Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 42: e00832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948352

RESUMO

The antioxidant and antiproliferative activity of red tilapia (Oreochromis spp.) viscera hydrolysates (RTVH) was evaluated. For that, the hydrolysates was applied to three cancer cell lines (HepG2, Huh7 and SW480) and the control (CCD-18Co). Finally, the line on which the hydrolysate had the greatest effect (SW480) and the control (CCD-18Co) were subjected to the ApoTox-Glo Triplex Assay to determine apoptosis, toxicity, and cell viability. The result showed that hydrolysate had a dose-dependent cytotoxic effect selective on the three cancer cell lines, compared to the control cells. There is a relationship between the antioxidant capacity of RTVHs and their antiproliferative capacity on cancer cells evaluated, which achieved cell viability by action of RTVH of 34.68 and 41.58 and 25.41 %, to HepG2, Huh7 and SW480, respectively. The action of RTVH on cancer cell line SW480 is not due to the induction of apoptosis but to the rupture of the cell membrane.

2.
Chemosphere ; 312(Pt 1): 137222, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36375612

RESUMO

The aims of this study were to identify mercury-associated protein spots in the liver tissue of rats exposed to low concentrations of mercury and to elucidate the physiological and functional aspects of the proteins identified in the protein spots. Therefore, proteomic analysis of the liver tissue of Wistar rats exposed to mercury chloride (4.60 µg kg-1 in Hg2+) was performed for thirty days (Hg-30 group) and sixty days (Hg-60 group). The proteomic profile of the liver tissue of the rats was obtained by two-dimensional electrophoresis (2D-PAGE), and the determinations of total mercury in the liver tissue, pellets and protein spots were performed by graphite furnace atomic absorption spectrometry (GFAAS). ImageMaster 2D Platinum 7.0 software was used to identify the differentially expressed mercury-associated protein spots, which were then characterized by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The determinations by GFAAS indicated a total mercury bioaccumulation of 2812% in the Hg-30 group and 3298% in the Hg-60 group and 10 mercury-associated protein spots with a concentration range of 51 ± 1.0 to 412 ± 6.00 mg kg-1 in the 2D PAGE gels from the liver tissue of the Hg-60 group. The LC-MS/MS analyses allowed the identification of 11 metal binding proteins in mercury-associated protein spots that presented fold change with upregulation >1.5, downregulation < -1.7 or that were expressed only in the Hg-60 group. Using the FASTA sequences of the proteins identified in the mercury-associated protein spots, bioinformatics analyses were performed to elucidate the physiological and functional aspects of the metal binding proteins, allowing us to infer that enzymes such as GSTM2 presented greater mercury concentrations and downregulation < -3; Acaa2 and Bhmt, which showed expression only in the Hg-60 group, among others, may act as potential mercury exposure biomarkers.


Assuntos
Mercúrio , Ratos , Animais , Mercúrio/análise , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ratos Wistar , Fígado/metabolismo
3.
Nat Prod Bioprospect ; 12(1): 26, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35831516

RESUMO

The Antarctic fungus Cadophora malorum produces previously undescribed cyclic heptapeptides (cadophorin A and B) containing an anthranilic acid residue. The planar structure of these peptides was determined by high-resolution mass spectrometry combined with extensive 1D and 2D NMR spectroscopy. The absolute configuration of the amino acids was determined by Marfey's method, with HPLC analysis of FDVA (Nα-(2,4-dinitro-5-fluorphenyl)-L-valinamide) derivatives making use of a PFP column. Remarkably, cadophorin 2 possesses both the uncommon D-Ile and D-allo-Ile in its structure. The peptides have metal binding properties as shown by LCMS with post column addition of metal salt solutions. These results were supported by DFT calculations.

4.
Curr Issues Mol Biol ; 44(2): 550-558, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723324

RESUMO

We have recently shown that SmbP, the small metal-binding protein of Nitrosomonas europaea, can be employed as a fusion protein to express and purify recombinant proteins and peptides in Escherichia coli. SmbP increases solubility, allows simple, one-step purification through affinity chromatography, and provides superior final yields due to its low molecular weight. In this work, we report for the first time the use of SmbP to produce a recombinant peptide with anticancer activity: the antitumor-analgesic peptide (BmK-AGAP), a neurotoxin isolated from the venom of the Chinese scorpion Buthus martensii Karsch. This peptide was expressed in Escherichia coli SHuffle for correct, cytoplasmic, disulfide bond formation and tagged with SmbP at the N-terminus to improve its solubility and allow purification using immobilized metal affinity chromatography. SmbP_BmK-AGAP was found in the soluble fraction of the cell lysate. After purification and removal of SmbP by digestion with enterokinase, 1.8 mg of pure and highly active rBmK-AGAP was obtained per liter of cell culture. rBmK-AGAP exhibited antiproliferative activity on the MCF-7 cancer cell line, with a half-maximal inhibitory concentration value of 7.24 µM. Based on these results, we considered SmbP to be a suitable carrier protein for the production of recombinant, biologically active BmK-AGAP. We propose that SmbP should be an attractive fusion protein for the expression and purification of additional recombinant proteins or peptides that display anticancer activities.

5.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595534

RESUMO

Metals are present in >30% of proteins found in nature and assist them to perform important biological functions, including storage, transport, signal transduction and enzymatic activity. Traditional and experimental techniques for metal-binding site prediction are usually costly and time-consuming, making computational tools that can assist in these predictions of significant importance. Here we present Genetic Active Site Search (GASS)-Metal, a new method for protein metal-binding site prediction. The method relies on a parallel genetic algorithm to find candidate metal-binding sites that are structurally similar to curated templates from M-CSA and MetalPDB. GASS-Metal was thoroughly validated using homologous proteins and conservative mutations of residues, showing a robust performance. The ability of GASS-Metal to identify metal-binding sites was also compared with state-of-the-art methods, outperforming similar methods and achieving an MCC of up to 0.57 and detecting up to 96.1% of the sites correctly. GASS-Metal is freely available at https://gassmetal.unifei.edu.br. The GASS-Metal source code is available at https://github.com/sandroizidoro/gassmetal-local.


Assuntos
Proteínas , Software , Algoritmos , Sítios de Ligação , Domínio Catalítico , Metais/química , Metais/metabolismo , Proteínas/química
6.
Sci Total Environ ; 826: 154144, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35227726

RESUMO

The sorption of dissolved organic matter (DOM) depends on its interaction with the soil matrix. In hydromorphic podzols, DOM reacts mainly with aluminium (Al), which is responsible for the formation of the Bh-horizon in the subsoil. In this work, we investigated whether the retention of DOM in the soil during the podzolization process is selective in relation to the molecular composition of DOM. A column experiment was conducted to study the selective retention of sorption and desorption processes under controlled conditions. Materials used in the column experiment were representative for Brazilian coastal podzols under tropical rainforest. Materials were collected from this tropical coastal podzol ecosystem, and included soil from E- and Bh-horizons, and DOM from a stream (Stream), peat water (Peat), litter (Litter) and charred litter (Char). To evaluate selective retention of DOM, both the initial DOM and its leachates were analyzed by Fourier transform infrared spectra absorption (FTIR) and pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS). The results showed preferential retention of DOM associated with biopolymers for soil columns with E-horizon material (E), E with Al nitrate (E-n), E with kaolinite (E-k) and E with gibbsite (E-h), except for Char. The composition of leachates after percolation through B horizon columns was mainly determined by desorption, and had a relatively large contribution from phenolic and carboxylic groups associated with Al and low molecular weight aromatic and N-containing pyrolysis products, while products from macromolecular materials such as cellulose were selectively retained in the columns for all DOM types. DOM from the Stream (taken during the rainy season) resembled that of desorbed OM from the B columns, reinforcing substantial desorption in the field as well. Our results suggest that sorption and desorption of OM in the hydromorphic Bh-horizon is continuous and that the selectivity of sorption is dependent on DOM source.


Assuntos
Matéria Orgânica Dissolvida , Adsorção , Ecossistema , Pirólise , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Biol Trace Elem Res ; 200(4): 1872-1882, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34482504

RESUMO

In recent decades, the scientific community has widely debated the contamination of fish in the Amazon region by mercury species. As the diet of riverside populations in the Amazon region is based mainly on fish, these populations are exposed to mercurial species that can cause serious and irreversible damage to their health. The risks of consuming fish exposed to mercurial species in the Amazon region have motivated toxicological investigations. However, the effect of mercurial species on protein and enzyme levels is still controversial. In this work, analytical and bioanalytical techniques Two-dimensional polyacrylamide gel electrophoresis [2D-PAGE] Graphite Furnace Atomic Absorption Spectrometry [GFAAS], and Mass Spectrometry in Sequence with Electrospray Ionization [ESI-MS/MS] were used to identify proteins associated with mercury (metal-binding protein) in muscle and liver tissues of the fish species Pinirampus pirinampu from the Madeira River, in the Brazilian Amazon. Enzymatic and lipid peroxidation analyses were also used to assess changes related to oxidative stress. Determinations of total mercury by GFAAS indicated higher concentrations in liver tissue (555 ± 19.0 µg kg-1) when compared to muscle tissue (60 ± 2.0 µg kg-1). The fractionation process of tissue proteomes by 2D-PAGE and subsequent mapping of mercury by GFAAS in the protein spots of the gels identified the presence of mercury in three spots of the liver tissue (concentrations in the range of 0.800 to 1.90 mg kg-1). The characterization of protein spots associated with mercury by ESI-MS/MS identified the enzymes triosephosphate isomerase A, adenylate kinase 2 mitochondrial, and glyceraldehyde-3-phosphate dehydrogenase as possible candidates for mercury exposure biomarkers. The muscle tissue did not show protein spots associated with mercury. Enzymatic activity decreased proportionally to the increase in mercury concentrations in the tissues.


Assuntos
Peixes-Gato , Mercúrio , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Brasil , Peixes-Gato/metabolismo , Peixes/metabolismo , Mercúrio/análise , Mercúrio/toxicidade , Estresse Oxidativo , Rios/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Antibiotics (Basel) ; 10(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680851

RESUMO

(1) Background: The cathelicidin peptide LL-37 is a prominent molecule with many biological activities, including antimicrobial. Due to its importance, here, we describe the production of LL-37 tagged with SmbP, a relatively new carrier protein that improves the production of recombinant proteins and peptides in Escherichia coli. We present an alternative method for the rapid expression, purification, and antimicrobial evaluation of LL-37, that involves only one purification step. (2) Methods: A DNA construct of SmbP_LL-37 was transformed into E. coli BL21(DE3); after overnight expression, the protein was purified directly from the cell lysate using immobilized metal-affinity chromatography. SmbP_LL-37 was treated with Enterokinase to obtain the free LL-37 peptide. The antimicrobial activity of both SmbP_LL-37 and free LL-37 was determined using the colony forming unit assay method. (3) Results: SmbP_LL-37 was observed in the soluble fraction of the cell lysate; after purification with IMAC, protein gel electrophoresis, and analysis by ImageJ, it showed 90% purity. A total of 3.6 mg of SmbP_LL-37 was produced from one liter of cell culture. SmbP_LL-37 and free LL-37 both showed inhibition activity against Staphylococcus aureus and Escherichia coli. (4) Conclusions: The SmbP fusion protein is a valuable tool for producing biologically-active LL-37 peptide. The production method described here should be of interest for the expression and purification of additional cationic peptides, since it cuts the purification time considerably prior to determination of antimicrobial activity.

9.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809562

RESUMO

Adzuki seed ß-vignin, a vicilin-like globulin, has proven to exert various health-promoting biological activities, notably in cardiovascular health. A simple scalable enrichment procedure of this protein for further nutritional and functional studies is crucial. In this study, a simplified chromatography-independent protein fractionation procedure has been optimized and described. The electrophoretic analysis showed a high degree of homogeneity of ß-vignin isolate. Furthermore, the molecular features of the purified protein were investigated. The adzuki bean ß-vignin was found to have a native size of 146 kDa, and the molecular weight determined was consistent with a trimeric structure. These were identified in two main polypeptide chains (masses of 56-54 kDa) that are glycosylated polypeptides with metal binding capacity, and one minor polypeptide chain with a mass 37 kDa, wherein these features are absent. The in vitro analysis showed a high degree of digestibility of the protein (92%) and potential anti-inflammatory capacity. The results lay the basis not only for further investigation of the health-promoting properties of the adzuki bean ß-vignin protein, but also for a possible application as nutraceutical molecule.


Assuntos
Cromatografia/métodos , Proteínas de Plantas/genética , Vigna/química , Sequência de Aminoácidos , Células CACO-2 , Fracionamento Químico , Farinha , Globulinas/química , Humanos , Concentração de Íons de Hidrogênio , Inflamação/patologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Sementes/química , Solubilidade
10.
Crit Rev Food Sci Nutr ; 61(9): 1470-1489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32370550

RESUMO

Bioactive peptides derived from food protein sources have been widely studied in the last years, and scientific researchers have been proving their role in human health, beyond their nutritional value. Several bioactivities have been attributed to these peptides, such as immunomodulatory, antimicrobial, antioxidant, antihypertensive, and opioid. Among them, metal-binding capacity has gained prominence. Mineral chelating peptides have shown potential to be applied in food products so as to decrease mineral deficiencies since peptide-metal complexes could enhance their bioavailability. Furthermore, many studies have been investigating their potential to decrease the Fe pro-oxidant effect by forming a stable structure with the metal and avoiding its interaction with other food constituents. These complexes can be formed during gastrointestinal digestion or can be synthesized prior to intake, with the aim to protect the mineral through the gastrointestinal tract. This review addresses: (i) the amino acid residues for metal-binding peptides and their main protein sources, (ii) peptide-metal complexation prior to or during gastrointestinal digestion, (iii) the function of metal (especially Fe, Ca, and Zn)-binding peptides on the metal bioavailability and (iv) their reactivity and possible pro-oxidant and side effects.


Assuntos
Complexos de Coordenação , Disponibilidade Biológica , Humanos , Minerais , Peptídeos , Espécies Reativas de Oxigênio
11.
Protein Expr Purif ; 166: 105511, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622664

RESUMO

Metallothioneins (MTs) are cysteine rich proteins with antioxidant capacity that participate in the homeostasis and detoxification of metals and other cellular processes, and help to counteract the oxidative stress produced by Reactive Oxygen Species (ROS). The production of ROS increases during several stress conditions, including metal intoxication and hypoxia (oxygen deficiency). During hypoxia the expression of the MT gene is induced in the shrimp Litopenaeus vannamei; however, the MT protein coded by this gene has not been purified nor characterized. In this work, the coding sequence of L. vannamei MT was cloned and overexpressed in Escherichia coli as a fusion protein, containing an intein and a chitin binding domain (CBD). The MT was purified by chitin affinity chromatography and its antioxidant capacity and ability to bind cadmium (Cd) and copper (Cu) were evaluated. This MT has an antioxidant capacity of 27.23 µM equivalent to Trolox in a 100 µg/mL solution. Addition of CdCl2 to the culture media augments 273-fold the Cd content, while addition of CuCl2 increases Cu content 569-fold in the purified MT. Thus, the shrimp MT gene codes for a functional protein that has antioxidant capacity and binds Cu and Cd.


Assuntos
Metalotioneína/química , Metalotioneína/genética , Penaeidae , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Animais , Cádmio/química , Quitina/química , Cromatografia de Afinidade , Clonagem Molecular , Cobre/química , Escherichia coli , Vetores Genéticos , Penaeidae/enzimologia , Penaeidae/genética
12.
Front Microbiol ; 10: 2432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708902

RESUMO

Phosphate metabolism was studied to determine whether polyphosphate (polyP) pools play a role in the enhanced resistance against Cd2+ and metal-removal capacity of Cd2+-preadapted (CdPA) Methanosarcina acetivorans. Polyphosphate kinase (PPK), exopolyphosphatase (PPX) and phosphate transporter transcript levels and their activities increased in CdPA cells compared to control (Cnt) cells. K+ inhibited recombinant Ma-PPK and activated Ma-PPX, whereas divalent cations activated both enzymes. Metal-binding polyP and thiol-containing molecule contents, Cd2+-removal, and biofilm synthesis were significantly higher in CdPA cells >Cnt cells plus a single addition of Cd2+>Cnt cells. Also, CdPA cells showed a higher number of cadmium, sulfur, and phosphorus enriched-acidocalcisomes than control cells. Biochemical and physiological phenotype exhibited by CdPA cells returned to that of Cnt cells when cultured without Cd2+. Furthermore, no differences in the sequenced genomes upstream and downstream of the genes involved in Cd2+ resistance were found between CdPA and Cnt cells, suggesting phenotype loss rather than genome mutations induced by chronic Cd2+-exposure. Instead, a metabolic adaptation induced by Cd2+ stress was apparent. The dynamic ability of M. acetivorans to change its metabolism, depending on the environmental conditions, may be advantageous to remove cadmium in nature and biodigesters.

13.
Chemosphere ; 236: 124320, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31323548

RESUMO

High concentrations of mercury found in soils, sediments, fish, and humans of the Amazon region have gained prominence in scientific studies during the last decade. However, studies related to the elucidation of mercury toxicity mechanisms in ichthyofauna at the molecular and metallomic levels that seek to elucidate physiological and functional aspects, as well as the search for biomarkers of mercury exposure, are still sparse. In the search for these answers, the present study analyzed the hepatic tissue proteome of the Arapaima gigas (pirarucu) fish species collected in the Jirau hydroelectric power plant reservoir in the state of Rondônia state, Brazil, in order to identify mercury-related metal-binding proteins and to elucidate their physiological and functional aspects. The proteomic profile of the hepatic tissue of Arapaima gigas was obtained by two-dimensional electrophoresis (2D-PAGE) and the presence of mercury was mapped in the protein SPOTS by graphite furnace atomic absorption spectrometry(GFAAS). Mercury was detected in 18 protein SPOTS with concentrations ranging from 0.13 ±â€¯0.003 to 131.00 ±â€¯3 mg kg-1. The characterization of the protein SPOTS associated with mercury was performed by electrospray ionisation tandem mass spectrometry (ESI-MS/MS), and 10 proteins were identified. Bioinformatics analyses showed that most of the proteins found linked to mercury were involved in cellular component processes and biological processes. For the most part, protein sequences have cellular functions comprising catalytic, binding, sense of localization, and metabolic processes.


Assuntos
Proteínas de Transporte/química , Mercúrio/química , Proteômica/métodos , Animais , Brasil , Peixes , Humanos
14.
PeerJ ; 6: e4930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892507

RESUMO

Late embryogenesis abundant (LEA) proteins accumulate in plants during adverse conditions and their main attributed function is to confer tolerance to stress. One of the deleterious effects of the adverse environment is the accumulation of metal ions to levels that generate reactive oxygen species, compromising the survival of cells. AtLEA4-5, a member of group 4 of LEAs in Arabidopsis, is an intrinsically disordered protein. It has been shown that their N-terminal region is able to undergo transitions to partially folded states and prevent the inactivation of enzymes. We have characterized metal ion binding to AtLEA4-5 by circular dichroism, electronic absorbance spectroscopy (UV-vis), electron paramagnetic resonance, dynamic light scattering, and isothermal titration calorimetry. The data shows that AtLEA4-5 contains a single binding site for Ni(II), while Zn(II) and Cu(II) have multiple binding sites and promote oligomerization. The Cu(II) interacts preferentially with histidine residues mostly located in the C-terminal region with moderate affinity and different coordination modes. These results and the lack of a stable secondary structure formation indicate that an ensemble of conformations remains accessible to the metal for binding, suggesting the formation of a fuzzy complex. Our results support the multifunctionality of LEA proteins and suggest that the C-terminal region of AtLEA4-5 could be responsible for antioxidant activity, scavenging metal ions under stress conditions while the N-terminal could function as a chaperone.

15.
Arch Biochem Biophys ; 640: 17-26, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305053

RESUMO

CAT-2, a cytosolic catalase-peroxidase (CP) from Neurospora crassa, which is induced during asexual spore formation, was heterologously expressed and characterized. CAT-2 had the Met-Tyr-Trp (M-Y-W) adduct required for catalase activity. Its KM for H2O2 was micromolar for peroxidase and millimolar for catalase activity. A Em = -158 mV reduction potential value was obtained and the Soret band shift suggested a mixture of low and high spin ferric iron. CAT-2 EPR spectrum at 10 K indicated an axial and a rhombic component. With peroxyacetic acid (PAA), formation of Compound I* was observed with EPR. CAT-2 homodimer crystallographic structure contained two K+ ions; Glu107 residues were displaced to bind them. CAT-2 showed the essential amino acid residues for activity in similar positions to other CPs. CAT-2 Arg426 is oriented towards the M-Y-W adduct, interacting with the deprotonated Tyr238 hydroxyl group. A perhydroxy modification of the indole nitrogen of Trp90 was oriented toward the catalytic His91. In contrast to cytochrome c peroxidase and ascorbate peroxidase, the catalase-peroxidase heme propionates are not exposed to the solvent. Together with other N. crassa enzymes that utilize H2O2 as a substrate, CAT-2 has many tryptophan and proline residues at its surface, probably related to H2O2 selection in water.


Assuntos
Catalase/metabolismo , Citosol/enzimologia , Peróxido de Hidrogênio/metabolismo , Neurospora crassa/enzimologia , Peroxidases/metabolismo , Catalase/química , Catalase/genética , Clonagem Molecular , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Regulação da Expressão Gênica , Cinética , Oxirredução , Peroxidases/química , Conformação Proteica , Multimerização Proteica , Triptofano/metabolismo , Tirosina/metabolismo
16.
Anal Bioanal Chem ; 408(30): 8881-8893, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27815607

RESUMO

Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/métodos , Mercúrio/análise , Níquel/análise , Zinco/análise , Animais , Cátions Bivalentes , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Vaga-Lumes/enzimologia , Vaga-Lumes/genética , Vaga-Lumes/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Histidina/química , Histidina/metabolismo , Cinética , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/genética , Luminescência , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Protein Expr Purif ; 118: 49-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26494603

RESUMO

Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Expressão Gênica , Nitrosomonas europaea/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Escherichia coli/química , Escherichia coli/metabolismo , Metais/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
18.
Biochim Biophys Acta ; 1837(1): 44-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23994287

RESUMO

The function of F1-ATPase relies critically on the intrinsic ability of its catalytic and noncatalytic subunits to interact with nucleotides. Therefore, the study of isolated subunits represents an opportunity to dissect elementary energetic contributions that drive the enzyme's rotary mechanism. In this study we have calorimetrically characterized the association of adenosine nucleotides to the isolated noncatalytic α-subunit. The resulting recognition behavior was compared with that previously reported for the isolated catalytic ß-subunit (N.O. Pulido, G. Salcedo, G. Pérez-Hernández, C. José-Núñez, A. Velázquez-Campoy, E. García-Hernández, Energetic effects of magnesium in the recognition of adenosine nucleotides by the F1-ATPase ß subunit, Biochemistry 49 (2010) 5258-5268). The two subunits exhibit nucleotide-binding thermodynamic signatures similar to each other, characterized by enthalpically-driven affinities in the µM range. Nevertheless, contrary to the catalytic subunit that recognizes MgATP and MgADP with comparable strength, the noncatalytic subunit much prefers the triphosphate nucleotide. Besides, the α-subunit depends more on Mg(II) for stabilizing the interaction with ATP, while both subunits are rather metal-independent for ADP recognition. These binding behaviors are discussed in terms of the properties that the two subunits exhibit in the whole enzyme.


Assuntos
Adenosina/química , Domínio Catalítico , Metabolismo Energético , ATPases Translocadoras de Prótons/química , Adenosina/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Calorimetria , Proteínas de Ligação a DNA/química , Escherichia coli/enzimologia , Cinética , Magnésio/química , Magnésio/metabolismo , Nucleotídeos/metabolismo , ATPases Translocadoras de Prótons/isolamento & purificação , ATPases Translocadoras de Prótons/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA