RESUMO
We evaluated the effect of AsiMax 50®, a commercial formulation of 2,4-D (2,4-dichlorophenoxyacetic acid), on the structure of both micro + nano phytoplankton (>2 µm; species composition and abundance) and cytometric populations (photosynthetic picoplankton (PPP, 0.2-2 µm), which included prokaryotic phycocyanin-rich picocyanobacteria (PC-Pcy), phycoerythrin-rich picocyanobacteria (PE-Pcy) and eukaryotic phototrophs (PEuk); and bacterioplankton (HB), heterotrophic bacteria), using a microcosms-based approach and a single 7-day exposure. Assays were performed on two different microbial assemblages sampled from freshwater bodies of two contrasting turbidity status: clear (chlorophyll a = 7.6 µgL-1, turbidity = 1 NTU) and organic turbid systems (chlorophyll a = 25.0 µgL-1, turbidity = 9 NTU). For each system, the herbicide was applied to 500 mL-Erlenmeyer flasks, at seven concentration levels of the active ingredient (a.i.): 0 (control = no addition), 0.02, 0.2, 2, 20, 200 and 2,000 mg a.i.L-1. The impact of AsiMax 50® seemed to be greater in the turbid system. In this system, total abundance of living (live) micro + nano phytoplankton showed a significant increase at lower concentrations and data were fitted to a humped-shaped curve. For both clear and organic turbid systems, micro + nano phytoplankton decreased in species richness and abundance at higher herbicide concentrations. These results suggest that 2,4-D may mimic hormonal function. Some species, such as Ochromonas sp. and Chlamydomonas sp., showed different responses to herbicide exposure between water systems. In the turbid system, the increase in abundance of the PPP fraction observed at 7-d exposure was probably due to either an increase in PE-Pcy (thus suggesting the existence of auxin pathways) or a reduction in competitive pressure by micro + nano plankton. Our results provide some evidence of the importance of using community-scale approaches in ecotoxicological studies to predict changes in freshwater ecosystems exposed to a 2,4-D-based formulation. However, caution must be taken when extrapolating these effects to real scenarios, as assays were based on a laboratory microcosm experiment.
RESUMO
Pyrethroids (PYR) are pesticides with high insecticidal activity that may disrupt neuronal excitability in target and nontarget species. The accumulated evidence consistently showed that this neurophysiologic action is followed by alterations in motor, sensorimotor, neuromuscular, and thermoregulatory responses. Nevertheless, there are some equivocal results regarding the potency of PYR in lab animals. The estimation of potency is an important step in pesticide chemical risk assessment. In order to identify the variables influencing neurobehavioral findings across PYR studies, evidence on experimental and organismic determinants of acute PYR-induced neurotoxicity was reviewed in rodents. A comprehensive analysis of these studies was conducted focusing on test material and dosing conditions, testing conditions, animal models, and other determinants such as testing room temperature. Variations in the severity of the neurotoxicity, under lab-controlled conditions, was explained based upon factors including influence of animal species and age, test material features such as chemical structure and stereochemistry, and dosing conditions such as vehicle, route of exposure, and dose volume. If not controlled, the interplay of these factors may lead to large variance in potency estimation. This review examined the scope of acute toxicological data required to determine the safety of pesticide products, and factors and covariates that need to be controlled in order to ensure that predictivity and precaution are balanced in a risk assessment process within a reasonable time-frame, using acute PYR-induced neurotoxicity in rodents as an exemplar.
Assuntos
Modelos Animais de Doenças , Monitoramento Ambiental/métodos , Síndromes Neurotóxicas/etiologia , Piretrinas/toxicidade , Animais , Relação Dose-Resposta a Droga , Síndromes Neurotóxicas/prevenção & controleRESUMO
In previous studies we found that there is a critical period during rat postnatal development when motor training starting at age 30 days (P30) but not before or after this age, induces a bilateral lifetime drop in Bmax of the muscarinic radioligand [3H]QNB in striatum. We examined the possibility that striatal NGF level would be a determining factor for the normal occurrence of this synaptic plasticity. With this aim, rats underwent training at P30-37 with or without simultaneous NGF perfusion into the left striatum. At P70, we found the expected bilateral enduring fall of striatal [3H]QNB sites in trained controls. While the non-cannulated side of NGF-treated trained rats showed a similar drop in [3H]QNB binding, the perfused striata from these animals were not affected by training. Thus, the findings add new evidence in favour of a major role of NGF in this critical period of activity-dependent permanent adjustment in the striatal muscarinic system.
Assuntos
Envelhecimento/fisiologia , Animais Recém-Nascidos/crescimento & desenvolvimento , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Atividade Motora/fisiologia , Fator de Crescimento Neural/farmacologia , Animais , Animais Recém-Nascidos/fisiologia , Sítios de Ligação , Corpo Estriado/metabolismo , Masculino , Antagonistas Muscarínicos/metabolismo , Condicionamento Físico Animal/fisiologia , Quinuclidinil Benzilato/metabolismo , Ratos , Ratos Sprague-Dawley , Valores de ReferênciaRESUMO
We previously found the occurrence of a critical motor period during rat postnatal development where circling training starting the 7-day schedule at 30 days-but not before or after-induces a lifetime drop in the binding to cholinergic muscarinic receptors (mAChRs) in striatum. Here, we studied whether nerve growth factor (NGF) participates in this restricted period of muscarinic sensitivity. For this purpose, we administered mouse salival gland 2.5S NGF (1.4 or 0.4 microg/day, infused by means of ALZA minipumps) by intrastriatal unilateral route between days 25 and 39, and then trained rats starting at 40 days. Under these conditions, NGF induced a long-term reduction in the striatal [3H] quinuclidilbenzylate (QNB) binding sites despite the fact that motor training was carried out beyond the natural critical period. Thus, at day 70, measurement of specific QNB binding in infused striata of trained rats showed decreases of 42% (p < .0004) and 33% (p < .02) after administration of the higher and lower NGF doses, respectively, with respect to trained rats treated with cytochrome C, for control. Noncannulated striata of the NGF-treated rats also showed a decrease in QNB binding sites (44%; p < .0001) only at the higher infusion rate. This effect was not found in the respective control groups. Our observations show that NGF modulates the critical period in which activity-dependent mAChR setting takes place during rat striatal maturation.
Assuntos
Comportamento Animal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Fatores Etários , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/crescimento & desenvolvimento , Potenciação de Longa Duração , Masculino , Camundongos , Antagonistas Muscarínicos/farmacologia , Quinuclidinil Benzilato/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismoRESUMO
We evaluated the in vitro phosphorylation of the presynaptic substrate of protein kinase C (PKC), GAP-43/B-50 and the PKC activity in the striatum of rats submitted to a circling training (CT) test during postnatal development. Motor activity at 30 days of age, but not at other ages, produced a unilateral reduction (-29.5%; p<0.001) in the level of GAP-43/B-50 endogenous phosphorylation in the contralateral striatum with respect to the ipsilateral side, while non-trained control animals did not show asymmetric differences. Compared to controls, the contralateral striatum of trained animals also showed a significant reduction (-29.3%; p<0. 001) in the incorporation of 32P-phosphate into GAP-43. This decreased in vitro GAP-43 phosphorylation was seen at 30 min, but not immediately after circling motor behavior. This contralateral change in GAP-43 phosphorylation correlated with the running speed developed by the animals [(r=0.9443, p=0.0046, n=6, relative to control group) and (r=0.8813, p=0.0203, n=6, with respect to the ipsilateral side of the exercised animals)]. On the contrary, GAP-43/B-50 immunoblots did not show changes in the amount of this phosphoprotein among the different experimental groups. Back phosphorylation assays, performed in the presence of bovine purified PKC, increased the level of GAP-43/B-50 phosphorylation in the striatum contralateral to the sense of turning [(+22%; p<0.05, with respect to ipsilateral side of the same trained group) and (+21%; p<0.05, relative to control group)]. Taken together, these results demonstrate that the activity developed in the CT test induces a reduction in the phosphorylation state of GAP-43/B-50 in the specific site for PKC. We conclude that general markers of activity-dependent neuronal plasticity are also altered in the same period that long-lasting changes in striatal neuroreceptors are triggered by circling motor behavior.
Assuntos
Membrana Celular/metabolismo , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Proteína GAP-43/metabolismo , Neurônios Motores/enzimologia , Proteína Quinase C/metabolismo , Animais , Comportamento Animal/fisiologia , Western Blotting , Condicionamento Psicológico/fisiologia , Proteína GAP-43/análise , Locomoção/fisiologia , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Sinapses/enzimologiaRESUMO
CIRCLING training (CT) decreases muscarinic acetyl-choline receptor (mAchR) binding in rat striatum. As cholinergic and dopaminergic systems interact strongly we evaluated the expression of D2-subtype dopamine receptor (DA D2) and mAchR together after CT. Animals trained from 30 to 37 days of age and sacrificed 2 months later showed an enduring drop in Bmax of 40% in DA D2 and 34% in mAchR. Plotting the percentage of binding drop of both receptors for each animal showed that the reduction of one system correlates with the other (r2 = 0.71, p < 0.01; n = 8). Neither mAchR nor DA D2 were affected when training started at 20 or 60 days. We conclude that the presence of a period where CT exerts long term alterations during development involves both cholinergic and dopaminergic systems.