Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(27): 31406-31417, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185501

RESUMO

The use of ultraviolet (UV) and blue irradiation to sterilize surfaces is well established, but commercial applications would be enhanced if the light source is replaced with ambient light. In this paper, it is shown that nanofibers can be explored as an alternative methodology to UV and blue irradiation for bacterial inactivation. It is demonstrated that this is indeed possible using spun nanofibers of poly[lactic-co-(glycolic acid)] (PLGA). This work shows that PLGA spun scaffolds can promote photoinactivation of Staphylococcus aureus and Escherichia coli bacteria with ambient light or with laser irradiation at 630 nm. With the optimized scaffold composition of PLGA85:15 nanofibers, the minimum intensity required to kill the bacteria is much lower than in antimicrobial blue light applications. The enhanced effect introduced by PLGA scaffolds is due to their nanofiber structures since PLGA spun nanofibers were able to inactivate both S. aureus and E. coli bacteria, but cast films had no effect. These findings pave the way for an entirely different method to sterilize surfaces, which is less costly and environmentally friendly than current procedures. In addition, the scaffolds could also be used in cancer treatment with fewer side effects since photosensitizers are not required.


Assuntos
Eletricidade , Escherichia coli/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Staphylococcus aureus/fisiologia , Raios Ultravioleta , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação
2.
Biomed Opt Express ; 11(11): 6516-6527, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282505

RESUMO

Melanoma is the most aggressive type of skin cancer and a relevant health problem due to its poor treatment response with high morbidity and mortality rates. This study, aimed to investigate the tissue changes of an improved photodynamic therapy (PDT) response when combined with optical clearing agent (OCA) in the treatment of cutaneous melanoma in mice. Photodithazine (PDZ) was administered intraperitoneally and a solution of OCA was topically applied before PDT irradiation. Due to a resultant refractive index matching, OCA-treated tumors are more optically homogenous, improving the PDT response. Raman analysis revealed, when combined with OCA, the PDT response was more homogenous down to 725 µm-depth in thickness.

3.
Pharmaceuticals (Basel) ; 12(1)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909531

RESUMO

The success of the onychomycosis treatment is directly associated with factors such as the choice of the medication, the administration route, and the pharmaceutical formulation. Photodynamic therapy (PDT) is an emerging and promising technique indicated for onychomycosis treatment. For this application, the main challenge is the efficient delivery of the photosensitizer (PS). Curcumin is widely used as a PS, however it is an unstable molecule and it is a challenge to develop a formulation with good penetration into the nail plate, maintaining the stability of curcumin. In this study, the molecular mechanisms underlying the efficacy of two topical formulations containing curcumin used in a clinical trial for onychomycosis treatment were analyzed by Raman microspectroscopy. It is shown that curcumin is present in both formulations in aggregated and non-aggregated states, and in aggregates it is present in different conformations, depending on the interaction with the solvent. This proves to be critical for efficient and uniform PS delivery to the nail and its complete use during the treatment. These analyses are showing how promising Raman microspectroscopy is in understanding the molecular mechanisms of the efficiency of photosensitizers and are helping to improve the development of pharmaceutical formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA