Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293394

RESUMO

Wound healing is a highly regulated multi-step process that involves a plethora of signals. Blood perfusion is crucial in wound healing and abnormalities in the formation of new blood vessels define the outcome of the wound healing process. Thy-1 has been implicated in angiogenesis and silencing of the Thy-1 gene retards the wound healing process. However, the role of Thy-1 in blood perfusion during wound closure remains unclear. We proposed that Thy-1 regulates vascular perfusion, affecting the healing rate in mouse skin. We analyzed the time of recovery, blood perfusion using Laser Speckle Contrast Imaging, and tissue morphology from images acquired with a Nanozoomer tissue scanner. The latter was assessed in a tissue sample taken with a biopsy punch on several days during the wound healing process. Results obtained with the Thy-1 knockout (Thy-1-/-) mice were compared with control mice. Thy-1-/- mice showed at day seven, a delayed re-epithelialization, increased micro- to macro-circulation ratio, and lower blood perfusion in the wound area. In addition, skin morphology displayed a flatter epidermis, fewer ridges, and almost no stratum granulosum or corneum, while the dermis was thicker, showing more fibroblasts and fewer lymphocytes. Our results suggest a critical role for Thy-1 in wound healing, particularly in vascular dynamics.


Assuntos
Pele , Cicatrização , Camundongos , Animais , Pele/metabolismo , Reepitelização , Epiderme/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Perfusão
2.
Front Cell Dev Biol ; 10: 810474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186924

RESUMO

Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.

3.
Front Cell Dev Biol ; 9: 712627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497806

RESUMO

Astrocyte reactivity is associated with poor repair capacity after injury to the brain, where chemical and physical changes occur in the damaged zone. Astrocyte surface proteins, such as integrins, are upregulated, and the release of pro-inflammatory molecules and extracellular matrix (ECM) proteins upon damage generate a stiffer matrix. Integrins play an important role in triggering a reactive phenotype in astrocytes, and we have reported that α V ß3 Integrin binds to the Thy-1 (CD90) neuronal glycoprotein, increasing astrocyte contractility and motility. Alternatively, α V ß3 Integrin senses mechanical forces generated by the increased ECM stiffness. Until now, the association between the α V ß3 Integrin mechanoreceptor response in astrocytes and changes in their reactive phenotype is unclear. To study the response to combined chemical and mechanical stress, astrocytes were stimulated with Thy-1-Protein A-coated magnetic beads and exposed to a magnetic field to generate mechanical tension. We evaluated the effect of such stimulation on cell adhesion and contraction. We also assessed traction forces and their effect on cell morphology, and integrin surface expression. Mechanical stress accelerated the response of astrocytes to Thy-1 engagement of integrin receptors, resulting in cell adhesion and contraction. Astrocyte contraction then exerted traction forces onto the ECM, inducing faster cell contractility and higher traction forces than Thy-1 alone. Therefore, cell-extrinsic chemical and mechanical signals regulate in an outside-in manner, astrocyte reactivity by inducing integrin upregulation, ligation, and signaling events that promote cell contraction. These changes in turn generate cell-intrinsic signals that increase traction forces exerted onto the ECM (inside-out). This study reveals α V ß3 Integrin mechanoreceptor as a novel target to regulate the harmful effects of reactive astrocytes in neuronal healing.

4.
Cell Biol Int ; 45(8): 1613-1623, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33856089

RESUMO

The male urogenital system is composed of the reproductive system and the urinary tract; they have an interconnected embryonic development and share one of their anatomical components, the urethra. This system has a highly complex physiology deeply interconnected with the circulatory and nervous systems, as well as being capable of adapting to environmental variations; it also undergoes changes with aging and, in the case of the reproductive system, with seasonality. The stroma is an essential component in this physiological plasticity and its complexity has increased with the description in the last decade of a new cell type, the telocyte. Several studies have demonstrated the presence of telocytes in the organs of the male urogenital system and other systems; however, their exact function is not yet known. The present review addresses current knowledge about telocytes in the urogenital system in terms of their locations, interrelationships, possible functions and pathological implications. It has been found that telocytes in the urogenital system possibly have a leading role in stromal tissue organization/maintenance, in addition to participation in stem cell niches and an association with the immune system, as well as specific functions in the urogenital system, lipid synthesis in the testes, erythropoiesis in the kidneys and the micturition reflex in the bladder. There is also evidence that telocytes are involved in pathologies in the kidneys, urethra, bladder, prostate, and testes.


Assuntos
Telócitos/patologia , Telócitos/fisiologia , Sistema Urogenital/patologia , Sistema Urogenital/fisiologia , Animais , Doenças dos Genitais Masculinos/patologia , Doenças dos Genitais Masculinos/fisiopatologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Próstata/citologia , Próstata/patologia , Próstata/fisiologia , Células-Tronco/patologia , Células-Tronco/fisiologia , Testículo/citologia , Testículo/patologia , Testículo/fisiologia , Bexiga Urinária/citologia , Bexiga Urinária/patologia , Bexiga Urinária/fisiologia , Sistema Urogenital/citologia
5.
Ann Hepatol ; 19(6): 645-652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745631

RESUMO

INTRODUCTION AND OBJECTIVES: Analysis of cancer biomarkers is an important tool in developing targeted-therapy and in modulating chemoresistance. Here, we analyze the relevance of CD90, a marker of cancer stem cells (CSC) in hepatocellular carcinoma (HCC) and its correlation with autophagy. MATERIALS AND METHODS: For in vivo study, 86 specimens were collected from 43 patients undergoing liver resections. In each patient, HCC nodule (HCC) and surrounding non-tumor (SNT) were collected. For in vitro study, HCC cells JHH6 subpopulations expressing CD90+ and CD90- were isolated using magnetic-sorter and confirmed by flow-cytometry. Upon doxorubicin treatment, autophagy turn-over was analyzed by RTqPCR for mRNA expression, Western blot for protein expression, and autophagosome staining for autophagy-flux. Cytotoxicity test was performed by MTT assay. Gene and protein analysis were performed in clinical samples together with immunohistostaining. RESULTS: CD90 mRNA expression was higher in HCC than in SNT for 8-fold (p < 0.001). LC3-II protein was up-regulated in the HCC in comparison with the SNT (p < 0.05). In vitro model showed that CD90+ and CD90- cells had diverse expressions of autophagy-related genes. Upon doxorubicin treatment, autophagy was activated in both cells by increasing LC3-II protein expression, autophagic vacuoles, and dysregulation of autophagy-related mRNAs. A differential autophagic capacity was noticed between two subpopulations and it was correlated with cellular toxicity assay. CONCLUSIONS: We demonstrated the relevance of differential autophagy capacity of CD90+ cells in HCC. Autophagy was involved in cancer-defense mechanism against doxorubicin. Cancer promoting function of autophagy in CD90+ cells was also related to cancer environment.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Doxorrubicina/uso terapêutico , Neoplasias Hepáticas/patologia , Antígenos Thy-1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade
6.
Front Cell Dev Biol ; 8: 592442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511115

RESUMO

Cancer cell adhesion to the vascular endothelium is an important step in tumor metastasis. Thy-1 (CD90), a cell adhesion molecule expressed in activated endothelial cells, has been implicated in melanoma metastasis by binding to integrins present in cancer cells. However, the signaling pathway(s) triggered by this Thy-1-Integrin interaction in cancer cells remains to be defined. Our previously reported data indicate that Ca2+-dependent hemichannel opening, as well as the P2X7 receptor, are key players in Thy-1-αVß3 Integrin-induced migration of reactive astrocytes. Thus, we investigated whether this signaling pathway is activated in MDA-MB-231 breast cancer cells and in B16F10 melanoma cells when stimulated with Thy-1. In both cancer cell types, Thy-1 induced a rapid increase in intracellular Ca2+, ATP release, as well as cell migration and invasion. Connexin and Pannexin inhibitors decreased cell migration, implicating a requirement for hemichannel opening in Thy-1-induced cell migration. In addition, cell migration and invasion were precluded when the P2X7 receptor was pharmacologically blocked. Moreover, the ability of breast cancer and melanoma cells to transmigrate through an activated endothelial monolayer was significantly decreased when the ß3 Integrin was silenced in these cancer cells. Importantly, melanoma cells with silenced ß3 Integrin were unable to metastasize to the lung in a preclinical mouse model. Thus, our results suggest that the Ca2+/hemichannel/ATP/P2X7 receptor-signaling axis triggered by the Thy-1-αVß3 Integrin interaction is important for cancer cell migration, invasion and transvasation. These findings open up the possibility of therapeutically targeting the Thy-1-Integrin signaling pathway to prevent metastasis.

7.
Front Cell Dev Biol ; 7: 132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428610

RESUMO

Thy-1/CD90 is a glycoprotein attached to the outer face of the plasma membrane with various functions, which depend on the context of specific physiological or pathological conditions. Many of these reported functions for Thy-1/CD90 arose from studies by our group, which identified the first ligand/receptor for Thy-1/CD90 as an integrin. This finding initiated studies directed toward unveiling the molecular mechanisms that operate downstream of Thy-1/CD90 activation, and its possible interaction with proteins in the membrane plane to regulate their function. The association of Thy-1/CD90 with a number of cell surface molecules allows the formation of extra/intracellular multiprotein complexes composed of various ligands and receptors, extracellular matrix proteins, intracellular signaling proteins, and the cytoskeleton. The complexes sense changes that occur inside and outside the cells, with Thy-1/CD90 at the core of this extracellular molecular platform. Molecular platforms are scaffold-containing microdomains where key proteins associate to prominently influence cellular processes and behavior. Each component, by itself, is less effective, but when together with various scaffold proteins to form a platform, the components become more specific and efficient to convey the messages. This review article discusses the experimental evidence that supports the role of Thy-1/CD90 as a membrane-associated platform (ThyMAP).

8.
Cytometry A ; 93(4): 448-457, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29498809

RESUMO

Flow cytometric cell surface proteomics provides a new and powerful tool to determine changes accompanying neoplastic transformation and invasion, providing clues to essential interactions with the microenvironment as well as leads for potential therapeutic targets. One of the most important advantages of flow cytometric cell surface proteomics is that it can be performed on living cells that can be sorted for further characterization and functional studies. Here, we document the surface proteome of clonogenic metastatic breast cancer (MBrCa) explants, which was strikingly similar to that of normal mesenchymal stromal cells (P = 0.017, associated with Pearson correlation coefficient) and transformed mammary epithelial cells (P = 0.022). Markers specifically upregulated on MBrCa included CD200 (Ox2), CD51/CD61 (Integrin α5/ß3), CD26 (dipeptidyl peptidase-4), CD165 (c-Cbl), and CD54 (ICAM-1). Proteins progressively upregulated in a model of neoplastic transformation and invasion included CD26, CD63 (LAMP3), CD105 (Endoglin), CD107a (LAMP1), CD108 (Semaphorin 7A), CD109 (Integrin ß4), CD151 (Raph blood group), and disialoganglioside G2. The proteome of the commonly used cell lines MDA-MB-231, MCF7, and BT-474 were uncorrelated with that of MBrCa (P = 1.0, 1.0, 0.9, respectively). The comparison has demonstrated the mesenchymal nature of clonogenic cells isolated by short-term culture of metastatic breast cancer, provided several leads for biomarkers and potential targets for anti-invasive therapy, including CD200, and highlighted the limitations of breast cancer cell lines for representing the cell surface biology of breast cancer. © 2017 International Society for Advancement of Cytometry.


Assuntos
Anticorpos/metabolismo , Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Proteoma/metabolismo , Células A549 , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Citometria de Fluxo/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células K562 , Células MCF-7 , Células-Tronco Mesenquimais/metabolismo , Regulação para Cima/fisiologia
9.
Stem Cell Res Ther ; 7(1): 97, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465541

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent progenitor cells used in several cell therapies. MSCs are characterized by the expression of CD73, CD90, and CD105 cell markers, and the absence of CD34, CD45, CD11a, CD19, and HLA-DR cell markers. CD90 is a glycoprotein present in the MSC membranes and also in adult cells and cancer stem cells. The role of CD90 in MSCs remains unknown. Here, we sought to analyse the role that CD90 plays in the characteristic properties of in vitro expanded human MSCs. METHODS: We investigated the function of CD90 with regard to morphology, proliferation rate, suppression of T-cell proliferation, and osteogenic/adipogenic differentiation of MSCs by reducing the expression of this marker using CD90-target small hairpin RNA lentiviral vectors. RESULTS: The present study shows that a reduction in CD90 expression enhances the osteogenic and adipogenic differentiation of MSCs in vitro and, unexpectedly, causes a decrease in CD44 and CD166 expression. CONCLUSION: Our study suggests that CD90 controls the differentiation of MSCs by acting as an obstacle in the pathway of differentiation commitment. This may be overcome in the presence of the correct differentiation stimuli, supporting the idea that CD90 level manipulation may lead to more efficient differentiation rates in vitro.


Assuntos
Adipócitos/metabolismo , Inativação Gênica , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Antígenos Thy-1/genética , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Líquido Amniótico/citologia , Líquido Amniótico/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Proliferação de Células , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Imunofenotipagem , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/metabolismo , Antígenos Thy-1/metabolismo
10.
Cell Tissue Bank ; 17(1): 137-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26220398

RESUMO

Mobilized peripheral blood (MPB) bone marrow cells possess the potential to differentiate into a variety of mesenchymal tissue types and offer a source of easy access for obtaining stem cells for the development of experimental models with applications in tissue engineering. In the present work, we aimed to isolate by magnetic activated cell sorting CD90+ cells from MPB by means of the administration of Granulocyte-Colony Stimulating Factor and to evaluate cell proliferation capacity, after thawing of the in vitro culture of this population of mesenchymal stem cells (MSCs) in sheep. We obtained a median of 8.2 ± 0.6 million of CD90+ cells from the 20-mL MPB sample. After thawing, at day 15 under in vitro culture, the mean CD90+ cells determined by flow cytometry was 92.92 ± 1.29 % and cell duplication time determined by crystal violet staining was 47.59 h. This study describes for the first time the isolation, characterization, and post-in vitro culture thawing of CD90+ MSCs from mobilized peripheral blood in sheep. This population can be considered as a source of MSCs for experimental models in tissue engineering research.


Assuntos
Criopreservação/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco de Sangue Periférico/citologia , Antígenos Thy-1/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Separação Celular , Forma Celular , Citometria de Fluxo , Imunofluorescência , Imunofenotipagem , Masculino , Ovinos
11.
Virology ; 449: 190-9, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24418552

RESUMO

The typical characteristics of mesenchymal stem cells (MSCs) can be affected by inflammatory microenvironment; however, the exact contribution of HTLV-1 to MSC dysfunction remains to be elucidated. In this study, we demonstrated that MSC cell surface molecules VCAM-1 and ICAM-1 are upregulated by contact with HTLV-1, and HLA-DR was most highly expressed in MSCs co-cultured with MT2 cells. The expression levels of VCAM-1 and HLA-DR were increased in MSCs cultured in the presence of PBMCs isolated from HTLV-1-infected symptomatic individuals compared with those cultured with cells from asymptomatic infected individuals or healthy subjects. HTLV-1 does not impair the MSC differentiation process into osteocytes and adipocytes. In addition, MSCs were efficiently infected with HTLV-1 in vitro through direct contact with HTLV-1-infected cells; however, cell-free virus particles were not capable of causing infection. In summary, HTLV-1 can alter MSC function, and this mechanism may contribute to the pathogenesis of this viral infection.


Assuntos
Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Células-Tronco Mesenquimais/virologia , Diferenciação Celular , Células Cultivadas , Infecções por HTLV-I/genética , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/fisiopatologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Fenótipo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
12.
São Paulo; s.n; s.n; 2014. 161 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-847115

RESUMO

O câncer de mama é a doença maligna que mais acomete as mulheres no mundo. Apesar dos inúmeros tratamentos, o óbito se deve principalmente à doença metastática que pode se desenvolver a partir do tumor primário. Esta progressão tumoral decorre da dificuldade de se estabelecer um prognóstico mais preciso. Atualmente, a teoria de células iniciadoras de tumor vem sendo estudada para tentar explicar a biologia do câncer e descrever novos alvos para prognósticos e terapias. O carcinoma mamário foi o primeiro tumor sólido para o qual foi identificada uma subpopulação celular, definida como CD44+/CD24-, apresentando as características de células iniciadoras tumorais. Embora este fenótipo venha sendo muito utilizado para descrever as células iniciadoras tumorais de mama, muitos trabalhos tem questionado a relevância clínica desses marcadores, enfatizando que outros marcadores devem ser identificados. Assim, o objetivo deste trabalho é analisar e caracterizar marcadores de células-tronco que possam estar relacionados com o grau de malignidade no modelo de câncer de mama. Inicialmente, analisou-se a expressão de 10 marcadores de células-tronco em diferentes linhagens de câncer de mama que apresentam graus crescentes de malignidade. O CD90 foi selecionado devido à alta expressão desse marcador na linhagem mais agressiva Hs578T. Para a caracterização deste marcador, realizou-se ensaios funcionais, através do silenciamento do CD90 na linhagem tumorigênica Hs579T e sua superexpressão na linhagem não-tumorigênica MCF10A. As linhagens celulares geradas foram caracterizadas quanto ao crescimento celular, potencial invasivo e metastático. Foi possível observar que houve uma alteração da morfologia nas linhagens transformadas com o CD90 e, também, um maior tempo de dobramento na linhagem Hs578T-CD90- e um menor na MCF10A-CD90+. Além disso, a linhagem MCF10-CD90+ foi capaz de crescer independentemente de EGF. Através da análise da via EGF, foi possível observar que houve um aumento da expressão da forma fosforilada do receptor e dos fatores Erk, c-Jun, e Jnk na linhagem MCF10A-CD90+ e uma diminuição dos mesmos na linhagem Hs578T-CD90-. A análise da atividade do elemento responsivo do fator de transcrição AP1 comprovou que a via de EGF é funcional na linhagem MCF10-CD90+. Também foram analisados os marcadores de transição epitélio-mesenquimal, verificando-se aumento da expressão dos marcadores mesenquimais na linhagem MCF10A-CD90+ e diminuição na linhagem Hs578T-CD90-. Os ensaios in vitro de invasão mostraram que as células MCF10-CD90+ são capazes de migrar e invadir e as células Hs578T-CD90- apresentam diminuição significativa da habilidade de migração e invasão. Além disso, os ensaios de metástase in vitro e in vivo, mostraram que a superexpressão de CD90 levou à malignização das células MCF10A. Por outro lado, a linhagem Hs578T-CD90- apresentou menor potencial metastático in vitro. Portanto, neste trabalho, pela primeira vez, o CD 90 foi caracterizado funcionalmente como um marcador envolvido na transformação maligna do carcinoma mamário, contribuindo, assim, para melhor entendimento da biologia do câncer de mama e para que se possa desenvolver novas ferramentas de diagnóstico/prognóstico e novos protocolos clínicos e terapêuticos


Breast cancer is the malignant disease which affects the highest number of women in the world. In spite of the numerous treatments available, death is primarily due to the metastatic disease that may develop from the primary tumor. This tumor progression occurs because of the difficulty in establishing an accurate diagnosis/prognosis. Currently, the tumor initiating cells theory is being applied in an attempt to explain cancer biology and to unveil new diagnostic and therapeutic targets. Mammary carcinoma was the first solid tumor in which a cellular subpopulation, defined as CD44+/CD24-, was associated with tumor initiating cells. Although this phenotype has been widely used to describe breast tumor initiating cells, several studies have questioned the clinical relevance of these markers, emphasizing that additional markers should be identified. The objective of the present study is to analyze and characterize stem cell markers that may be related to malignancy stages in the breast cancer model. Initially, the expression of 10 stem cell markers was analyzed in different breast cancer cell lines displaying different malignancy grades. CD90 was selected due to its high expression levels in the most aggressive cell line, namely: Hs578T. In order to further characterize this marker, a functional study was performed in which CD90 was silenced in the Hs578T tumorigenic cell line and overexpressed in the non-tumorigenic MCF10A cell line. The resulting cell lines were characterized relative to growth rate and invasive and metastatic potential. A change in morphology readily was observed in the cell lines overexpressing CD90. In addition, the Hs578T-CD90-cell line presented an increased doubling time (DT), while the MCF10A-CD90+ cell line displayed a lower DT.. Furthermore, MC10-CD90+ cells were able to grow in the absence of EGF. Analysis of components of the EGF pathwayrevealed increased expression levels of the phosphorylated form of Erk, c-Jun and Jnk receptors in the MCF10-CD90+ cell line, while Hs578T-CD90- cells presented decreased expression of the same factors and receptors. Analysis of the activity of the AP1 responsive element allowed confirmation that the EGF pathway is functional in the MCF10-CD90+. . Epithelial-mesenquimal transition markers presented increased expression levels in the MCF10A-CD90+ cell line, accompanied by decreased expression levels in Hs578T-CD90- cells. In vitro invasion assays showed that MCF10A-CD90+ cells are capable of migrating and invading, while Hs578T-CD90- cells presented a significant decrease in their ability to migrate and invade. Additionally, in vitro and in vivo metastasis assays showed that malignization ensued upon overexpression of CD90 in MCF10A cells and a lower tendency to form metastasis in vitro was observed for the Hs578T-CD90- cell line. Therefore, the present study presents, for the first time in the literature, the functional characterization of CD90 as a genetic marker involved in the malignant transformation of mammary carcinoma, leading to a better understanding of the breast cancer biology, which may, in turn, lead to the development of new clinical and therapeutic protocols


Assuntos
Biomarcadores Tumorais , Células-Tronco/metabolismo , Antígenos Thy-1/análise , Neoplasias da Mama/fisiopatologia , Protocolos Clínicos/classificação , Inativação Gênica , Plasmídeos/administração & dosagem , Terapêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA