Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virology ; 570: 67-80, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390695

RESUMO

Septins are a family of GTP-binding proteins identified in insects and mammals. Septins are components of the cytoskeleton and participate in cytokinesis, chromosomal segregation, intracellular vesicular traffic, and response to pathogens. Human septin 6 was identified as necessary for hepatitis C virus replication. Information about host factors necessary for flavivirus replication in mosquitoes is scarce. Thus, the role of septins in the replicative cycle of dengue virus in Aedes spp. derived cells was investigated. Through bioinformatic analysis, sequences of septin-like proteins were identified. Infected mosquito cells showed increased expression of Sep2. Colocalization analysis, proximity ligation and immunoprecipitation assays indicated that Sep2 interacts with proteins E, NS3 and NS5, but not NS1. Immunoelectron microscopy evidenced the presence of AalSep2 in replicative complexes. Finally, silencing of Sep2 expression resulted in a significant decrease in virus progeny, indicating that Sep2 is a host factor participating in dengue virus replication in mosquito cells.


Assuntos
Aedes , Dengue , Flavivirus , Replicação Viral , Aedes/virologia , Animais , Dengue/virologia , Flavivirus/metabolismo , Flavivirus/fisiologia , Humanos , Mamíferos , Septinas/genética , Septinas/metabolismo
2.
J Gen Virol ; 101(8): 825-839, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32478656

RESUMO

Dengue virus (DENV) is an important flavivirus that is transmitted to humans by Aedes mosquitoes, where it can establish a persistent infection underlying vertical and horizontal transmission. However, the exact mechanism of persistent DENV infection is not well understood. Recently miR-927 was found to be upregulated in C6/36-HT cells at 57 weeks of persistent infection (C6-L57), suggesting its participation during this type of infection. The aim of this study was to determine the role of miR-927 during infection with DENV type 2. The results indicate an overexpression of miR-927 in C6-L57 cells and acutely infected cells according to the time of infection and the m.o.i. used. The downregulation of miR-927 in C6-L57 cells results in a reduction of both viral titre and viral genome copy number. The overexpression of miR-927 in C6-L40 and C6/36 cells infected at an m.o.i. of 0.1 causes an increase in both viral titre and viral genome copy number, suggesting a pro-viral activity of miR-927. In silico prediction analysis reveals target mRNAs for miR-927 are implicated in post-translational modifications (SUMO), translation factors (eIF-2B), the innate immune system (NKIRAS), exocytosis (EXOC-2), endocytosis (APM1) and the cytoskeleton (FLN). The expression levels of FLN were the most affected by both miR-927 overexpression and inhibition, and FLN was determined to be a direct target of miR-927 by a dual-luciferase gene reporter assay. FLN has been associated with the regulation of the Toll pathway and either overexpression or downregulation of miR-927 resulted in expression changes of antimicrobial peptides (Cecropins A and G, and Defensin D) involved in the Toll pathway response.


Assuntos
Aedes/genética , Aedes/virologia , Vírus da Dengue/genética , Dengue/virologia , MicroRNAs/genética , Animais , Linhagem Celular , Doenças Transmissíveis/genética , Doenças Transmissíveis/virologia , Genoma Viral/genética , Luciferases/genética , Replicação Viral/genética
3.
Virology ; 531: 1-18, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844508

RESUMO

Dengue viruses (DENV) are important arboviruses that can establish a persistent infection in its mosquito vector Aedes. Mosquitoes have a short lifetime in nature which makes trying to study the processes that take place during persistent viral infections in vivo. Therefore, C6/36 cells have been used to study this type of infection. C6/36 cells persistently infected with DENV 2 produce virions that cannot infect BHK -21 cells. We hypothesized that the following passages in mosquito cells have a deleterious impact on DENV fitness in vertebrate cells. Here, we demonstrated that the viral particles released from persistently infected cells were infectious to mosquito but not to vertebrate cells. This host restriction occurs at the replication level and is associated with several mutations in the DENV genome. In summary, our findings provide new information about viral replication fitness in a host-dependent manner.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Especificidade de Hospedeiro , Mosquitos Vetores/virologia , Replicação Viral , Animais , Linhagem Celular , Dengue/virologia , Vírus da Dengue/genética , Genoma Viral , Mosquitos Vetores/crescimento & desenvolvimento
4.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463973

RESUMO

Dengue virus (DENV) is a mosquito-borne virus of the family Flaviviridae The RNA viral genome encodes three structural and seven nonstructural proteins. Nonstructural protein 1 (NS1) is a multifunctional protein actively secreted in vertebrate and mosquito cells during infection. In mosquito cells, NS1 is secreted in a caveolin-1-dependent manner by an unconventional route. The caveolin chaperone complex (CCC) is a cytoplasmic complex formed by caveolin-1 and the chaperones FKBP52, Cy40, and CyA and is responsible for the cholesterol traffic inside the cell. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 associates with and relies on the CCC for secretion. Treatment of mosquito cells with classic secretion inhibitors, such as brefeldin A, Golgicide A, and Fli-06, showed no effect on NS1 secretion but significant reductions in recombinant luciferase secretion and virion release. Silencing the expression of CAV-1 or FKBP52 with short interfering RNAs or the inhibition of CyA by cyclosporine resulted in significant decrease in NS1 secretion, again without affecting virion release. Colocalization, coimmunoprecipitation, and proximity ligation assays indicated that NS1 colocalizes and interacts with all proteins of the CCC. In addition, CAV-1 and FKBP52 expression was found augmented in DENV-infected cells. Results obtained with Zika virus-infected cells suggest that in mosquito cells, ZIKV NS1 follows the same secretory pathway as that observed for DENV NS1. These results uncover important differences in the dengue virus-cell interactions between the vertebrate host and the mosquito vector as well as novel functions for the chaperone caveolin complex.IMPORTANCE The dengue virus protein NS1 is secreted efficiently from both infected vertebrate and mosquito cells. Previously, our group reported that NS1 secretion in mosquito cells follows an unconventional secretion pathway dependent on caveolin-1. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 secretion takes place in association with the chaperone caveolin complex, a complex formed by caveolin-1 and the chaperones FKBP52, CyA, and Cy40, which are in charge of cholesterol transport inside the cell. Results obtained with ZIKV-infected mosquito cells suggest that ZIKV NS1 is released following an unconventional secretory route in association with the chaperone caveolin complex. These results uncover important differences in the virus-cell interactions between the vertebrate host and the mosquito vector, as well as novel functions for the chaperone caveolin complex. Moreover, manipulation of the NS1 secretory route may prove a valuable strategy to combat these two mosquito-borne diseases.


Assuntos
Caveolina 1/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Transporte Biológico , Caveolinas/metabolismo , Linhagem Celular , Chlorocebus aethiops , Culicidae/metabolismo , Culicidae/virologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Vírus da Dengue/fisiologia , Humanos , Mosquitos Vetores , Ligação Proteica , Proteínas de Ligação a Tacrolimo/metabolismo , Células Vero , Proteínas não Estruturais Virais/genética , Zika virus/metabolismo , Infecção por Zika virus/virologia
5.
Virology ; 488: 278-87, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655246

RESUMO

Dengue virus NS1 is a glycoprotein of 46-50kDa which associates as a dimer to internal and cytoplasmic membranes and is also secreted, as a hexamer, to the extracellular milieu. However, the notion exist that NS1 is secreted only from infected vertebrate and not mosquito cells. In this work, evidence is presented showing that NS1 is secreted efficiently by infected mosquito cells. NS1 was detected in cell supernatants starting at 6hpi with a continuous concentration increase up to 24hpi. Nevertheless, cell viability showed an average cell survival of 97%. At variance with observations with vertebrate cells, NS1 does not seems to associate with the cytoplasmic membrane of insect cells. Finally, evidence is presented indicating that NS1 is secreted from insect cells as a barrel-shaped hexamer. These findings provide new insights into the biology of NS1 and open questions about the role of secreted NS1 in the vector mosquito.


Assuntos
Culicidae/virologia , Vírus da Dengue/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Meios de Cultura/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA