Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Nutr ; 11: 1353530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699548

RESUMO

Consumer demand for healthier confectionery products has prompted the confectionery industry to create products that are reduced in sugar content and supplemented with vitamins, antioxidants or biological elements beneficial to health. The aim of this study was to develop marshmallows enriched with Apis mellifera honey and Lactobacillus rhamnosus and to evaluate the effect of honey concentration and gelatin bloom degrees on marshmallow properties. A completely randomized design with a factorial structure was applied with different honey concentrations (0, 50 and 75%) and at different gelatin bloom degrees (265, 300 and 315 bloom degrees); moreover, the physicochemical properties, total phenol content and antioxidant activity of the marshmallow were studied, as well as the viability of the probiotic. The physicochemical properties of the marshmallows were found to be adequate and showed good stability over time. The concentration of honey and gelatin bloom degrees did not significantly affect probiotic viability. The density of the marshmallows decreased as the percentage of honey increased. Additionally, the pH was lower at higher honey concentrations. The marshmallow with 75% honey and 265 bloom degrees had a higher °Brix value. The honey treatments exhibited higher levels of total antioxidant activity and total phenolic compounds than the sugar-only marshmallows. However, the bloom degrees did not have a significant impact on the antioxidant activity and total phenolic compound content. Although the probiotics did not reach the minimum viability needed, their use as paraprobiotics can be considered.

2.
J Fluoresc ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416281

RESUMO

An accurate, economic and green methodology for Pb(II) monitoring in bee products is proposed. Complexed metal traces were preconcentrated on Nylon membranes using the coacervation phenomenon based on room temperature reaction between the cationic surfactant hexadecyltrimethylammonium bromide and the bile salt sodium cholate. The increase in solid surface fluorescence signal of dyes 8-hydroxyquinoleine and o-phenanthroline due to Pb(II) presence was used for the metal quantification. Experimental variables that influence on preconcentration step and fluorimetric sensitivity were optimized using uni-varied assays. Pb(II) concentration was determined on membranes by solid surface fluorescence at λem = 470 nm (λexc = 445 nm), using a solid sample holder. The calibration at optimal experimental conditions showed a LOD of 4.2 × 10-4 mg Kg-1 with a linear range of 1.28 × 10-3 mg Kg-1 to 8.73 mg Kg-1 and was successfully applied to Pb(II) quantification in different bee products produced in central west region of Argentina. The proposed methodology was applied to all samples after appropriate dilution. Accuracy methodology was evaluated by comparison of the obtained results with those found by ICP-MS, with percentage relative error under 8%. The precision was better than 0.0344 CV for Pb(II) determination.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37668856

RESUMO

Probiotics, such as Lacticaseibacillus rhamnosus, are essential to the food industry for their health benefits to the host. The Lcb. rhamnosus strain is susceptible to processing, gastrointestinal, and storage conditions. In this study, Lcb. rhamnosus strains were encapsulated by complex coacervation in a gum arabic/chitosan or gum arabic/trehalose/chitosan and cross-linked with sodium tripolyphosphate. The physicochemical properties (zeta potential, water activity, water content, and hygroscopicity), encapsulation efficiency, and probiotic survival under storage conditions and simulated gastrointestinal fluids were evaluated. The results showed that crosslinking improves the encapsulation efficiency after drying; however, this result was remarkable when trehalose was used as a cryoprotectant. Furthermore, the encapsulation matrix preserved the viability of probiotics during 12 weeks with probiotic counts between 8.7-9.5, 7.5-9.0, and 5.2-7.4 log10 CFU g-1 at -20, 4, and 20 °C, respectively. After 12 days of digestion in an ex vivo simulator, acetic, butyric, propionic, and lactic acid production changed significantly, compared to free probiotic samples. This work shows that encapsulation by complex coacervation can promote the stability of probiotic bacteria in storage conditions and improve the viability of Lcb. rhamnosus HN001 during consumption so that they can exert their beneficial action in the organism.

4.
Int J Pharm ; 642: 123164, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37356507

RESUMO

The nanoprecipitation of hydrogel nanoparticles by complex coacervation is investigated through a systematic study of the popular chitosan-polyphosphate pair of polyelectrolytes with opposite charges at pH 4. Polyphosphates of varying molar masses and electrical charges are investigated as alternatives to the commonly used tripolyphosphate, so as to assess the influence of the strength of electrostatic interactions on the fabrication possibility, the size of hydrogel particles, and their overall charge. Sodium hexametaphosphate and sodium polyphosphate allow the manufacture of such nanoparticles with either a positive or a negative charge, depending on the chitosan/polyphosphate ratio and the order of mixing. The classical way of mixing by pouring the polyphosphate solution into the chitosan solution yields microparticles. Inverting the order of mixing by pouring the chitosan solution into the polyphosphate solution allows the precipitation of negatively charged nanoparticles with diameters in the range 100-200 nm. Such charge inversion of the chitosan into negative is not possible with the common TPP. It was achieved using sodium hexametaphosphate and sodium polyphosphate having a larger negative charge. Charge inversion of chitosan allows an efficient encapsulation of positively charged proteins with an improved encapsulation efficiency than in the usual TPP-based coacervate. The encapsulation of the bovine serum albumin at pH 4 is given as a case study of a positively charged protein.


Assuntos
Quitosana , Nanopartículas , Tamanho da Partícula , Soroalbumina Bovina , Polifosfatos , Hidrogéis , Sódio
5.
J Sci Food Agric ; 103(7): 3322-3333, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36750451

RESUMO

BACKGROUND: Chia oil (CO) is popular for being the richest vegetable source of α-linolenic acid (60-66%). However, this content of polyunsaturated fatty acids (PUFA) limits the incorporation of bulk CO in food products due to its high probability of oxidation. This justifies the study of alternative wall materials for microencapsulation. No reports regarding the use of dairy protein/vegetable protein/polysaccharide blends as wall material for the microencapsulation of CO have been published. Therefore, this work analyzed the behavior of a whey protein concentrate (WPC)/soy protein isolate (SPI)/arabic gum (AG) blend as wall material. The complex coacervation (CC) process was studied: pH, 4.0; total solid content, 30% w/v; WPC/SPI/AG ratio, 8:1:1 w/w/w; stirring speed, 600 rpm; time, 30 min; room temperature. RESULTS: The oxidative stability index (OSI) of CO (3.25 ± 0.16 h) was significantly increased after microencapsulation (around four times higher). Furthermore, the well-known matrix-forming ability of AG and WPC helped increase the OSI of microencapsulated oils. Meanwhile, SPI contributed to the increase of the encapsulation efficiency due to its high viscosity. Enhanced properties were observed with CC: encapsulation efficiency (up to 79.88%), OSIs (from 11.25 to 12.52 h) and thermal stability of microcapsules given by the denaturation peak temperatures of WPC (from 77.12 to 86.00 °C). No significant differences were observed in the fatty acid composition of bulk and microencapsulated oils. CONCLUSION: Microcapsules developed from complex coacervates based on the ternary blend represent promising omega-3-rich carriers for being incorporated into functional foods.


Assuntos
Ácidos Graxos Ômega-3 , Proteínas de Soja , Proteínas do Soro do Leite/química , Proteínas de Soja/metabolismo , Cápsulas/química , Ácidos Graxos Ômega-3/química , Liofilização , Estresse Oxidativo , Goma Arábica/química , Composição de Medicamentos
6.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615592

RESUMO

The interaction of DNA with different block copolymers, namely poly (trimethylammonium chloride methacryloyoxy)ethyl)-block-poly(acrylamide), i.e., (PTEA)-b-(PAm), and poly (trimethylammonium chloride methacryloyoxy)ethyl)-block-poly(ethylene oxide), i.e., (PTEA)-b-(PEO), was studied. The nature of the cationic block was maintained fixed (PTEA), whereas the neutral blocks contained varying amounts of acrylamide or (ethylene oxide) units. According to results from isothermal titration microcalorimetry measurements, the copolymers interaction with DNA is endothermic with an enthalpy around 4.0 kJ mol−1 of charges for (PTEA)-b-(PAm) and 5.5 kJ mol−1 of charges for (PTEA)-b-(PEO). The hydrodynamic diameters of (PTEA)-b-(PEO)/DNA and (PTEA)-b-(PAm)/DNA polyplexes prepared by titration were around 200 nm at charge ratio (Z+/−) < 1. At Z+/− close and above 1, the (PTEA)50-b-(PAm)50/DNA and (PTEA)50-b-(PAm)200/DNA polyplexes precipitated. Interestingly, (PTEA)50-b-(PAm)1000/DNA polyplexes remained with a size of around 300 nm even after charge neutralization, probably due to the size of the neutral block. Conversely, for (PTEA)96-b-(PEO)100/DNA polyplexes, the size distribution was broad, indicating a more heterogeneous system. Polyplexes were also prepared by direct mixture at Z+/− of 2.0, and they displayed diameters around 120−150 nm, remaining stable for more than 10 days. Direct and reverse titration experiments showed that the order of addition affects both the size and charge of the resulting polyplexes.


Assuntos
Óxido de Etileno , Polietilenoglicóis , Polietilenoglicóis/química , Cloretos , Polímeros/química , DNA/química
7.
Methods Mol Biol ; 2551: 605-631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310228

RESUMO

Uncontrolled assembly/disassembly of physiologically formed liquid condensates is linked to irreversible aggregation. Hence, the quest for understanding protein-misfolding disease mechanism might lie in the studies of protein:nucleic acid coacervation. Several proteins with intrinsically disordered regions as well as nucleic acids undergo phase separation in the cellular context, and this process is key to physiological signaling and is related to pathologies. Phase separation is reproducible in vitro by mixing the target recombinant protein with specific nucleic acids at various stoichiometric ratios and then examined by microscopy and nanotracking methods presented herein. We describe protocols to qualitatively assess hallmarks of protein-rich condensates, characterize their structure using intrinsic and extrinsic dyes, quantify them, and analyze their morphology over time. Analysis by nanoparticle tracking provides information on the concentration and diameter of high-order protein oligomers formed in the presence of nucleic acid. Using the model protein (globular domain of recombinant murine PrP) and DNA aptamers (high-affinity oligonucleotides with 25 nucleotides in length), we provide examples of a systematic screening of liquid-liquid phase separation in vitro.


Assuntos
Aptâmeros de Nucleotídeos , Proteínas Intrinsicamente Desordenadas , Nanopartículas , Ácidos Nucleicos , Camundongos , Animais , Microscopia , Proteínas Recombinantes , Proteínas Intrinsicamente Desordenadas/química
8.
Int J Biol Macromol ; 223(Pt A): 1368-1380, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36395941

RESUMO

The complexation between two oppositely charged polyelectrolytes (PE) can lead liquid-liquid (complex coacervates, CC) or liquid-solid (solid precipitates, SP) phase separations. Herein, the effect of pH (2-11) and ionic strength (I, 0.05-1.0 M KCl) on the associative interactions between chitosan (QL)-alginate (SA) and QL-Pectin (Pec), polysaccharides widely used in biotechnology field, is described. pH and I, exhibited significant effect on the structure and phase transitions by modifying the ionization degree (α), pka, and associative interactions between PE. Onset of binding was established at pHc 9, while continued acidification (pHτ 5.8) led to simultaneous CC and SP exhibiting a maximum turbidity in both systems. At pHδ 4.0, QL-Pec showed preferably CC structures whereas QL-SA maintained the CC and SP structures. At pHω 2, the associative interactions were suppressed due to the low ionization of Pec and SA. I (1.0 M) significantly diminished the interactions in QL-Pec due to charge screening. Molecular weight, second virial coefficient, hydrodynamic size, ionizable groups, and persistence length of polyion, influenced on the phase behavior of QL-Pec and QL-SA systems. Therefore, CC and SP are found simultaneously in both systems, their transitions can be modulated by intrinsic and environmental conditions, expanding the functional properties of complexed polysaccharides.


Assuntos
Quitosana , Quitosana/química , Alginatos/química , Pectinas , Concentração de Íons de Hidrogênio , Polieletrólitos/química , Polissacarídeos
9.
J Colloid Interface Sci ; 627: 355-366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35863194

RESUMO

HYPOTHESIS: Hydrophobicity and the presence or absence of charge in phenol derivatives are relevant on the rheology and phase behavior when they are assembled with a cationic surfactant, forming wormlike micelles. The incorporation of phenols with a greater number of rings into the micellar palisade is entropically favored, but a solubilization limit or coacervation are two paths followed by the solutions, depending on the electrical nature of the aromatic co-solutes. EXPERIMENTS: The investigations were carried out with systems formed by a fixed concentration of hexadecyltrimethylammonium bromide (CTAB) and increasing concentrations of neutral phenols (1-naphthol, 2-naphthol, 2,3-dihydroxynaphthalene and R and S-binol) and with their corresponding phenolate derivatives. The monophasic limits of the systems were established, as well as their linear and non-linear rheology. The structural investigation of the coacervates formed with the phenolates were done using SAXS and Cryo-TEM. FINDINGS: The zero-shear viscosity of the solutions reaches maxima values close to the solubility limit of the aromatics, which depends on the numbers of rings and hydroxyl groups (position and number). However, when the correspondent ionized phenols were investigated, beyond the maxima values for the zero-shear viscosity, liquid-liquid biphasic systems are formed, in which the upper phase contains a coacervate, associated with branched wormlike micelles. However, when the ratio between phenolate and CTAB is around 3:1 the coacervate evolves to a lamellar structure.


Assuntos
Micelas , Fenóis , Cetrimônio , Interações Hidrofóbicas e Hidrofílicas , Fenol , Espalhamento a Baixo Ângulo , Tensoativos/química , Difração de Raios X
10.
Polymers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267677

RESUMO

The work aimed to develop a gel as a protective barrier of common bean protein hydrolysates to be incorporated into a Greek-style yogurt and evaluate the sensory perception and biological potential. The gel was formed by complex coacervation and induced heat at a pH 3.5 and 3:1 biopolymer ratio (whey protein and gum arabic). The gel presented a 39.33% yield, low syneresis (0.37%), and a gel strength of 100 gf. The rheological properties showed an elastic behavior (G' > G″). The gel with the most stable characteristics favored the incorporation of 2.3 g of hydrolysates to be added into the Greek-style yogurt. Nutritionally, the Greek-style yogurt with the encapsulated hydrolysates presented 9.96% protein, 2.27% fat, and 1.76% carbohydrate. Syneresis (4.64%), titratable acidity (1.39%), and viscoelastic behavior presented similar characteristics to the Greek-style control yogurt. The bitterness and astringency in yogurt with encapsulated hydrolysates decreased 44% and 52%, respectively, compared to the yogurt control with the unencapsulated hydrolysates. The Greek-style yogurt with the encapsulated hydrolysates showed the ability to inhibit enzymes related to carbohydrate metabolism (α-amylase (92.47%) and dipeptidyl peptidase-4 (75.24%) after simulated gastrointestinal digestion). The use of gels could be an alternative to transporting, delivering, and masking off-flavors of common bean protein hydrolysates in food matrices to decrease glucose absorption for type 2 diabetes patients.

11.
Braz J Microbiol ; 52(4): 2247-2256, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34363592

RESUMO

There is great interest for biopreservation of food products, and encapsulation may be a good strategy to extend the viability of protective cultures. In this study, Lactobacillus paraplantarum FT-259 and Lactococcus lactis QMF 11 were separately encapsulated in casein/pectin (C/P) microparticles, which were tested for antilisterial and anti-staphylococcal activity in fresh Minas cheese (FMC) stored at 8 °C. The encapsulation efficiency for both lactic acid bacteria (LAB) was 82.5%, with viability over 6.2 log CFU/g after storage of C/P microparticles for 90 days under refrigeration. Interestingly, free Lb. paraplantarum and free Lc. lactis grew significantly in refrigerated FMC, both in the presence and absence of pathogens, but only the first significatively grew when encapsulated. Encapsulation increased the antilisterial activity of Lb. paraplantarum in FMC. Moreover, Lc. lactis significantly inhibited listerial growth in FMC in both its free and encapsulated forms, whereas Staphylococcus aureus counts were only significantly reduced in the presence of free Lc. lactis. In conclusion, these results indicate that C/P microparticles are effective carriers of LAB in FMC, which can contribute for the assurance of the safety of this product.


Assuntos
Queijo , Microbiologia de Alimentos , Lactobacillales , Lactococcus lactis , Queijo/microbiologia , Microbiologia de Alimentos/métodos , Lactobacillales/fisiologia , Lactobacillus/fisiologia , Lactococcus lactis/fisiologia , Refrigeração , Staphylococcus aureus
12.
Polymers (Basel) ; 13(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34301019

RESUMO

In this work, we report the phase behavior of polyelectrolyte complex coacervates (PECs) of poly(acrylate) (PA-) and poly(diallyldimethylammonium) (PDADMA+) in the presence of inorganic salts. Titrations of the polyelectrolytes in their acidic and alkaline forms were performed to obtain the coacervates in the absence of their small counterions. This approach was previously applied to the preparation of polymer-surfactant complexes, and we demonstrate that it also succeeded in producing complexes free of small counterions with a low extent of Hofmann elimination. For phase behavior studies, two different molar masses of poly(acrylate) and two different salts were employed over a wide concentration range. It was possible to define the regions at which associative and segregative phase separation take place. The latter one was exploited in more details because the segregation phenomenon in mixtures of oppositely charged polyelectrolytes is scarcely reported. Phase composition analyses showed that there is a strong segregation for both PA- and PDADMA+, who are accompanied by their small counterions. These results demonstrate that the occurrence of poly-ion segregation in these mixtures depends on the anion involved: in this case, it was observed with NaCl, but not with Na2SO4.

13.
Meat Sci ; 177: 108497, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33761400

RESUMO

This study aimed to determine the effect of NaCl reduction and addition of long-chain polyunsaturated fatty acids (PUFA) on the quality traits of burgers. Fish oil was either directly incorporated or added as encapsulated by freeze-dried microparticles (complex coacervates) composed of soy protein isolate and inulin. Despite the differences in some parameters associated with NaCl reduction (e.g., instrumental hardness), the quality of the burgers was mainly affected by the microparticles. Thus, a decrease in pH and increase in hardness and chewiness were observed, and a higher exposure of fish oil to oxidation was observed thus increasing volatile oxidation compounds and negatively impacting on the sensory profile and overall liking of the burgers. However, the encapsulation of the fish oil helped to retain EPA and DHA after cooking. The results of the NaCl-reduced burger with unencapsulated fish oil suggest the possibility of incorporating PUFAs, but only containing EPA after cooking.


Assuntos
Ácidos Graxos Insaturados , Óleos de Peixe , Produtos da Carne/análise , Adulto , Idoso , Animais , Brasil , Bovinos , Comportamento do Consumidor , Culinária , Feminino , Humanos , Concentração de Íons de Hidrogênio , Inulina , Masculino , Pessoa de Meia-Idade , Cloreto de Sódio , Proteínas de Soja , Suínos , Paladar
14.
Polymers (Basel) ; 12(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271855

RESUMO

The present study evaluated the effect of the incorporation of copaiba oil, in direct and in microencapsulated form, into films based on Xanthosoma mafaffa Schott starch. Initially, the characterization of copaiba oil by gas chromatograph coupled with mass spectrometry (GC-MS) and its antimicrobial activity against gram-positive and gram-negative bacteria was performed. The films were produced by the casting technique and characterized in relation to physical, chemical, structural, and antimicrobial activity. Sesquiterpenes, mainly ß-caryophyllene, were the predominant compounds in copaiba oil, showing antimicrobial activity against B. subtilis and S. aureus. The films showed forming capacity, however, was observed a decrease in solubility and revealed an increase in hydrophobic characteristics. However, the oil reduced the tensile strength and elongation, while the microcapsules did not influence the mechanical properties in comparison to the control film. From microstructure analysis, changes in the films roughness and surface were observed after the addition of oil both directly and in microencapsulated form. Films incorporated with microparticles were able to inhibit the gram-positive bacteria tested, forming inhibition zones, indicating that the encapsulation of copaiba oil was more efficient for protecting bioactive compounds from the oil, suggesting the possible application of mangarito starch-based films incorporated with copaiba oil as biodegradable packaging.

15.
Appl Clin Genet ; 13: 233-240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364810

RESUMO

The ELN gene encodes elastin, a fundamental protein of the extracellular matrix that confers elasticity to different tissues including blood vessels. The formation of elastin fibers is a complex process involving monomer coacervation and subsequent crosslinking. Mutations in exons 1-29 of the ELN gene have been linked to supravalvular aortic stenosis (SVAS) whereas mutations in exons 30-33 are associated with autosomal dominant cutis laxa (ADCL). This striking segregation has led to the hypothesis that distinct molecular mechanisms underlie both diseases. SVAS is believed to arise through haploinsufficiency while ADCL is hypothesized to be caused by a dominant negative effect. Here, we describe a patient with SVAS harboring a novel splice-site mutation in the last exon of ELN. The location of this mutation is not consistent with current knowledge of SVAS, since all mutations reported in the C-terminus have been found in ADCL patients, and a thorough evaluation did not reveal significant skin involvement in this case. RT-PCR analysis of skin tissue showed that C-terminal mutations in the region can lead to the production of aberrant transcripts through intron retention and activation of cryptic splice sites and suggest that disruption of the very last exon can lead to functional haploinsufficiency potentially related to SVAS.

16.
Foods ; 9(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992589

RESUMO

Vanilla is one of the most popular species in the world. Its main compound, vanillin, is responsible for its characteristic aroma and flavor and its antioxidant and biological properties. Vanillin is very unstable in the presence of oxygen, light, and humidity, which complicates its use and preservation. Therefore, to solve this problem, this study aimed to develop vanilla oleoresin microcapsules. Vanilla oleoresin was obtained with supercritical carbon dioxide and microencapsulated by complex coacervation and subsequent spray drying (100 °C/60 °C inlet/outlet temperature). The optimal conditions for the complex coacervation process were 0.34% chitosan, 1.7% gum Arabic, 5.29 pH, and an oleoresin:wall material ratio of 1:2.5. Fourier Transform Infrared Spectroscopy (FT-IR) analysis of the coacervates before and after spray drying revealed the presence of the functional group C=N (associated with carbonyl groups of vanillin and amino groups of chitosan), indicating that microencapsulation by complex coacervation-spray drying was successful. The retention and encapsulation efficiencies were 84.89 ± 1.94% and 69.20 ± 1.79%. The microcapsules obtained from vanilla oleoresin had high vanillin concentration and the presence of other volatile compounds and essential fatty acids. All this improves the aroma and flavor of the product, increasing its consumption and application in various food matrices.

17.
Food Res Int ; 136: 109520, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846591

RESUMO

Probiotics and proanthocyanidin-rich cinnamon extract (PRCE) have numerous potential health benefits, but they are very sensitive to degradation in various environmental conditions. Additionally, the combination of these two materials into a single structure could possibly enhance their therapeutic properties. Thus, the aim of this study was to produce and evaluate the solid lipid microparticles covered by electrostatic interactions of polymers in which Lactobacillus paracasei (BGP1) and Bifidobacterium animalis subsp. lactis (BLC1) were either encapsulated alone or co-encapsulated with PRCE. Through turbidimetric titration and zeta potential measurement, the optimum coacervates were obtained at a pH of 4.2 with the protein:polysaccharide mixing ratio of 6:1. Along with quantification of the probiotics, total phenolic compounds, and proanthocyanidins, morphological and physicochemical characterizations were performed during storage for 120 days at both 7 and 25 °C. All the produced powders had similar morphological and physicochemical properties. The treatments with BLC1 and 5% PRCE presented greater encapsulation efficiencies for probiotic, phenolics, and proanthocyanids with 98.59% ± 0.45, 119.49% ± 4.21, and 81.25% ± 1.9, respectively. Additionally, there was greater viability for BLC1 (9.30 ± 0.16 log CFU / g) after 120 days of storage at 7 °C. In conclusion, solid lipid particles with BLC1 and 5% PRCE are a promising solution for the preservation and consumption of both materials.


Assuntos
Proantocianidinas , Probióticos , Cinnamomum zeylanicum , Lipídeos , Extratos Vegetais , Polissacarídeos
18.
Probiotics Antimicrob Proteins ; 12(3): 1179-1192, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31709506

RESUMO

Bioactive compounds are sensitive to many factors, and they can alter the sensory characteristics of foods. Microencapsulation could be a tool to provide protection and allow the addition of bioactives in new matrices, such as sugarcane juice. This study focused on producing and evaluating the potential function of probiotics and proanthocyanidin-rich cinnamon extract (PRCE), both in free and encapsulated forms when added to sugarcane juice. The pure sugarcane juice treatment T1 was compared with other sugarcane juices to which bioactive compounds had been added; T2, a non-encapsulated Bifidobacterium animalis subsp. lactis (BLC1); T3, a non-encapsulated BLC1 and PRCE; T4, BLC1 microcapsules; and T5, with BLC1 and PRCE microcapsules. The samples were morphologically, physicochemically, rheologically, and sensorially characterized. Samples were also evaluated regarding the viability of BLC1 during the juice's storage at 4 °C. It was possible to produce probiotic sugarcane juice with non-encapsulated BLC1, but not with the addition of free PRCE, which in its free form reduced the viability of this microorganism to < 1 log CFU/mL after 7 days. The microcapsules were effective to protect BLC1 during juice storage and to maintain high contents of phenolic and proanthocyanidin compounds, although the products containing these had their viscosity altered and were less accepted than either the control or those with non-encapsulated BLC1.


Assuntos
Bifidobacterium animalis/fisiologia , Composição de Medicamentos , Extratos Vegetais/química , Probióticos , Cápsulas , Cinnamomum zeylanicum/química , Viabilidade Microbiana , Proantocianidinas/química , Saccharum/química
19.
Ci. Rural ; 49(12): e20190079, Dec. 13, 2019. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-24776

RESUMO

Pequi oil is rich in bioactive compounds which can be encapsulated to increase protection against extrinsic environmental factors. A delayed degradation of pequi oil may occur by using microencapsulation technology, in addition to masking unpleasant flavors and aromas. Complex coacervation is a technique based on the electrostatic interaction between two oppositely charged biopolymers which form a matrix complexed around an agent of interest. However, cross-linking the particles is often necessary in order to make them more rigid. The objective of this research was to produce and characterize pequi oil microparticles in a cashew gum (CG) and gelatin (GE) matrix cross-linked with tannic acid. Cross-linked pequi oil microparticles were produced by varying the concentrations of biopolymers (0.5% to 1.5%) and tannic acid (0.3% to 8.1%) using a rotational central compound design. Ratio of cashew gum, gelatin and oil was 2:1:1 (m/m/m);respectively, at pH 4.5. The cross-linking process was performed with tannic acid for 30 minutes at 40 °C. The optimized formulation by means of the rotational central compound design for microparticle formation was 0.65% biopolymers (CG and GE) and 6.9% tannic acid. Increasing the tannic acid percentage in the cross-linking of the pequi oil particles had a higher yield and encapsulation efficiency. Cross-linking provided an increase in the degradation temperature of material; and consequently, improved the thermal stability of the particles. The cross-linking process was advantageous in producing the microparticles.(AU)


O óleo de pequi é rico em compostos bioativos, os quais podem ser encapsulados para aumentar a proteção a fatores extrínsecos. A tecnologia de microencapsulamento, além de retardar a degradação do composto ativo, possibilita mascarar aromas e sabores indesejáveis. A coacervação complexa é uma técnica baseada na interação eletrostática entre dois biopolímeros com cargas opostas, que formam uma matriz complexada ao redor do agente de interesse. Entretanto, muitas vezes, se faz necessário o uso da reticulação para tornar as partículas mais rígidas. O objetivo deste trabalho foi produzir e caracterizar micropartículas de óleo de pequi em matriz de goma de cajueiro (GC) e gelatina (GE) reticulada com ácido tânico. As micropartículas de óleo de pequi reticuladas foram produzidas variando as concentrações de biopolímeros (0,5% a 1,5% m/v) e do ácido tânico, em relação à massa de biopolímeros (0,3% a 8,1% m/m), a partir de um delineamento de composto central rotacional. A proporção de GC, GE e óleo foi de 2:1:1 (m/m/m), respectivamente, em pH 4,5. O processo de reticulação foi realizado com ácido tânico por 30 minutos a 40 ºC. A formulação otimizada foi de 0,65% (m/v) de biopolímeros (GC e GE) e 6,9% (m/m) de ácido tânico. O aumento do percentual de ácido tânico na reticulação das partículas de óleo de pequi conferiu maior rendimento e eficiência de encapsulamento. A reticulação proporcionou aumento na temperatura de degradação do material, e consequente estabilidade térmica das partículas. O processo de reticulação foi vantajoso para a produção das micropartículas.(AU)


Assuntos
Ericales/química , Ericales/ultraestrutura , Óleos de Plantas , Composição de Medicamentos , Gelatina , Gomas Vegetais
20.
J Microencapsul ; 36(5): 459-473, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31322456

RESUMO

This study was aimed to microencapsulate fish oil (FO) in two biocompatible polymeric blends: gum arabic (GA)-maltodextrin (MD) and casein-pectin (CP)-MD. GA-MD microparticles and CP-MD microparticles were produced by spray-drying and complex coacervation and spray-drying, respectively. Encapsulation efficiency, particle size, moisture content, oxidative stability, and morphological properties were analysed. Encapsulation efficiencies of 51.2-56.8% (w/v) for GA and 64.7-67.9% (w/v) for CP preparations were found. GA particle sizes varied from 2 to 100 µm and from 2 to 120 µm for CP microparticles. Spherical forms with depressions in the topography of both systems were evidenced by scanning electron microscopy. Confocal microscopy evidenced surface oil on GA microparticles, corroborating encapsulation efficiency. CP was more efficient than GA to reduce oxidation, with maximum peroxide values (PVs) of 17.40 mmol/kg oil after 28 d at 40 °C/75% relative humidity (RH). Thus, CP is a promising biopolymeric blend for encapsulation of FO that provides protection against lipid oxidation.


Assuntos
Caseínas/química , Excipientes/química , Óleos de Peixe/administração & dosagem , Goma Arábica/química , Pectinas/química , Cápsulas , Composição de Medicamentos , Óleos de Peixe/química , Oxirredução , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA