and p.Leu759Serfs*6. Of these, p.Asp360His and p.Asn405Lys were detected for the first time in Mexico; p.Leu759Serfs*6 showed to be the most frequent (43.7% of the alleles 7/16), and c.-139delCTCCCCCTGC is a new variant located in the promoter region. CONCLUSIONS: This work increases knowledge of biochemical and genetic features in Mexican patients with HoFH. A novel mutation in the LDLR gene promoter was detected: c.-139delCTCCCCCTGC, which possibly inhibits its expression.
Assuntos
Apolipoproteínas B/genética , Homozigoto , Hiperlipoproteinemia Tipo II/genética , Mutação , Receptores de LDL/genética , Adolescente , Adulto , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , México , Linhagem , Fenótipo , Adulto JovemRESUMO
AIMS: Osteoporosis-pseudoglioma syndrome (OPPG) is an uncommon autosomal recessive disorder characterized by the rare association of early-onset osteoporosis and severe ocular abnormalities such as persistent fetal vasculature and microphthalmia. Biallelic mutations in the low-density lipoprotein receptor-related protein-5 gene (LRP5) have been associated with OPPG. We present clinical and genetic data from three Mexican OPPG patients, a pair of sibs, and a sporadic case. MATERIALS AND METHODS: Three patients underwent clinical examination, including a complete ophthalmic evaluation. Based on the clinical diagnosis of OPPG, the entire coding sequence of LRP5 was polymerase chain reaction-amplified and directly Sanger-sequenced. Genetic testing was extended to the parents of the affected patients. RESULTS: Phenotypic variability was observed in the familial case and molecular analysis identified a novel homozygous c.1145C>T, p.(Pro382Leu) variant in both sibs. As expected, their parents were heterozygous carriers. The sporadic patient exhibited a severe osseous phenotype, microphthalmia, and neurological symptoms. In this patient, homozygosity for the c.442C>T, p.(Gln148*) variant was demonstrated, whereas her parents were heterozygous carriers. The p.(Pro382Leu) pathogenic mutation has been previously reported only in a compound heterozygous state in OPPG patients. CONCLUSIONS: Two novel homozygous missense and nonsense variants were demonstrated in three OPPG cases from Mexico. Our results expand the spectrum of disease-causing LRP5 mutations. This is the first report of OPPG in our population and our findings may potentially add to a genotype-phenotype correlation.
Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Osteogênese Imperfeita/genética , Adolescente , Sequência de Bases , Densidade Óssea/genética , Criança , Feminino , Estudos de Associação Genética , Homozigoto , Humanos , Lipoproteínas LDL/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , México , Mutação/genética , Osteoporose/genética , Linhagem , IrmãosRESUMO
Ten girls with sporadic central precocious puberty were screened for mutations in the maternally imprinted gene MKRN3. We detected 1 novel frameshift mutation (p.Arg351Serfs*44) and a previously described mutation (p.Pro161Argfs*10). In the course of investigating the family, genetic analysis found 2 asymptomatic males with paternally inherited MKRN3 mutations, which has not been reported in previous studies.
Assuntos
Doenças Assintomáticas , Mutação , Herança Paterna , Puberdade Precoce/genética , Ribonucleoproteínas/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem , Ubiquitina-Proteína LigasesRESUMO
BACKGROUND: Pycnodysostosis is an autosomal recessive skeletal dysplasia, the prevalence of which is estimated to be low (1 per million). Nevertheless, in recent years we have found 27 affected individuals from 22 families in Ceará State, a region of the Brazilian Northeast, giving a local prevalence of 3 per million. This local prevalence associated with a high parental consanguinity, suggesting a possible founder effect, prompted us to perform a molecular investigation of these families to test this hypothesis. METHODS: The CTSK gene was sequenced by the Sanger method in the patients and their parents. In addition to 18 families from Ceará, this study also included 15 families from other Brazilian regions. We also investigated the origin of each family from the birthplace of the parents and/or grandparents. RESULTS: We have studied 39 patients, including 33 probands and 6 sibs, from 33 families with pycnodysostosis and identified six mutations, five previously described (c.436G>C, c.580G>A, c.721C>T, c.830C>T and c.953G>A) and one novel frameshift (c.83dupT). This frameshift variant seems to have a single origin in Ceará State, since the haplotype study using the polymorphic markers D1S2344, D1S442, D1S498 and D1S2715 suggested a common origin. Most of the mutations were found in homozygosity in the patients from Ceará (83.3 %) while in other states the mutations were found in homozygosity in half of patients. We have also shown that most of the families currently living outside of Ceará have northeastern ancestors, suggesting a dispersion of these mutations from the Brazilian Northeast. CONCLUSIONS: The high frequency of pycnodysostosis in Ceará State is the consequence of the high inbreeding in that region. Several mutations, probably introduced a long time ago in Ceará, must have spread due to consanguineous marriages and internal population migration. However, the novel mutation seems to have a single origin in Ceará, suggestive of a founder effect.
Assuntos
Catepsina K/genética , Mutação , Linhagem , Polimorfismo Genético , Picnodisostose/genética , Brasil , Feminino , Efeito Fundador , Homozigoto , Humanos , MasculinoRESUMO
Prolidase deficiency (PD) is a rare genetic disorder caused by mutations in the peptidase D (PEPD) gene, affecting collagen degradation. Features include lower extremity ulcers, facial dysmorphism, frequent respiratory infections, and intellectual disability, though there is significant intra- and interfamilial variability. Twenty-eight mutations have been previously reported, all either small deletions/duplications or point mutations discovered by enzyme or DNA assays. PD has been reported in patients of various ethnic backgrounds, but never in the Mexican-American population. We describe the first Mexican-American patient with PD, who presented with typical facial features, developmental delay, microcephaly, and xerosis. Chromosome microarray analysis (CMA) revealed a homozygous deletion in the region of 19q13.11, estimated to be between 124.79 and 195.72 kb in size, representing the largest PEPD gene deletion reported to date and the first discovered by CMA.
RESUMO
AIM: Autosomal recessive mutations in NPHS1 gene are a common cause of congenital nephrotic syndrome (CNS). The disorder is characterized by massive proteinuria that manifests in utero or in the neonatal period during the first 3 months of life. NPHS1 encodes nephrin, a member of the immunoglobulin family of cell adhesion molecules and the main protein expressed at the renal slit diaphragm. Currently, there are approximately 250 mutations described in the NPHS1 gene distributed among all nephrin domains. The main objective of this study was to perform the analysis of the NPHS1 gene in patients with congenital nephrotic syndrome in order to determine the molecular cause of the disease. METHODS: Direct sequencing of NPHS1 gene in four children was performed. RESULTS: Each patient was heterozygous for two pathogenic mutations disclosing the molecular cause of the disease in 100% of the cases. We identified six different mutations, consisting of one in-frame deletion, one frameshift, and four missense substitutions. The p.Val736Met mutation that is described here for the first time was considered pathogenic by different mutation predictive algorithms. Regardless of the type of mutation, three patients had a bad outcome and died CONCLUSIONS: Despite the small size of the cohort, this study contributed to the increasing number of deleterious mutations in the NPHS1 gene by describing a new mutation. Also, since we identified NPHS1 pathogenic mutations as the cause of the disease in all cases analyzed, it might be a frequent cause of CNS in the South Eastern region of Brazil, although the analysis of a larger sample is required to obtain more indicative epidemiological data.
Assuntos
Proteínas de Membrana/genética , Mutação , Síndrome Nefrótica/genética , Brasil , Pré-Escolar , Análise Mutacional de DNA , Evolução Fatal , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Nefrectomia , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/cirurgia , Fenótipo , Resultado do TratamentoRESUMO
Aarskog-Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS.