Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Pestic Biochem Physiol ; 202: 105938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879329

RESUMO

The excessive and indiscriminate use of synthetic insecticides has led to environmental pollution, wildlife destruction, and adverse effects on human health, while simultaneously giving rise to resistance in insect pest populations. This adaptive trait is expressed through various mechanisms, such as changes in the cuticle, heightened activities of detoxifying enzymes, and alterations in the sites of action that reduce their affinity for insecticides. In this context, we associate variation in toxicological response with genomic variation, to identify genetic polymorphisms underlying the different steps of the insect (genotype)-response (phenotype)-insecticide (environment) interaction. Under this framework, our objective was to investigate the genetic factors involved in the toxicological response of D. melanogaster lines when exposed to citronellal and eucalyptol vapors (monoterpenes of plant origin). We quantified KT50 in adult males, representing the time necessary for half of the exposed individuals to be turned upside down (unable to walk or fly). Since the genomes of all lines used are completely sequenced, we perform a Genome Wide Association Study to analyze the genetic underpinnings of the toxicological response. Our investigation enabled the identification of 656 genetic polymorphisms and 316 candidate genes responsible for the overall phenotypic variation. Among these, 162 candidate genes (77.1%) exhibited specificity to citronellal, 45 (21.4%) were specific to eucalyptol, and 3 candidate genes (1.5%) namely CG34345, robo2, and Ac13E, were implicated in the variation for both monoterpenes. These suggest a widespread adaptability in the response to insecticides, encompassing genes influenced by monoterpenes and those orchestrating resistance to the toxicity of these compounds.


Assuntos
Monoterpenos Acíclicos , Drosophila melanogaster , Eucaliptol , Inseticidas , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Eucaliptol/toxicidade , Inseticidas/toxicidade , Masculino , Monoterpenos Acíclicos/toxicidade , Estudo de Associação Genômica Ampla , Monoterpenos/toxicidade , Aldeídos/toxicidade , Resistência a Inseticidas/genética
2.
Membranes (Basel) ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38668112

RESUMO

The human Respiratory Syncytial Virus (hRSV) stands as one of the most common causes of acute respiratory diseases. The infectivity of this virus is intricately linked to its membrane proteins, notably the attachment glycoprotein (G protein). The latter plays a key role in facilitating the attachment of hRSV to respiratory tract epithelial cells, thereby initiating the infection process. The present study aimed to characterize the interaction of the conserved cysteine-noose domain of hRSV G protein (cndG) with the transmembrane CX3C motif chemokine receptor 1 (CX3CR1) isoforms using computational tools of molecular modeling, docking, molecular dynamics simulations, and binding free energy calculations. From MD simulations of the molecular system embedded in the POPC lipid bilayer, we showed a stable interaction of cndG with the canonical fractalkine binding site in the N-terminal cavity of the CX3CR1 isoforms and identified that residues in the extracellular loop 2 (ECL2) region and Glu279 of this receptor are pivotal for the stabilization of CX3CR1/cndG binding, corroborating what was reported for the interaction of the chemokine fractalkine with CX3CR1 and its structure homolog US28. Therefore, the results presented here contribute by revealing key structural points for the CX3CR1/G interaction, allowing us to better understand the biology of hRSV from its attachment process and to develop new strategies to combat it.

3.
Acta Physiol (Oxf) ; 240(5): e14134, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488216

RESUMO

The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.


Assuntos
Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Animais , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Receptor Cross-Talk/fisiologia , Receptores de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Pressão Sanguínea/fisiologia , Receptor Tipo 2 de Angiotensina/metabolismo
4.
Int J Mol Med ; 53(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038161

RESUMO

Schizophrenia (SZ) is a multifactorial disorder characterized by volume reduction in gray and white matter, oxidative stress, neuroinflammation, altered neurotransmission, as well as molecular deficiencies such as punctual mutation in Disrupted­in­Schizophrenia 1 protein. In this regard, it is essential to understand the underlying molecular disturbances to determine the pathophysiological mechanisms of the disease. The signaling pathways activated by G protein­coupled receptors (GPCRs) are key molecular signaling pathways altered in SZ. Convenient models need to be designed and validated to study these processes and mechanisms at the cellular level. Cultured olfactory stem cells are used to investigate neural molecular and cellular alterations related to the pathophysiology of SZ. Multipotent human olfactory stem cells are undifferentiated and express GPCRs involved in numerous physiological functions such as proliferation, differentiation and bioenergetics. The use of olfactory stem cells obtained from patients with SZ may identify alterations in GPCR signaling that underlie dysfunctional processes in both undifferentiated and specialized neurons or derived neuroglia. The present review aimed to analyze the role of GPCRs and their signaling in the pathophysiology of SZ. Culture of olfactory epithelial cells constitutes a suitable model to study SZ and other psychiatric disorders at the cellular level.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Células Neuroepiteliais/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G , Células-Tronco/metabolismo
5.
Arq. gastroenterol ; Arq. gastroenterol;60(4): 536-542, Oct.-Nov. 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1527862

RESUMO

ABSTRACT Background: Bile acids (BAs) are steroid molecules synthesized exclusively in the liver, being end products of cholesterol catabolism. BAs are known to be involved in several metabolic alterations, including metabolic syndrome and type 2 diabetes mellitus (DM2). DM2 is a chronic degenerative disease characterized by insulin resistance, insulin deficiency due to insufficient production of pancreatic ß-cells, and elevated serum glucose levels leading to multiple complications. Objective: The objective of this study is to investigate the role of BAs in the pathophysiology of DM2, highlighting the possibilities in the development of therapeutic procedures targeting BAs as an optional pathway in the treatment of DM2. Methods: The research was carried out through narrative review and publications on the relationship between BAs and DM2. The databases used for the search include PubMed, Scopus, and Web of Science. The keywords used for the search include bile acids, type 2 diabetes mellitus, metabolic syndrome, and metabolic disorders. Results: The studies have reported the involvement of BAs in the pathophysiology of DM2. BAs act as a ligand for the nuclear farnesoid X receptor, regulating glucose metabolism, lipid metabolism, and cellular energy production. Additionally, BAs modulate the production, elimination, and mobilization of BAs through the farnesoid X receptor. BAs also act as a signaling pathway through Takeda G protein-coupled receptor 5, further contributing to metabolic regulation. These findings suggest that targeting BAs may offer a novel therapeutic approach in the treatment of DM2. Conclusion: This study highlights the important role of BAs in DM2, specifically through their interactions with key metabolic pathways. Targeting BAs may represent an innovative and effective approach to the treatment of DM2.


RESUMO Contexto: Os ácidos biliares (ABs) são moléculas esteróides sintetizadas exclusivamente no fígado, sendo produtos finais do catabolismo do colesterol. Os ABs são conhecidos por estarem envolvidos em várias alterações metabólicas, incluindo a síndrome metabólica e o diabetes mellitus tipo 2 (DM2). A DM2 é uma doença crônica degenerativa caracterizada pela resistência insulínica, deficiência de insulina devido à produção insuficiente de células ß pancreáticas e hiperglicemia levando a múltiplas complicações. Objetivo: O objetivo deste estudo é investigar o papel dos ABs na fisiopatologia da DM2, destacando as possibilidades no desenvolvimento de procedimentos terapêuticos visando os ABs como uma via opcional no tratamento da DM2. Métodos: A pesquisa foi realizada por meio de revisão narrativa e publicações sobre a relação entre ABs e DM2. As bases de dados usadas para a pesquisa incluem PubMed, Scopus e Web of Science. As palavras-chave usadas para a pesquisa incluíram: ácidos biliares, diabetes mellitus tipo 2, síndrome metabólica e distúrbios metabólicos. Resultados: Os estudos relataram o envolvimento dos ABs na fisiopatologia da DM2. Os ABs atuam como ligantes para o receptor nuclear farnesoide X, regulando o metabolismo da glicose, metabolismo lipídico e produção de energia celular. Além disso, os ABs regulam a produção, eliminação e mobilização de ABs através do receptor farnesoide X. Os ABs também atuam como uma via de sinalização através do receptor acoplado à proteína G Takeda 5, contribuindo ainda mais para a regulação metabólica. Esses achados sugerem que o ABs pode oferecer uma nova abordagem terapêutica no tratamento da DM2. Conclusão: Este estudo destaca o papel importante do ABs na DM2, especificamente por meio de suas interações com vias metabólicas-chave. O redirecionamento ao ABs pode representar uma abordagem inovadora e eficaz para o tratamento da DM2.

6.
Front Pharmacol ; 14: 1251922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900160

RESUMO

Introduction: The amygdala is a limbic region of high value for understanding anxiety and its treatment. Dopamine D2 receptors (D2Rs) and oxytocin receptors (OXTRs) have both been shown to participate in modulating anxiety involving effects in the amygdala. The goal is to understand if D2R-OXTR heterocomplexes exist in the central amygdala and if, through enhancing allosteric receptor-receptor interactions, may enhance anxiolytic actions. Methods: The methods used involve the shock-probe burying test, the in situ proximity ligation assay (PLA), image acquisition and analysis, and the BRET2 assay. Bilateral cannulas were introduced into the amygdala, and the effects of the coadministration of oxytocin and the D2R-like agonist quinpirole into the amygdala were studied. Results: The combination treatment enhanced the anxiolytic effects compared to the single treatment. The D2R/D3R antagonist raclopride blocked the effects of the combination treatment of oxytocin and the D2R agonist, although oxytocin is regarded as a distinct modulator of fear-mediating anxiolytic effects. In situ PLA results indicate the existence of D2R-OXTR heteroreceptor complexes and/or the co-location of OXTR and D2R within the same cell membrane nanodomains in the central amygdala. With BRET2, evidence is given for the existence of D2R-OXTR heteromers in HEK293 cells upon co-transfection. Discussion: The enhanced behavioral effects observed upon co-treatment with OXTR and D2R agonists may reflect the existence of improved positive receptor-receptor interactions in the putative D2R-OXTR heterocomplexes in certain neuronal populations of the basolateral and central amygdala. The D2R-OXTR heterocomplex, especially upon agonist co-activation in the central amygdala, may open a new pharmacological venue for the treatment of anxiety.

7.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686252

RESUMO

Opioid receptors, particularly the µ-opioid receptor (µOR), play a pivotal role in mediating the analgesic and addictive effects of opioid drugs. G protein signaling is an important pathway of µOR function, usually associated with painkilling effects. However, the molecular mechanisms underlying the interaction between the µOR and G protein remain poorly understood. In this study, we employed classical all-atom molecular dynamics simulations to investigate the structural changes occurring with the µOR-G protein complex under two different conditions: with the G protein in the apo form (open) and with the GDP bound G protein (closed, holo form). The receptor was in the apo form and active conformation in both cases, and the simulation time comprised 1µs for each system. In order to assess the effect of the G protein coupling on the receptor activation state, three parameters were monitored: the correlation of the distance between TM3 and TM6 and the RMSD of the NPxxYA motif; the universal activation index (A100); and the χ2 dihedral distribution of residue W2936.48. When complexed with the open G protein, receptor conformations with intermediate activation state prevailed throughout the molecular dynamics, whereas in the condition with the closed G protein, mostly inactive conformations of the receptor were observed. The major effect of the G protein in the receptor conformation comes from a steric hindrance involving an intracellular loop of the receptor and a ß-sheet region of the G protein. This suggests that G-protein precoupling is essential for receptor activation, but this fact is not sufficient for complete receptor activation.


Assuntos
Comportamento Aditivo , Receptores Opioides , Transdução de Sinais , Analgésicos Opioides , Simulação de Dinâmica Molecular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
8.
Basic Clin Pharmacol Toxicol ; 133(4): 342-352, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37464463

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) possess a unique topology, including the presence of a GPCR proteolysis site (GPS), which, upon autoproteolysis, generates two functionally distinct fragments that remain non-covalently associated at the plasma membrane. A proposed activation mechanism for aGPCRs involves the exposure of a tethered agonist, which depends on cleavage at the GPS. However, this hypothesis has been challenged by the observation that non-cleavable aGPCRs exhibit constitutive activity, thus making the function of GPS cleavage widely enigmatic. In this study, we sought to elucidate the function of GPS-mediated cleavage through the study of G protein coupling with Latrophilin-3/ADGRL3, a prototypical aGPCR involved in synapse formation and function. Using BRET-based G protein biosensors, we reveal that an autoproteolysis-deficient mutant of ADGRL3 retains constitutive activity. Surprisingly, we uncover that cleavage deficiency leads to a signalling bias directed at potentiating the activity of select G proteins such as Gi2 and G12/13. These data unveil the underpinnings of biased signalling for aGPCRs defined by GPS autoproteolysis.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Relação Estrutura-Atividade , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Adesão Celular
9.
Am J Hypertens ; 36(9): 471-480, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37148218

RESUMO

Cytomegalovirus (CMV) is a member of the ß-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.


Assuntos
Doenças Cardiovasculares , Infecções por Citomegalovirus , Hipertensão , Humanos , Citomegalovirus/metabolismo , Transdução de Sinais , Infecções por Citomegalovirus/epidemiologia , Receptores Acoplados a Proteínas G/metabolismo
10.
Prog Mol Biol Transl Sci ; 194: 49-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36631200

RESUMO

The renin angiotensin system (RAS) plays a major role in blood pressure regulation and electrolyte homeostasis and is mainly composed by two axes mediating opposite effects. The pressor axis, constituted by angiotensin (Ang) II and the Ang II type 1 receptor (AT1R), exerts vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory actions, while the depressor/protective axis, represented by Ang-(1-7), its Mas receptor (MasR) and the Ang II type 2 receptor (AT2R), opposes the actions elicited by the pressor arm. The MasR belongs to the G protein-coupled receptor (GPCR) family. To avoid receptor overstimulation, GPCRs undergo internalization and trafficking into the cell after being stimulated. Then, the receptor may induce other signaling cascades or it may even interact with other receptors, generating distinct biological responses. Thus, control of a GPCR regarding space and time affects the specificity of the signals transduced by the receptor and the ultimate cellular response. The present chapter is focused on the signaling and trafficking pathways of MasR under physiological conditions and its participation in the pathogenesis of numerous brain diseases.


Assuntos
Endocitose , Proto-Oncogene Mas , Sistema Renina-Angiotensina , Humanos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Pressão Sanguínea/fisiologia , Proto-Oncogene Mas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia
11.
Am J Physiol Cell Physiol ; 324(3): C606-C613, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571443

RESUMO

The renin-angiotensin system (RAS) is a classical hormonal system involved in a myriad of cardiovascular functions. This system is composed of many different peptides that act in the heart through different receptors. One of the most important of these peptides is angiotensin II, which in pathological conditions triggers a set of actions that lead to heart failure. On the other hand, another RAS peptide, angiotensin-(1-7) is well known to develop powerful therapeutic effects in many forms of cardiac diseases. In the last decade, two new components of RAS were described, the heptapeptide alamandine and its receptor, the Mas-related G protein-coupled receptor member D (MrgD). Since then, great effort was made to characterize their physiological and pathological function in the heart. In this review, we summarize the latest insights about the actions of alamandine/MrgD axis in the heart, with particular emphasis in the cardiomyocyte. More specifically, we focused on their antihypertrophic and contractility effects, and the related molecular events activated in the cardiomyocyte.


Assuntos
Miócitos Cardíacos , Receptores Acoplados a Proteínas G , Miócitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo
12.
Biol Res Nurs ; 25(3): 353-366, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444640

RESUMO

BACKGROUND: Impaired wound healing is a health problem around the world, and the search for a novel product to repair wounded skin is a major topic in the field. GW9508 is a synthetic molecule described as a selective agonist of free fatty acid receptors (FFARs) 1 and 4, and there is evidence of its anti-inflammatory effects on several organs of the body. PURPOSE: Here, we aimed to evaluate the effects of topical GW9508 on wound healing in mice. RESEARCH DESIGN: First, we used bioinformatic methods to determine the expression of FFAR1 and FFAR4 mRNA in the skin from a human cell atlas assembled with single-cell transcriptomes. Next, we employed 6-week-old C57BL6J mice with 2 wounds inflicted in the back. The mice were randomly divided into 2 groups, a control group, which received topical vehicle, and a treatment group, which received GW9508, for 12 days. The wound was monitored by photographic documentation every 2 days, and samples were collected at day 6 and 12 post injury for RT-PCR, western blot and histology analyses. RESULTS: FFAR1 and FFAR4 mRNA are expressed in skin cells in similar amounts to those in other tissues. Topical GW9508 accelerated wound healing and decreased gene expression of IL-10 and metalloproteinase 9 on days 6 and 12 post injury. It increased the quantity of Collagen I and improved the organization of collagen fibres. Conclusions: Our results show that GW9508 could be an attractive drug treatment for wounded skin. Future studies need to be performed to assess the impact of GW9508 in chronic wound models.


Assuntos
Cicatriz , Metilaminas , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Metilaminas/farmacologia , Propionatos , Receptores Acoplados a Proteínas G , Pele , Colágeno , Anti-Inflamatórios/farmacologia , Administração Tópica
13.
Neurosci Lett ; 792: 136955, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347339

RESUMO

GPR139 is an orphan G-protein-coupled receptor that is expressed in restricted areas of the nervous system, including the hypothalamus. In this study, we hypothesized that GPR139 could be involved in the regulation of energy balance and metabolism. In the first part of the study, we confirmed that GPR139 is expressed in the hypothalamus and particularly in proopiomelanocortin and agouti-related peptide neurons of the mediobasal hypothalamus. Using a lentivirus with a short-hairpin RNA, we inhibited the expression of GPR139 bilaterally in the mediobasal hypothalamus of mice. The intervention promoted a 40% reduction in the hypothalamic expression of GPR139, which was accompanied by an increase in body mass, a reduction in fasting blood glucose levels, and an increase in insulin levels. In the hypothalamus, inhibition of GPR139 was accompanied by a reduction in the expression of orexin. As previous studies using a pharmacological antagonist of orexin showed a beneficial impact on type 2 diabetes and glucose metabolism, we propose that the inhibition of hypothalamic GPR139 could be acting indirectly through the orexin system to control systemic glucose and insulin. In conclusion, this study advances the characterization of GPR139 in the hypothalamus, demonstrating its involvement in the regulation of body mass, blood insulin, and glycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Camundongos , Animais , Orexinas/metabolismo , Insulina/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo
14.
Curr Issues Mol Biol ; 44(11): 5718-5727, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421671

RESUMO

The luteinizing hormone receptor (LHR) is a glycoprotein member of the G protein-coupled receptors superfamily. It participates in corpus luteum formation and ovulation in females and acts in testosterone synthesis and spermatogenesis in males. In this study, we extracted RNA from sheep testicles and synthetized the cDNA to amplify the gene lhr-bed. This gene consists of 762 bp and encodes 273 amino acids of the extracellular domain of LHR. The lhr-bed was cloned into pJET1.2/blunt, then subcloned into pCOLD II, and finally, transformed in E. coli BL21 (DE3) cells. Because the induced rLHR-Bed protein was found in the insoluble fraction, we followed a modified purification protocol involving induction at 25 °C, subjection to denaturing conditions, and on-column refolding to increase solubility. We confirmed rLHR-Bed expression by means of Western blot and mass spectrometry analysis. It is currently known that the structure stem-loop 5'UTR on pCOLD II vector is stable at 15 °C. We predicted and obtained RNAfold stability at 25 °C. We successfully obtained the recombinant LHR extracellular domain, with protein yields of 0.2 mg/L, and purity levels of approximately 90%, by means of a single chromatographic purification step. The method described here may be used to obtain large quantities of rLHR-Bed in the future.

15.
Mol Brain ; 15(1): 95, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434658

RESUMO

Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.


Assuntos
Canais de Cálcio Tipo N , Doenças do Sistema Nervoso , Humanos , Analgésicos Opioides , Cálcio , Receptor de Nociceptina
16.
Artigo em Inglês | MEDLINE | ID: mdl-36231664

RESUMO

The G-protein-coupled receptor for estrogen (GPER1) is a transmembrane receptor involved in the progression and development of various neoplasms whose ligand is estradiol (E2). 17ß-aminoestrogens (17ß-AEs) compounds, analogs to E2, are possible candidates for use in hormone replacement therapy (HRT), but our knowledge of their pharmacological profile is limited. Thus, we explored the molecular recognition of GPER1 with different synthetic 17ß-AEs: prolame, butolame, and pentolame. We compared the structure and ligand recognition sites previously reported for a specific agonist (G1), antagonists (G15 and G36), and the natural ligand (E2). Then, the biological effects of 17ß-AEs were analyzed through cell viability and cell-cycle assays in two types of female cancer. In addition, the effect of 17ß-AEs on the phosphorylation of the oncoprotein c-fos was evaluated, because this molecule is modulated by GPER1. Molecular docking analysis showed that 17ß-AEs interacted with GPER1, suggesting that prolame joins GPER1 in a hydrophobic cavity, similarly to G1, G15, and E2. Prolame induced cell proliferation in breast (MCF-7) and cervical cancer (SIHA) cells; meanwhile, butolame and pentolame did not affect cell proliferation. Neither 17ß-AEs nor E2 changed the activation of c-fos in MCF-7 cells. Meanwhile, in SIHA cells, E2 and 17ß-AEs reduced c-fos phosphorylation. Thus, our data suggest that butolame and pentolame, but not prolame, could be used for HRT without presenting a potential risk of inducing breast- or cervical-cancer-cell proliferation. The novelty of this work lies in its study of compound analogs to E2 that may represent important therapeutic strategies for women in menopause, with non-significant effects on the cell viability of cancer cells. The research focused on the interactions of GPER1, a molecule recently associated with promoting and maintaining various neoplasms.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Amino Álcoois , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Estradiol/farmacologia , Estrenos , Estrogênios/farmacologia , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Proteínas Oncogênicas/farmacologia
17.
Oncol Lett ; 24(5): 397, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36276488

RESUMO

Glioblastoma (GB) is the most frequent primary brain tumor with a very poor prognosis. Sex hormones are crucial players in the development of GBs. 17 ß-estradiol (E2) signaling is involved through its corresponding intracellular receptors [estrogen receptor α (ERα) and ß (ERß)] in GB cell proliferation and progression. E2 activates G-protein coupled estrogen receptor (GPER), leading to rapidly occurring effects, independently of gene transcription. GPER activation is involved in tumor progression in various cancer types. Currently, available data concerning the occurrence and role of GPER in GB are very limited. In the present study, it was observed that GPER was expressed in human brain tumor cell lines [U251 (astrocytoma-derived cell line), U87, LN229 and T98 (glioblastoma-derived cell line)]. Immunofluorescence assays revealed that GPER localizes in the plasma membrane, cytoplasm and nucleus. An in silico analysis identified two potential E2 response elements in the promoter region of the GPER gene. E2 increased GPER expression in the U251, U87 and LN229 cell lines. Molecular modeling data derived from in silico analysis predicted the three-dimensional conformation of GPER, and docking analysis identified potential binding sites of E2 and its specific agonist, G1. Taken together, these results indicate that GPER may be differentially expressed in human GB cell lines with E2 possibly upregulating GPER expression. The present study raises further questions about the implications of GPER-mediated E2 signaling in the biology of GBs.

18.
Front Cell Dev Biol ; 10: 941870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092739

RESUMO

The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, ß, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.

19.
Front Endocrinol (Lausanne) ; 13: 934685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093106

RESUMO

G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.


Assuntos
Doenças do Sistema Endócrino , Dobramento de Proteína , Membrana Celular/metabolismo , Doenças do Sistema Endócrino/metabolismo , Doenças do Sistema Endócrino/terapia , Humanos , Recém-Nascido , Mutação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
20.
Front Pharmacol ; 13: 945935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016551

RESUMO

Cannabidiol (CBD), the major non-psychoactive phytocannabinoid present in the plant Cannabis sativa, has displayed beneficial pharmacological effects in the treatment of several neurological disorders including, epilepsy, Parkinson's disease, and Alzheimer's disease. In particular, CBD is able to modulate different receptors in the endocannabinoid system, some of which belong to the family of G-protein-coupled receptors (GPCRs). Notably, while CBD is able to antagonize some GPCRs in the endocannabinoid system, it also seems to activate others. The details of this dual contrasting functional feature of CBD, that is, displaying antagonistic and (possible) agonistic ligand properties in related receptors, remain unknown. Here, using computational methods, we investigate the interacting determinants of CBD in two closely related endocannabinoid-activated GPCRs, the G-protein-coupled receptor 55 (GPR55) and the cannabinoid type 1 receptor (CB1). While in the former, CBD has been demonstrated to function as an antagonist, the way by which CBD modulates the CB1 receptor remains unclear. Namely, CBD has been suggested to directly trigger receptor's activation, stabilize CB1 inactive conformations or function as an allosteric modulator. From microsecond-length unbiased molecular dynamics simulations, we found that the presence of the CBD ligand in the GPR55 receptor elicit conformational changes associated with antagonist-bound GPCRs. In contrast, when the GPR55 receptor is simulated in complex with the selective agonist ML186, agonist-like conformations are sampled. These results are in agreement with the proposed modulatory function of each ligand, showing that the computational techniques utilized to characterize the GPR55 complexes correctly differentiate the agonist-bound and antagonist-bound systems. Prompted by these results, we investigated the role of the CBD compound on the CB1 receptor using similar computational approaches. The all-atom MD simulations reveal that CBD induces conformational changes linked with agonist-bound GPCRs. To contextualize the results we looked into the CB1 receptor in complex with a well-established antagonist. In contrast to the CBD/CB1 complex, when the CB1 receptor is simulated in complex with the ligand antagonist AM251, inactive conformations are explored, showing that the computational techniques utilized to characterize the CB1 complexes correctly differentiate the agonist-bound and antagonist-bound systems. In addition, our results suggest a previously unknown sodium-binding site located in the extracellular domain of the CB1 receptor. From our detailed characterization, we found particular interacting loci in the binding sites of the GPR55 and the CB1 receptors that seem to be responsible for the differential functional features of CBD. Our work will pave the way for understanding the CBD pharmacology at a molecular level and aid in harnessing its potential therapeutic use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA