Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 164(2): 92-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38934155

RESUMO

INTRODUCTION: Neurodevelopmental disorders (NDDs) are diverse and can be explained by either genomic aberrations or single nucleotide variants. Most likely due to methodological approaches and/or disadvantages, the concurrence of both genetic events in a single patient has hardly been reported and even more rarely the pathogenic variant has been regarded as the cause of the phenotype when a chromosomal alteration is initially identified. CASE PRESENTATION: Here, we describe a NDD patient with a 6p nonpathogenic paracentric inversion paternally transmitted and a de novo pathogenic variant in the GRIN2B gene. Molecular-cytogenetic studies characterized the familial 6p inversion and revealed a paternal 9q inversion not transmitted to the patient. Subsequent whole-genome sequencing in the patient-father dyad corroborated the previous findings, discarded inversions-related cryptic genomic rearrangements as causative of the patient's phenotype, and unveiled a novel heterozygous GRIN2B variant (p.(Ser570Pro)) only in the proband. In addition, Sanger sequencing ruled out such a variant in her mother and thereby confirmed its de novo origin. Due to predicted disturbances in the local secondary structure, this variant may alter the ion channel function of the M1 transmembrane domain. Other pathogenic variants in GRIN2B have been related to the autosomal dominant neurodevelopmental disorder MRD6 (intellectual developmental disorder, autosomal dominant 6, with or without seizures), which presents with a high variability ranging from mild intellectual disability (ID) without seizures to a more severe encephalopathy. In comparison, our patient's clinical manifestations include, among others, mild ID and brain anomalies previously documented in subjects with MRD6. CONCLUSION: Occasionally, gross chromosomal abnormalities can be coincidental findings rather than a prime cause of a clinical phenotype (even though they appear to be the causal agent). In brief, this case underscores the importance of comprehensive genomic analysis in unraveling the wide-ranging genetic causes of NDDs and may bring new insights into the MRD6 variability.


Assuntos
Inversão Cromossômica , Transtornos do Neurodesenvolvimento , Receptores de N-Metil-D-Aspartato , Feminino , Humanos , Masculino , Cromossomos Humanos Par 6/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Receptores de N-Metil-D-Aspartato/genética , Sequenciamento Completo do Genoma
2.
Artigo em Inglês | MEDLINE | ID: mdl-38267766

RESUMO

Alzheimer's disease (AD) is an irreversible and neurodegenerative disorder. Its etiology is not clear, but the involvement of genetic components plays a central role in the onset of the disease. In the present study, the expression of 10 genes (APP, PS1 and PS2, APOE, APBA2, LRP1, GRIN2B, INSR, GJB1, and IDE) involved in the main pathways related to AD were analyzed in auditory cortices and cerebellum from 29 AD patients and 29 healthy older adults. Raw analysis revealed tissue-specific changes in genes LRP1, INSR, and APP. A correlation analysis showed a significant effect also tissue-specific AD in APP, GRIN2B, INSR, and LRP1. Furthermore, the E4 allele of the APOE gene revealed a significant correlation with change expression tissue-specific in ABPA2, APP, GRIN2B, LRP1, and INSR genes. To assess the existence of a correction between changes in target gene expression and a probability of AD in each tissue (auditory cortices and cerebellum) an analysis of the effect of expressions was realized and showed that the reduction in the expression of the APP in auditory cortex and GRIN2B cerebellum had a significant effect in increasing the probability of AD, in the same logic, our result also suggesting that increased expression of the LRP1 and INSR genes had a significant effect on increasing the probability of AD. Our results showed tissue-specific gene expression alterations associated with AD and certainly opened new perspectives to characterize factors involved in gene regulation and to obtain possible biomarkers for AD.


Assuntos
Doença de Alzheimer , Antígenos CD , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Cerebelo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Córtex Auditivo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Expressão Gênica/genética , Estudos de Casos e Controles
3.
Epigenomics ; 13(12): 927-937, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33942662

RESUMO

Aim: We investigated GRIN1, GRIN2A, GRIN2B and LINE-1 DNA methylation in first-episode schizophrenia patients, their nonaffected siblings and age- and sex-matched controls testing for associations between DNA methylation and exposition to childhood trauma. Materials & methods: The Childhood Trauma Questionnaire evaluated the history of childhood trauma. Genomic DNA was bisulfite converted and pyrosequencing was employed to quantify DNA methylation. Results:GRIN2A, GRIN2B and LINE-1 DNA methylation was not associated with childhood trauma in patients, siblings and controls. Siblings with childhood trauma had hypermethylation at CpG1 of GRIN1 compared with siblings without trauma. Conclusion: Childhood trauma may influence GRIN1 methylation in subjects with liability to psychosis, but not in frank schizophrenia or controls.


Lay abstract Schizophrenia results from a combination of genetic and environmental influences. We investigated how some changes in genes can be silenced by a process named DNA methylation and may be linked to schizophrenia. For this reason, we hypothesized that childhood trauma, an environmental risk factor, would be associated with DNA methylation in schizophrenia patients compared with their unaffected siblings and controls. Our research has shown that altered blood DNA methylation of one candidate gene for psychiatric disorders may be associated with childhood trauma in the unaffected siblings of schizophrenia patients, but not in frank schizophrenia or controls. We believe that this gene plays an important role in helping identify vulnerable as well as resilient individuals to schizophrenia disorder.


Assuntos
Experiências Adversas da Infância , Suscetibilidade a Doenças , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/epidemiologia , Esquizofrenia/etiologia , Adolescente , Adulto , Biomarcadores , Estudos de Casos e Controles , Ilhas de CpG , Metilação de DNA , Feminino , Regulação da Expressão Gênica , Humanos , Elementos Nucleotídeos Longos e Dispersos , Masculino , Pessoa de Meia-Idade , Receptores de N-Metil-D-Aspartato/metabolismo , Medição de Risco , Fatores de Risco , Esquizofrenia/diagnóstico , Irmãos , Adulto Jovem
4.
Front Aging Neurosci ; 12: 585873, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551786

RESUMO

Accruing evidence supports the hypothesis that memory deficits in early Alzheimer Disease (AD) might be due to synaptic failure caused by accumulation of intracellular amyloid beta (Aß) oligomers, then secreted to the extracellular media. Transgenic mouse AD models provide valuable information on AD pathology. However, the failure to translate these findings to humans calls for models that better recapitulate the human pathology. McGill-R-Thy1-APP transgenic (Tg) rat expresses the human amyloid precursor protein (APP751) with the Swedish and Indiana mutations (of familial AD), leading to an AD-like slow-progressing brain amyloid pathology. Therefore, it offers a unique opportunity to investigate learning and memory abilities at early stages of AD, when Aß accumulation is restricted to the intracellular compartment, prior to plaque deposition. Our goal was to further investigate early deficits in memory, particularly long-term memory in McGill-R-Thy1-APP heterozygous (Tg+/-) rats. Short-term- and long-term habituation to an open field were preserved in 3-, 4-, and 6-month-old (Tg+/-). However, long-term memory of inhibitory avoidance to a foot-shock, novel object-recognition and social approaching behavior were seriously impaired in 4-month-old (Tg+/-) male rats, suggesting that they are unable to either consolidate and/or evoke such associative and discriminative memories with aversive, emotional and spatial components. The long-term memory deficits were accompanied by increased transcript levels of genes relevant to synaptic plasticity, learning and memory processing in the hippocampus, such as Grin2b, Dlg4, Camk2b, and Syn1. Our findings indicate that in addition to the previously well-documented deficits in learning and memory, McGill-R-Thy1-APP rats display particular long-term-memory deficits and deep social behavior alterations at pre-plaque early stages of the pathology. This highlights the importance of Aß oligomers and emphasizes the validity of the model to study AD-like early processes, with potentially predictive value.

5.
Epigenomics ; 11(4): 401-410, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30785307

RESUMO

AIM: We investigated GRIN1 and GRIN2B promoter methylation in first-episode schizophrenia patients compared with siblings and controls, testing for correlations between DNA methylation, cognitive performance and clinical variables. MATERIALS & METHODS: Blood-derived DNA from all groups underwent bisulfite conversion and pyrosequencing to determine methylation at CpG sites within the GRIN1 and GRIN2B promoters and results were compared with the measure of global methylation LINE-1. RESULTS: We found hypomethylation among all CpGs analyzed within GRIN2B promoter in patients and greater LINE-1 methylation in patients and siblings. CpG4 was correlated to a measure of intellectual function. CONCLUSION: Changes in GRIN2B promoter methylation may represent an environmental influence contributing to glutamatergic dysfunction in psychosis and relate to lower cognitive performance in subjects with first-episode schizophrenia.


Assuntos
Metilação de DNA , Predisposição Genética para Doença , Regiões Promotoras Genéticas , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/etiologia , Psicologia do Esquizofrênico , Adulto , Idade de Início , Cognição , Feminino , Humanos , Masculino , Esquizofrenia/diagnóstico , Esquizofrenia/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA