Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065398

RESUMO

Graphene is a promising biomaterial. However, its dispersion in aqueous medium is challenging. This study aimed to modify graphene nanoparticles with L-dopa to improve the properties of experimental dental adhesives. Adhesives were formulated with 0% (control), 0.25%, 0.5%, and 0.75% of graphene, modified or not. Particle modification and dispersion were microscopically assessed. Degree of conversion was tested by Fourier-transform infrared spectroscopy. Flexural strength and modulus of elasticity were evaluated by a 3-point flexural test. Bond strength was tested by shear. To test water sorption/solubility, samples were weighed during hydration and dehydration. Antibacterial activity was tested by Streptococcus mutans colony-forming units quantification. Cytotoxicity on fibroblasts was evaluated through a dentin barrier test. The modification of graphene improved the particle dispersion. Control presented the highest degree of conversion, flexural strength, and bond strength. In degree of conversion, 0.25% of groups were similar to control. In bond strength, groups of graphene modified by L-dopa were similar to Control. The modulus of elasticity was similar between groups. Cytotoxicity and water sorption/solubility decreased as particles increased. Compared to graphene, less graphene modified by L-dopa was needed to promote antibacterial activity. By modifying graphene with L-dopa, the properties of graphene and, therefore, the adhesives incorporated by it were enhanced.

2.
Mikrochim Acta ; 191(4): 197, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483622

RESUMO

A fully reusable electrochemical device is proposed for the first time made from laser cutting and a homemade conductive ink composed of carbon and nail polish. As a sensor substrate, we applied polymethyl methacrylate, which allows the surface to be renewed by simply removing and reapplying a new layer of ink. In addition to the ease of renewing the sensor's conductive surface, the design of the device has allowed for the integration of different forms of analysis. The determination of L-Dopa was performed using DPV, which presented a linear response range between 5.0 and 1000.0 µmol L-1, and a LOD of 0.11 µmol L-1. For dopamine, a flow injection analysis system was employed, and using the amperometric technique measurements were performed with a linear ranging from 2.0 to 100.0 µmol L-1 and a LOD of 0.26 µmol L-1. To demonstrate its applicability, the device was used in the quantification of analytes in pharmaceutical drug and synthetic urine samples.


Assuntos
Grafite , Levodopa , Levodopa/análise , Dopamina/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Reprodutibilidade dos Testes
3.
Eur J Neurosci ; 59(7): 1604-1620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359910

RESUMO

Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.


Assuntos
Discinesias , Doença de Parkinson , Ratos , Animais , Levodopa/efeitos adversos , Nitroprussiato/farmacologia , Oxidopamina/toxicidade , Neurônios Espinhosos Médios , Óxido Nítrico/metabolismo , Discinesias/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Antiparkinsonianos/efeitos adversos
4.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569839

RESUMO

The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.

5.
ASN Neuro ; 15: 17590914231155976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017068

RESUMO

SUMMARY STATEMENT: NG2-glia alters its dynamics in response to L-DOPA-induced dyskinesia. In these animals, striatal NG2-glia density was reduced with cells presenting activated phenotype while doxycycline antidyskinetic therapy promotes a return to NG2-glia cell density and protein to a not activated state.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Ratos , Animais , Levodopa/efeitos adversos , Antiparkinsonianos/efeitos adversos , Doxiciclina/uso terapêutico , Ratos Sprague-Dawley , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Discinesia Induzida por Medicamentos/tratamento farmacológico , Neuroglia/metabolismo , Oxidopamina , Modelos Animais de Doenças
6.
Microb Cell Fact ; 21(1): 278, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585654

RESUMO

BACKGROUND: Melanin is a natural pigment that can be applied in different fields such as medicine, environment, pharmaceutical, and nanotechnology. Studies carried out previously showed that the melanin produced by the mel1 mutant from Aspergillus nidulans exhibits antioxidant, anti-inflammatory, and antimicrobial activities, without any cytotoxic or mutagenic effect. These results taken together suggest the potential application of melanin from A. nidulans in the pharmaceutical industry. In this context, this study aimed to evaluate the effect of factors L-tyrosine, glucose, glutamic acid, L-DOPA, and copper on melanin production by the mel1 mutant and to establish the optimal concentration of these factors to maximize melanin production. RESULTS: The results showed that L-DOPA, glucose, and copper sulfate significantly affected melanin production, where L-DOPA was the only factor that exerted a positive effect on melanin yield. Besides, the tyrosinase activity was higher in the presence of L-DOPA, considered a substrate required for enzyme activation, this would explain the increased production of melanin in this condition. After establishing the optimal concentrations of the analyzed factors, the melanin synthesis was increased by 640% compared to the previous studies. CONCLUSIONS: This study contributed to elucidating the mechanisms involved in melanin synthesis in A. nidulans as well as to determining the optimal composition of the culture medium for greater melanin production that will make it possible to scale the process for a future biotechnological application.


Assuntos
Aspergillus nidulans , Melaninas , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Levodopa , Tirosina/metabolismo , Antioxidantes
7.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500705

RESUMO

An electrochemical sensor for simultaneous determination of Benserazide (BEZ) and levodopa (L-dopa) was successfully developed using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotube and nitrogen-doped titanium dioxide nanoparticles (GCE/MWCNT/N-TiO2). Cyclic voltammetry and square wave voltammetry were employed to investigate the electrochemical behavior of different working electrodes and analytes. In comparison with unmodified GCE, the modified electrode exhibited better electrocatalytic activity towards BEZ and L-dopa and was efficient in providing a satisfactory separation for oxidation peaks, with a potential difference of 140 mV clearly allows the simultaneous determination of these compounds. Under the optimized conditions, linear ranges of 2.0-20.0 and 2.0-70.0 µmol L-1 were obtained for BEZ and L-dopa, respectively, with a limit of detection of 1.6 µmol L-1 for BEZ and 2.0 µmol L-1 for L-dopa. The method was applied in simultaneous determination of the analytes in pharmaceutical samples, and the accuracy was attested by comparison with HPLC-DAD as the reference method, with a relative error lower than 4.0%.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Levodopa , Benserazida , Eletrodos , Oxirredução , Técnicas Eletroquímicas/métodos
8.
Front Syst Neurosci ; 16: 979680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090187

RESUMO

Multi-recording techniques show evidence that neurons coordinate their firing forming ensembles and that brain networks are made by connections between ensembles. While "canonical" microcircuits are composed of interconnected principal neurons and interneurons, it is not clear how they participate in recorded neuronal ensembles: "groups of neurons that show spatiotemporal co-activation". Understanding synapses and their plasticity has become complex, making hard to consider all details to fill the gap between cellular-synaptic and circuit levels. Therefore, two assumptions became necessary: First, whatever the nature of the synapses these may be simplified by "functional connections". Second, whatever the mechanisms to achieve synaptic potentiation or depression, the resultant synaptic weights are relatively stable. Both assumptions have experimental basis cited in this review, and tools to analyze neuronal populations are being developed based on them. Microcircuitry processing followed with multi-recording techniques show temporal sequences of neuronal ensembles resembling computational routines. These sequences can be aligned with the steps of behavioral tasks and behavior can be modified upon their manipulation, supporting the hypothesis that they are memory traces. In vitro, recordings show that these temporal sequences can be contained in isolated tissue of histological scale. Sequences found in control conditions differ from those recorded in pathological tissue obtained from animal disease models and those recorded after the actions of clinically useful drugs to treat disease states, setting the basis for new bioassays to test drugs with potential clinical use. These findings make the neuronal ensembles theoretical framework a dynamic neuroscience paradigm.

9.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36015095

RESUMO

The facilitation of corticostriatal transmission is modulated by the pharmacological inhibition of striatal phosphodiesterase 10A (PDE10A). Since L-DOPA-induced dyskinesia is associated with abnormal corticostriatal transmission, we hypothesized that inhibition of PDE10A would modulate L-DOPA-induced dyskinesia (LID) by regulating corticostriatal activity. 6-OHDA-lesioned rats were chronically treated with L-DOPA for one week. After that, for two additional weeks, animals were treated with the PDE10A inhibitor PDM-042 (1 and 3 mg/kg) one hour before L-DOPA. Behavioral analyses were performed to quantify abnormal involuntary movements (AIMs) and to assess the antiparkinsonian effects of L-DOPA. Single-unit extracellular electrophysiological recordings were performed in vivo to characterize the responsiveness of MSNs to cortical stimulation. The low dose of PDM-042 had an antidyskinetic effect (i.e., attenuated peak-dose dyskinesia) and did not interfere with cortically evoked spike activity. Conversely, the high dose of PDM-042 did not affect peak-dose dyskinesia, prolonged AIMs, and increased cortically evoked spike activity. These data suggest that the facilitation of corticostriatal transmission is likely to contribute to the expression of AIMs. Therefore, cyclic nucleotide manipulation is an essential target in controlling LID.

10.
Mol Genet Metab Rep ; 31: 100870, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782624

RESUMO

Introduction: Although the diurnal fluctuation of motor dysfunction, reversible with small doses of dopamine, is a cornerstone for the phenotype of the autosomal dominant Segawa syndrome, the non-motor symptoms of this neurotransmitter deficiency have still received limited attention. Objective: This study aims to evaluate non-motor symptoms of this dopa-responsive dystonia through an intrafamilial comparative cross-sectional study. Methods: Seventeen individuals with a c.IVS5 + 3insT (c.626 + 3insT) variation in the GTP cyclohydrolase-1 gene (GCH1, HGNC: 4193) and 34 intrafamilial controls were studied using the Beck Depression Inventory-II, the Wiener Matrizen Test 2, the Epworth Sleepiness Scale, the Pittsburgh Sleep Quality Index, the MINI/MINI PLUS Questionnaires, the World Health Organization Quality of Life - BREF Instrument and a drug use assessment questionnaire. Results: No significant difference was found between the groups in the prevalence of sleep disorders and in cognitive function. Nevertheless, generalized anxiety disorder (p = 0.050) and attention-deficit/hyperactivity disorder in childhood (p = 0.011) were observed only in individuals without the molecular variation. The group with the GCH1 variation presented a worse perception about how safe they feel in their daily lives (p = 0.034), less satisfaction with themselves (p = 0.049) and with their relationships (p = 0.029), and a higher prevalence of past major depressive episodes before use of L-Dopa (p = 0.046). Conclusion: Low dopamine could have been protective against generalized anxiety disorder and attention-deficit/hyperactivity disorder in childhood in Segawa group individuals. The prevalence of depression was higher in individuals with the molecular variant prior to the L-Dopa treatment. Considering it, the penetrance estimates for the variant carriers increased from 58.8% to up to 88% in this large studied family. Additionally, neuropsychiatric tests of all individuals with a molecular diagnosis in an affected family are a valuable instrument for its clinical management.

11.
Int J Tryptophan Res ; 15: 11786469221102098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656455

RESUMO

Honey is a natural product with beneficial properties to health and has different characteristics depending on the region of production and collection, flowering, and climate. The presence of precursor amino acids of- and biogenic amines can be important in metabolomic studies of differentiation and quality of honey. We analyzed 65 honeys from 11 distinct regions of the State of Santa Catarina (Brazil) as to the profile of amino acids and biogenic amines by HPLC. The highest L-tryptophan (Trp), 5-hydroxytryptophan (5-OH-Trp), and tryptamine (Tryp) levels were detected in Cfb climate and harvested in 2019. Although we have found high content of serotonin, dopamine, and L-dopa in Cfb climate, the highest values occurred in honey produced during the summer 2018 and at altitudes above 900 m. Results indicate that the amino acids and biogenic amine levels in honeys are good indicators of origin. These data warrant further investigation on the honey as source of amino acids precursor of serotonin, melatonin, and dopamine, what can guide the choice of food as source of neurotransmitters.

12.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566173

RESUMO

Background: Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. Levodopa (L-DOPA) remains the gold-standard drug available for treating PD. Curcumin has many pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-amyloid, and antitumor properties. Copolymers composed of Poly (ethylene oxide) (PEO) and biodegradable polyesters such as Poly (ε-caprolactone) (PCL) can self-assemble into nanoparticles (NPs). This study describes the development of NH2-PEO-PCL diblock copolymer positively charged and modified by adding glutathione (GSH) on the outer surface, resulting in a synergistic delivery of L-DOPA curcumin that would be able to pass the blood-brain barrier. Methods: The NH2-PEO-PCL NPs suspensions were prepared by using a nanoprecipitation and solvent displacement method and coated with GSH. NPs were submitted to characterization assays. In order to ensure the bioavailability, Vero and PC12 cells were treated with various concentrations of the loaded and unloaded NPs to observe cytotoxicity. Results: NPs have successfully loaded L-DOPA and curcumin and were stable after freeze-drying, indicating advancing into in vitro toxicity testing. Vero and PC12 cells that were treated up to 72 h with various concentrations of L-DOPA and curcumin-loaded NP maintained high viability percentage, indicating that the NPs are biocompatible. Conclusions: NPs consisting of NH2-PEO-PCL were characterized as potential formulations for brain delivery of L-DOPA and curcumin. The results also indicate that the developed biodegradable nanomicelles that were blood compatible presented low cytotoxicity.


Assuntos
Curcumina , Nanopartículas , Doença de Parkinson , Animais , Curcumina/farmacologia , Portadores de Fármacos , Levodopa , Doença de Parkinson/tratamento farmacológico , Poliésteres/farmacologia , Polietilenoglicóis , Polímeros , Ratos
14.
Mov Disord ; 37(8): 1693-1706, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35535012

RESUMO

BACKGROUND: In advanced stages of Parkinson's disease (PD), dyskinesia and motor fluctuations become seriously debilitating and therapeutic options become scarce. Aberrant activity of striatal cholinergic interneurons (SCIN) has been shown to be critical to PD and dyskinesia, but the systemic administration of cholinergic medications can exacerbate extrastriatal-related symptoms. Thus, targeting the mechanisms causing pathological SCIN activity in severe PD with motor fluctuations and dyskinesia is a promising therapeutic alternative. METHODS: We used ex vivo electrophysiological recordings combined with pharmacology to study the alterations in intracellular signaling that contribute to the altered SCIN physiology observed in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS: The altered phenotypes of SCIN of parkinsonian mice during the "off levodopa" state resulting from aberrant Kir/leak and Kv1.3 currents can be rapidly reverted by acute inhibition of cAMP-ERK1/2 signaling. Inverse agonists that inhibit the ligand-independent activity of D5 receptors, like clozapine, restore Kv1.3 and Kir/leak currents and SCIN normal physiology in dyskinetic mice. CONCLUSION: Our work unravels a signaling pathway involved in the dysregulation of membrane currents causing SCIN hyperexcitability and burst-pause activity in parkinsonian mice treated with levodopa (l-dopa). These changes persist during off-medication periods due to tonic mechanisms that can be acutely reversed by pharmacological interventions. Thus, targeting the D5-cAMP-ERK1/2 signaling pathway selectively in SCIN may have therapeutic effects in PD and dyskinesia by restoring the normal SCIN function. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Colinérgicos/uso terapêutico , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/patologia , Interneurônios/metabolismo , Levodopa/farmacologia , Levodopa/uso terapêutico , Camundongos , Oxidopamina/toxicidade
15.
Front Syst Neurosci ; 16: 975989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741818

RESUMO

A pipeline is proposed here to describe different features to study brain microcircuits on a histological scale using multi-scale analyses, including the uniform manifold approximation and projection (UMAP) dimensional reduction technique and modularity algorithm to identify neuronal ensembles, Runs tests to show significant ensembles activation, graph theory to show trajectories between ensembles, and recurrence analyses to describe how regular or chaotic ensembles dynamics are. The data set includes ex-vivo NMDA-activated striatal tissue in control conditions as well as experimental models of disease states: decorticated, dopamine depleted, and L-DOPA-induced dyskinetic rodent samples. The goal was to separate neuronal ensembles that have correlated activity patterns. The pipeline allows for the demonstration of differences between disease states in a brain slice. First, the ensembles were projected in distinctive locations in the UMAP space. Second, graphs revealed functional connectivity between neurons comprising neuronal ensembles. Third, the Runs test detected significant peaks of coactivity within neuronal ensembles. Fourth, significant peaks of coactivity were used to show activity transitions between ensembles, revealing recurrent temporal sequences between them. Fifth, recurrence analysis shows how deterministic, chaotic, or recurrent these circuits are. We found that all revealed circuits had recurrent activity except for the decorticated circuits, which tended to be divergent and chaotic. The Parkinsonian circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting a predominant temporal sequence that disrupts transitions found in the controls, thus resembling the clinical signs of rigidity and paucity of movements. Dyskinetic circuits display a higher recurrence rate between neuronal ensembles transitions, paralleling clinical findings: enhancement in involuntary movements. These findings confirm that looking at neuronal circuits at the histological scale, recording dozens of neurons simultaneously, can show clear differences between control and diseased striatal states: "fingerprints" of the disease states. Therefore, the present analysis is coherent with previous ones of striatal disease states, showing that data obtained from the tissue are robust. At the same time, it adds heuristic ways to interpret circuitry activity in different states.

16.
Eur J Neurosci ; 54(11): 8020-8028, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34755397

RESUMO

In individuals with Parkinson's disease (PD), the medication induces different and inconsistent results in the spatiotemporal parameters of gait, making it difficult to understand its effects on gait. As spatiotemporal gait parameters have been reported to be affected by gait speed, it is essential to consider the gait speed when studying walking biomechanics to interpret the results better when comparing the gait pattern of different conditions. Since the medication alters the self-selected gait speed of individuals with PD, this study analysed whether the change in gait speed can explain the selective effects of l-DOPA on the spatiotemporal parameters of gait in individuals with PD. We analysed the spatiotemporal gait parameters at the self-selected speed of 22 individuals with PD under ON and OFF states of l-DOPA medication. Bayesian mediation analysis evaluated which gait variables were affected by the medication state and checked if those effects were mediated by speed changes induced by medication. The gait speed was significantly higher among ON compared with OFF medication. All the spatiotemporal parameters of the gait were mediated by speed, with proportions of mediation close to 1 (effect entirely explained by speed changes). Our results show that a change in gait speed better explains the changes in the spatiotemporal gait parameters than the ON-OFF phenomenon. As an implication for rehabilitation, our results suggest that it is possible to assess the effect of l-DOPA on improving motor symptoms related to gait disorders by measuring gait speed.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Teorema de Bayes , Marcha , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Velocidade de Caminhada
17.
JIMD Rep ; 61(1): 19-24, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34485013

RESUMO

Tetrahydrobiopterin (BH4) is a cofactor that participates in the biogenesis reactions of a variety of biomolecules, including l-tyrosine, l-3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, nitric oxide, and glycerol. Dihydropteridine reductase (DHPR, EC 1.5.1.34) is an enzyme involved in the BH4 regeneration. DHPR deficiency (DHPRD) is an autosomal recessive disorder, leading to severe and progressive neurological manifestations, which cannot be exclusively controlled by l-phenylalanine (l-Phe) restricted diet. In fact, the supplementation of neurotransmitter precursors is more decisive in the disease management, and the administration of sapropterin dihydrochloride may also provide positive effects. From the best of our knowledge, there is limited information regarding DHPRD in the past 5 years in the literature. Here, we describe the medical journey of the first patient to have DHPRD confirmed by molecular diagnostic methods in Brazil. The patient presented with two pathogenic variants of the quinoid dihydropteridine reductase (QDPR) gene-which codes for the DHPR protein, one containing the in trans missense mutation c.515C>T (pPro172Leu) in exon 5 and the other containing the same type of mutation in the exon 7 (c.635T>C [p.Phe212Ser]). The authors discuss their experience with sapropterin dihydrochloride for the treatment of DHPRD in this case report.

18.
Future Microbiol ; 16: 509-520, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33960816

RESUMO

Aim: Melanin has been linked to pathogenesis in several fungi. They often produce melanin-like pigments in the presence of L-dihydroxyphenylalanine (L-DOPA), but this is poorly studied in Candida glabrata. Methods & materials:C. glabrata was grown in minimal medium with or without L-DOPA supplementation and submitted to a chemical treatment with denaturant and hot acid. Results:C. glabrata turned black when grown in the presence of L-DOPA, whereas cells grown without L-DOPA supplementation remained white. Biophysical properties demonstrated that the pigment was melanin. Melanized C. glabrata cells were effectively protected from azoles and amphotericin B, incubation at 42°C and macrophage killing. Conclusion: In the presence of L-DOPA, C. glabrata produces melanin, increases antifungal resistance and enhances host survival.


Aim: Melanin is a pigment that can help fungi to cause disease. Fungi often produce melanin-like pigments in the presence of L-dihydroxyphenylalanine (L-DOPA), but this is poorly studied in Candida glabrata, a yeast species that can cause human disease. Methods & materials:C. glabrata was grown in minimal medium with or without L-DOPA supplementation and submitted to a chemical treatment to isolate melanin. Results:C. glabrata turned black when grown in the presence of L-DOPA, whereas cells grown without L-DOPA supplementation remained white. Several experiments demonstrated that the black pigment was melanin. Melanized C. glabrata cells were effectively protected from antifungal drugs, incubation at 42°C and killing by cells of the immune system. Conclusion: In the presence of L-DOPA, C. glabrata produces melanin, increases antifungal resistance and has enhanced survival in contact with immunologic defense cells.


Assuntos
Candida glabrata/patogenicidade , Candidíase/microbiologia , Melaninas/metabolismo , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Azóis/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/metabolismo , Candidíase/imunologia , Citocinas/metabolismo , Di-Hidroxifenilalanina/metabolismo , Farmacorresistência Fúngica , Macrófagos/imunologia , Camundongos , Viabilidade Microbiana , Virulência
19.
Neuroscience ; 467: 201-217, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048797

RESUMO

Before the advent of L-DOPA, the gold standard symptomatic therapy for Parkinson's disease (PD), anticholinergic drugs (muscarinic receptor antagonists) were the preferred antiparkinsonian therapy, but their unwanted side effects associated with impaired extrastriatal cholinergic function limited their clinical utility. Since most patients treated with L-DOPA also develop unwanted side effects such as L-DOPA-induced dyskinesia (LID), better therapies are needed. Recent studies in animal models demonstrate that optogenetic and chemogenetic manipulation of striatal cholinergic interneurons (SCIN), the main source of striatal acetylcholine, modulate parkinsonism and LID, suggesting that restoring SCIN function might serve as a therapeutic option that avoids extrastriatal anticholinergics' side effects. However, it is still unclear how the altered SCIN activity in PD and LID affects the striatal circuit, whereas the mechanisms of action of anticholinergic drugs are still not fully understood. Recent animal model studies showing that SCINs undergo profound changes in their tonic discharge pattern after chronic L-DOPA administration call for a reexamination of classical views of how SCINs contribute to PD symptoms and LID. Here, we review the recent advances on the circuit implications of aberrant striatal cholinergic signaling in PD and LID in an effort to provide a comprehensive framework to understand the effects of anticholinergic drugs and with the aim of shedding light into future perspectives of cholinergic circuit-based therapies.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos , Antagonistas Colinérgicos , Corpo Estriado , Modelos Animais de Doenças , Humanos , Levodopa , Oxidopamina , Doença de Parkinson/tratamento farmacológico
20.
Mov Disord ; 36(7): 1578-1591, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33547844

RESUMO

BACKGROUND: Enhanced striatal cholinergic interneuron activity contributes to the striatal hypercholinergic state in Parkinson's disease (PD) and to levodopa-induced dyskinesia. In severe PD, dyskinesia and motor fluctuations become seriously debilitating, and the therapeutic strategies become scarce. Given that the systemic administration of anticholinergics can exacerbate extrastriatal-related symptoms, targeting cholinergic interneurons is a promising therapeutic alternative. Therefore, unraveling the mechanisms causing pathological cholinergic interneuron activity in severe PD with motor fluctuations and dyskinesia may provide new molecular therapeutic targets. METHODS: We used ex vivo electrophysiological recordings combined with pharmacological and morphological studies to investigate the intrinsic alterations of cholinergic interneurons in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS: Cholinergic interneurons exhibit pathological burst-pause activity in the parkinsonian "off levodopa" state. This is mediated by a persistent ligand-independent activity of dopamine D1/D5 receptor signaling, involving a cyclic adenosine monophosphate (cAMP) pathway. Dysregulation of membrane ion channels that results in increased inward-rectifier potassium type 2 (Kir2) and decreased leak currents causes the burst pause activity, which can be dampened by pharmacological inhibition of intracellular cAMP. A single challenge with a dyskinetogenic dose of levodopa is sufficient to induce persistent cholinergic interneuron burst-pause firing. CONCLUSION: Our data unravel a mechanism causing aberrant cholinergic interneuron burst-pause activity in parkinsonian mice treated with levodopa. Targeting D5-cAMP signaling and the regulation of Kir2 and leak channels may alleviate parkinsonism and dyskinesia by restoring normal cholinergic interneuron function. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Corpo Estriado , Levodopa , Animais , Colinérgicos/farmacologia , Interneurônios , Levodopa/farmacologia , Camundongos , Oxidopamina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA