RESUMEN
Crotamine (Ctm) is a peptide isolated from Crotalus durissus terrificus venom. This molecule has been demonstrated to diminish body weight gain and enhance browning in adipose tissue, glucose tolerance, and insulin sensitivity; hence, it has been postulated as an anti-obesogenic peptide. However, the mechanism to elicit the anti-obesogenic effects has yet to be elucidated. Thus, we investigated the possible interaction of Ctm with receptors involved in obesity-related metabolic pathways through protein-protein docking and molecular dynamics refinement. To test the anti-obesogenic mechanism of Ctm, we selected and retrieved 18 targets involved in obesity-related drug discovery from Protein Data Bank. Then, we performed protein-protein dockings. The best three Ctm-target models were selected and refined by molecular dynamics simulations. Molecular docking demonstrated that Ctm was able to interact with 13 of the 18 targets tested. Having a better docking score with glucagon-like peptide-1 receptor (GLP-1R) (-1430.2 kcal/mol), DPP-IV (dipeptidyl peptidase-IV) (-1781.7 kcal/mol) and α-glucosidase (-1232.3 kcal/mol). These three models were refined by molecular dynamics. Ctm demonstrated a higher affinity for GLP-1R (ΔG: -41.886 ± 2.289 kcal/mol). However, Ctm interaction was more stable with DPP-IV (RMSD: 0.360 ± 0.015 nm, Radius of gyration: 2.781 ± 0.009 nm). Moreover, the number of interactions and the molecular mechanics energies of Ctm residues suggest that the interaction of Ctm with these receptors is mainly mediated by basic-hydrophobic dyads Y1-K2, W31-R32, and W33-R34. Together, all these results allow elucidating a possible molecular mechanism behind the previously described anti-obesogenic effects.
Asunto(s)
Venenos de Crotálidos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Obesidad , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Venenos de Crotálidos/química , Venenos de Crotálidos/metabolismo , Animales , Humanos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Redes y Vías Metabólicas , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/químicaRESUMEN
α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone series, whose members differ only in the number and position of methyl groups on a common scaffold, on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by density functional theory (DFT) analysis. These compounds' effect on enzymatic activity, their molecular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs) than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport flux. Additionally, menadione-induced ROS production was prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new drugs for T2DM and metabolic syndrome.
Asunto(s)
Antioxidantes , Metabolismo Energético , Inhibidores de Glicósido Hidrolasas , Hidroquinonas , alfa-Glucosidasas , Humanos , Células CACO-2 , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Hidroquinonas/farmacología , Hidroquinonas/química , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacosRESUMEN
Background: Pompe disease (PD) is a rare autosomal recessive genetic disorder (1 in 14,000) which affects the synthesis of acid alpha-glucosidase (AGA), leading to intralysosomal glycogen accumulation in muscle tissue. The clinical presentation is heterogeneous, with variable degrees of involvement and progression, classifiable based on the age of onset into infantile (classic or non-classic) and late-onset forms (juvenile or adult). The diagnostic test of choice is the enzymatic analysis of AGA, and the only pharmacological treatment is enzyme replacement therapy (ERT). This document aims to report a clinical case of late-onset PD. Clinical case: 14-year-old male who started at the age of 5 with postural alterations, gait changes, and decreased physical performance compared to his peers. A diagnostic evaluation was initiated in 2022 due to worsening neuromuscular symptoms, accompanied by dyspnea, tachycardia, and chest pain. A suspicion of a lysosomal storage myopathy was established, and through enzymatic determination of AGA the diagnosis of PD was confirmed. The study of the GAA gene revealed the association of 2 previously unreported genomic variants. ERT was initiated, resulting in clinical improvement. Conclusions: The age of symptom onset, severity of clinical presentation, and prognosis of the disease depend on the specific mutations involved. In this case, the identified genetic alterations are associated with different phenotypes. However, based on the clinical presentation, it is categorized as juvenile PD with an indeterminate prognosis.
Introducción: la enfermedad de Pompe (EP) es un padecimiento genético autosómico recesivo poco frecuente (1:14,000) que afecta la síntesis de alfa-glucosidasa ácida (AGA) y condiciona un depósito de glucógeno intralisosomal en tejido muscular. La presentación clínica es heterogénea, con grados variables de afectación y progresión, clasificable según la edad de aparición en infantil (clásica y no clásica) y de inicio tardío (juvenil o de adultez). La prueba diagnóstica de elección es el análisis enzimático de AGA y el único tratamiento farmacológico es la terapia de reemplazo enzimático (TRE). Este documento tiene como objetivo reportar un caso clínico de EP de inicio tardío. Caso clínico: paciente de sexo masculino de 14 años que comenzó a los 5 años con alteraciones de la postura, marcha y desempeño físico. Se inició protocolo de estudio ante agravamiento de los síntomas neuromusculares, a los que se agregaron disnea, taquicardia y dolor torácico. Se sospechó de una miopatía metabólica de depósito lisosomal y mediante determinación enzimática de AGA se confirmó el diagnóstico de EP. El estudio molecular del gen GAA reportó una asociación de 2 variantes genómicas no descritas previamente. Se empleó la TRE con mejoría clínica. Conclusiones: la edad de inicio del cuadro clínico, severidad y pronóstico dependen de las mutaciones presentadas. En este caso, las alteraciones genéticas encontradas están relacionadas con diferentes fenotipos; no obstante, por clínica es categorizado como una EP juvenil con pronóstico indeterminado.
Asunto(s)
Genotipo , Enfermedad del Almacenamiento de Glucógeno Tipo II , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Humanos , Masculino , Adolescente , alfa-Glucosidasas/genética , México , Terapia de Reemplazo EnzimáticoRESUMEN
Protein hydrolysates with antioxidant potential have been reported to act as adjuvants in preventing and treating type-2 diabetes (T2D). This work investigated the biochemical, antidiabetic, antioxidant potential, and physicochemical properties of chia meal protein hydrolysate (CMPH). Bands smaller than 14 kDa were observed in the electrophoretic profile. The predominant amino acids were hydrophobic and aromatic. CMPH had the potential to inhibit α-amylase (IC50: 1.76 ± 0.13 mg/mL), α-glucosidase (IC50: 0.42 ± 0.13 mg/mL), and DPP-IV (IC50: 0.46 ± 0.14 mg/mL). Antioxidant activity for ABTS (IC50: 0.236 mg/mL), DPPH (8.83 ± 0.52%), and ORAC (IC25: 0.115 mg/mL). Against chia meal protein isolate (CMPI), CMPH has a broad solubility (pH 2-12.46). Particle size (624.5 ± 247.3 nm), low PDI (0.22 ± 0.06), ζ-potential (-31.1 ± 2.5 mV), and surface hydrophobicity (11,183.33 ± 2024.11) and the intrinsic fluorescence peak of CMPH was lower than that of CMPI. CMPH represents an alternative to add value to the agri-food co-product of the chia seed oil industry, generating food ingredients with outstanding antidiabetic and antioxidant potential.
Asunto(s)
Antioxidantes , Hipoglucemiantes , Hidrolisados de Proteína , Salvia hispanica , alfa-Amilasas , Hipoglucemiantes/química , Antioxidantes/química , Hidrolisados de Proteína/química , alfa-Amilasas/química , Salvia hispanica/química , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Humanos , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas de Plantas/química , Interacciones Hidrofóbicas e Hidrofílicas , Salvia/químicaRESUMEN
BACKGROUND: Pompe Disease (PD) is a metabolic myopathy caused by variants in the GAA gene, resulting in deficient enzymatic activity. We aimed to characterize the clinical features and related genetic variants in a series of Mexican patients. METHODS: We performed a retrospective study of clinical records of patients diagnosed with LOPD, IOPD or pseudodeficiency. RESULTS: Twenty-nine patients were included in the study, comprising these three forms. Overall, age of symptom onset was 0.1 to 43 years old. The most frequent variant identified was c.-32-13T>G, which was detected in 14 alleles. Among the 23 different variants identified in the GAA gene, 14 were classified as pathogenic, 5 were likely pathogenic, and 1 was a variant of uncertain significance. Two variants were inherited in cis arrangement and 2 were pseudodeficiency-related benign alleles. We identified two novel variants (c.1615 G>A and c.1076-20_1076-4delAAGTCGGCGTTGGCCTG). CONCLUSION: To the best of our knowledge, this series represent the largest phenotypic and genotypic characterization of patients with PD in Mexico. Patients within our series exhibited a combination of LOPD and IOPD associated variants, which may be related to genetic diversity within Mexican population. Further population-wide studies are required to better characterize the incidence of this disease in Mexican population.
Asunto(s)
Edad de Inicio , Enfermedad del Almacenamiento de Glucógeno Tipo II , Mutación , alfa-Glucosidasas , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Masculino , Femenino , Preescolar , Niño , Adulto , alfa-Glucosidasas/genética , Lactante , México/epidemiología , Adolescente , Fenotipo , Estudios Retrospectivos , Estudios de Asociación Genética , Alelos , Adulto JovenRESUMEN
BACKGROUND: Pompe disease, a rare autosomal recessive disorder caused by acid alpha-glucosidase deficiency, results in progressive glycogen accumulation and multisystem dysfunction. Enzyme replacement therapy with recombinant human acid alpha-glucosidase is the standard of care; however, some patients develop anti-recombinant human acid alpha-glucosidase antibodies, leading to reduced efficacy. This case report presents two infants with early-onset Pompe disease who developed IgG antibodies to enzyme replacement therapy and were subsequently treated with methotrexate, highlighting the importance of monitoring antibody development and exploring alternative therapeutic approaches. CASE PRESENTATION: Patient 1, a 10-month-old female from Bogota, Colombia, presented with generalized hypotonia, macroglossia, hyporeflexia, and mild left ventricular hypertrophy. Diagnostic tests confirmed early-onset Pompe disease, and enzyme replacement therapy was started at 12 months. Due to a lack of improvement and high anti-recombinant human acid alpha-glucosidase IgG antibody titers (1:1800), methotrexate was started at 18 months. After 8 months of combined therapy, antibody titers were negative and significant improvement in motor function was observed using the Gross Motor Function Measure 88. Patient 2, a 7-year-old female from Bogota, Colombia, was diagnosed with early-onset Pompe disease at 12 months and initiated enzyme replacement therapy. At 5 years of age, she experienced frequent falls and grip strength alterations. Functional tests revealed motor development delay, generalized hypotonia, and positive anti-recombinant human acid alpha-glucosidase IgG antibody titers (6400). Methotrexate was initiated, leading to a reduction in falls and antibody titers (3200) after 6 months, with no adverse events or complications. Motor function improvement was assessed using the Motor Function Measurement 32. CONCLUSIONS: The presented cases highlight the importance of monitoring patients for anti-recombinant human acid alpha-glucosidase antibody development during enzyme replacement therapy and the potential benefit of methotrexate as an immunomodulatory agent in early-onset Pompe disease. Early diagnosis and timely initiation of enzyme replacement therapy, combined with prophylactic immune tolerance induction, may improve clinical outcomes and reduce the development of anti-recombinant human acid alpha-glucosidase antibodies. The cases also highlight the importance of objective motor function assessment tools, such as Gross Motor Function Measure 88 and Motor Function Measurement 32, in assessing treatment response. Further research is needed to optimize treatment regimens, monitor long-term effects, and address the current limitations of enzyme replacement therapy in Pompe disease.
Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II , Metotrexato , alfa-Glucosidasas , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Femenino , Lactante , alfa-Glucosidasas/uso terapéutico , Metotrexato/uso terapéutico , Niño , Resultado del Tratamiento , Inmunoterapia/métodos , Inmunoglobulina G , Proteínas Recombinantes/uso terapéuticoRESUMEN
Background: Moringa peregrina is widely used in the traditional medicine of the Arabian Peninsula to treat various ailments, because it has many pharmacologically active components with several therapeutic effects. Objective: This study aimed to investigate the inhibitory effect of Moringaperegrina seed ethanolic extract (MPSE) against key enzymes involved in human pathologies, such as angiogenesis (thymidine phosphorylase), diabetes (α-glucosidase), and idiopathic intracranial hypertension (carbonic anhydrase). In addition, the anticancer properties were tested against the SH-SY5Y (human neuroblastoma). Results: MPSE extract significantly inhibited α-glucosidase, thymidine phosphorylase, and carbonic anhydrase with half-maximal inhibitory concentrations (IC50) values of 303.1 ± 1.3, 471.30 ± 0.3, and 271.30 ± 5.1 µg/mL, respectively. Furthermore, the antiproliferative effect of the MPSE was observed on the SH-SY5Y cancer cell line with IC50 values of 55.1 µg/mL. Conclusions: MPSE has interesting inhibitory capacities against key enzymes and human neuroblastoma cancer cell line.
Antecedentes: La Moringa peregrina se utiliza ampliamente en la medicina tradicional de la Península Arábiga para tratar diversas dolencias, ya que posee numerosos componentes farmacológicamente activos con varios efectos terapéuticos. Objetivo: Este estudio tenía como objetivo investigar el efecto inhibidor del extracto etanólico de semillas de Moringaperegrina (MPSE) frente a enzimas clave implicadas en patologías humanas, como la angiogénesis (timidina fosforilasa), la diabetes (α-glucosidasa) y la hipertensión intracraneal idiopática (anhidrasa carbónica). Además, se comprobaron las propiedades anticancerígenas frente al SH-SY5Y (neuroblastoma humano). Resultados: El extracto de MPSE inhibió significativamente la α-glucosidasa, la timidina fosforilasa y la anhidrasa carbónica con concentraciones inhibitorias semimáximas (IC50) de 303,1 ± 1,3, 471,30 ± 0,3 y 271,30 ± 5,1 µg/mL, respectivamente. Además, se observó el efecto antiproliferativo del MPSE en la línea celular del cáncer SH-SY5Y con valores de IC50 de 55,1 µg/mL. Conclusiones: MPSE posee interesantes capacidades inhibitorias frente a enzimas clave y línea celular de neuroblastoma canceroso humano.
Asunto(s)
Humanos , Anticarcinógenos , Moringa , Inhibidores Enzimáticos , alfa-GlucosidasasRESUMEN
Alpha-glucosidase inhibitors play an important role in Diabetes Mellitus (DM) treatment since they prevent postprandial hyperglycemia. The Glycoside Hydrolase family 13 (GH13) is the major family of enzymes acting on substrates containing α-glucoside linkages, such as maltose and amylose/amylopectin chains in starch. Previously, our group identified glycoconjugate 1H-1,2,3-triazoles (GCTs) inhibiting two GH13 α-glycosidases: yeast maltase (MAL12) and porcine pancreatic amylase (PPA). Here, we combined kinetic studies and computational methods on nine GCTs to characterize their inhibitory mechanism. They all behaved as reversible inhibitors, and kinetic models encompassed noncompetitive and various mechanisms of mixed-type inhibition for both enzymes. Most potent inhibitors displayed Ki values of 30 µM for MAL12 (GPESB16) and 37 µM for PPA (GPESB15). Molecular dynamics and docking simulations indicated that on MAL12, GPESB15 and GPESB16 bind in a cavity adjacent to the active site, while on the PPA, GPESB15 was predicted to bind at the entrance of the catalytic site. Notably, despite its putative location within the active site, the binding of GPESB15 does not obstruct the substrate's access to the cleavage site. Our study contributes to paving the way for developing novel therapeutic strategies for managing DM-2 through GH13 α-glycosidases inhibition.
Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Cinética , Ligandos , Porcinos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Animales , Dominio Catalítico , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Triazoles/química , Triazoles/farmacología , Modelos MolecularesRESUMEN
The research about α-methylene-γ-lactams is scarce; however, their synthesis has emerged in recent years mainly because they are isosters of α-methylene-γ-lactones. This last kind of compound is structurally most common in some natural products' nuclei, like sesquiterpene lactones that show biological activity such as anti-inflammatory, anticancer, antibacterial, etc., effects. In this work, seven α-methylene-γ-lactams were evaluated by their inflammation and α-glucosidase inhibition. Thus, compounds 3-methylene-4-phenylpyrrolidin-2-one (1), 3-methylene-4-(p-tolyl)pyrrolidin-2-one (2), 4-(4-chlorophenyl)-3-methylenepyrrolidin-2-one (3), 4-(2-chlorophenyl)-3-methylenepyrrolidin-2-one (4), 5-ethyl-3-methylene-4-phenylpyrrolidin-2-one (5), 5-ethyl-3-methylene-4-(p-tolyl)pyrrolidin-2-one (6) and 4-(4-chlorophenyl)-5-ethyl-3-methylenepyrrolidin-2-one (7) were evaluated via in vitro α-glucosidase assay at 1 mM concentration. From this analysis, 7 exerts the best inhibitory effect on α-glucosidase compared with the vehicle, but it shows a low potency compared with the reference drug at the same dose. On the other side, inflammation edema was induced using TPA (12-O-tetradecanoylphorbol 13-acetate) on mouse ears; compounds 1-7 were tested at 10 µg/ear dose. As a result, 1, 3, and 5 show a better inhibition than indomethacin, at the same doses. This is a preliminary report about the biological activity of these new α-methylene-γ-lactams.
Asunto(s)
Antiinflamatorios , Inhibidores de Glicósido Hidrolasas , Lactamas , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Lactamas/química , Lactamas/farmacología , Animales , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Ratones , Relación Estructura-Actividad , Simulación por Computador , Edema/tratamiento farmacológico , Edema/inducido químicamente , Estructura MolecularRESUMEN
Brewer's spent yeast (BSY) hydrolysates are a source of antidiabetic peptides. Nevertheless, the impact of in vitro gastrointestinal digestion of BSY derived peptides on diabetes has not been assessed. In this study, two BSY hydrolysates were obtained (H1 and H2) using ß-glucanase and alkaline protease, with either 1 h or 2 h hydrolysis time for H1 and H2, respectively. These hydrolysates were then subjected to simulated gastrointestinal digestion (SGID), obtaining dialysates D1 and D2, respectively. BSY hydrolysates inhibited the activity of α-glucosidase and dipeptidyl peptidase IV (DPP-IV) enzymes. Moreover, although D2 was inactive against these enzymes, D1 IC50 value was lower than those found for the hydrolysates. Interestingly, after electrophoretic separation, D1 mannose-linked peptides showed the highest α-glucosidase inhibitory activity, while non-glycosylated peptides had the highest DPP-IV inhibitory activity. Kinetic analyses showed a non-competitive mechanism in both cases. After peptide identification, GILFVGSGVSGGEEGAR and IINEPTAAAIAYGLDK showed the highest in silico anti-diabetic activities among mannose-linked and non-glycosylated peptides, respectively (AntiDMPpred score: 0.70 and 0.77). Molecular docking also indicated that these peptides act as non-competitive inhibitors. Finally, an ex vivo model of mouse jejunum organoids was used to study the effect of D1 on the expression of intestinal epithelial genes related to diabetes. The reduction of the expression of genes that codify lactase, sucrase-isomaltase and glucose transporter 2 was observed, as well as an increase in the expression of Gip (glucose-dependent insulinotropic peptide) and Glp1 (glucagon-like peptide 1). This is the first report to evaluate the anti-diabetic effect of BSY peptides in mouse jejunum organoids.
Asunto(s)
Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Animales , Ratones , Saccharomyces cerevisiae/metabolismo , Manosa , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/farmacología , Péptidos/química , Digestión , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/química , Hidrolisados de Proteína/químicaRESUMEN
The lack of studies evaluating the chemical responses of kombucha microorganisms when exposed to plants is notable in the literature. Therefore, this work investigates the chemical behaviour of 7-, 14- and 21 day-fermentation of kombucha derived from three extracts obtained from banana inflorescence, black tea, and grape juice. After the acquisition of UPLC-ESI-MS data, GNPS molecular networking, MS-Dial, and MS-Finder were used to chemically characterize the samples. The microbial chemical responses were enzymatic hydrolysis, oxidation, and biosynthesis. The biosynthesis was different among the kombucha samples. In fermented black tea, gallic and dihydrosinapic acids were found as hydrolysis products alongside a sugar-derived product namely 7-(α-D-glucopyranosyloxy)-2,3,4,5,6-pentahydroxyheptanoic acid. The sphingolipids, safingol and cedefingol alongside capryloyl glycine and palmitoyl proline were identified. In fermented grapes, sugar degradation and chemical transformation products were detected together with three cell membrane hopanoids characterized as hydroxybacteriohopanetetrol cyclitol ether, (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol ether, and methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol. The fermented banana blossom showed the presence of methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol together with sphingofungin B, sphinganine and other fatty acid derivatives. Parts of these samples were tested for their inhibition against α-glucosidase and their antioxidant effects. Except for the 14-day fermented extracts, other black tea extracts showed significant inhibition of α-glucosidase ranging from 42.5 to 42.8%. A 14-day fermented extract of the banana blossom infusion showed an inhibition of 29.1%, while grape samples were less active than acarbose. The 21-day fermented black tea extract showed moderate antioxidant properties on a DPPH-based model with an EC50 of 5.29 ± 0.10 µg mL-1, while the other extracts were weakly active (EC50 between 80.76 and 168.12 µg mL-1).
Asunto(s)
Camellia sinensis , Ciclitoles , Musa , Vitis , Té/química , Vitis/metabolismo , Musa/metabolismo , Fermentación , alfa-Glucosidasas/metabolismo , Camellia sinensis/metabolismo , Antioxidantes/metabolismo , Flores/química , Azúcares , Extractos Vegetales/farmacología , ÉteresRESUMEN
The industry has increasingly explored the development of foods with functional properties, where supplementation with probiotics and bioactive compounds has gained prominence. In this context, the study aimed to evaluate the influence of in vitro biological digestion on the content of phenolic compounds, antioxidant activity, and inhibition of α-amylase and α-glucosidase activities of probiotic yogurt supplemented with the lactic acid bacteria Lactococcus lactis R7 and red guava extract (Psidium cattleianum). A yogurt containing L. lactis R7 (0.1%) and red guava extract (4%) was characterized for the content of phenolic compounds, antioxidant activity, and potential for inhibition of digestive enzymes after a simulated in vitro digestion process. After digestion, the caffeic and hydroxybenzoic acids remained, and sinapic acid only in the last digestive phase. Antioxidant activity decreased during digestion by 28.93, 53.60, and 27.97% for DPPH, nitric oxide and hydroxyl radicals, respectively, and the inhibition of the α-amylase enzyme decreased only 4.01% after the digestion process. α-glucosidase was more efficient in intestinal digestion, demonstrating an increase of almost 50% in probiotic yogurt with red guava extract before digestion. Possibly, the phenolics change their conformation during digestion, generating new compounds, reducing antioxidant activity, and increasing the inhibitory activity of α-glucosidase digestive enzymes. It was concluded that the probiotic yogurt formulation supplemented with red guava extract could interfere with the concentration of phenolic compounds and the formation of new compounds, suggesting a positive and effective inhibition of the digestive enzymes, even after the digestive process.
Asunto(s)
Lactococcus lactis , Probióticos , Psidium , Antioxidantes/farmacología , alfa-Amilasas , alfa-Glucosidasas , Psidium/química , Yogur , Suplementos Dietéticos , Extractos Vegetales/farmacología , Extractos Vegetales/químicaRESUMEN
Gabirobeira fruits are known for their rich nutrient content and bioactive phytochemical compounds that contribute to significant biological activities. Despite these attributes, the antioxidant potential and stability of phenolic compounds in gabiroba by-products after digestion have yet to be studied. The objective of this work was to evaluate the physical-chemical composition, antibacterial activity, α-amylase, and α-glucosidase inhibitory effects, as well as the in vitro digestibility of total phenolic compounds, total flavonoids, and antioxidant activity of powder and extract from gabiroba to valorize these byproducts. The gabiroba powder had low moisture, high carbohydrate and fiber content. The extraction using 80% ethanol demonstrated higher antioxidant, antibacterial, α-amylase, and α-glucosidase inhibition activities compared to the 12% ethanol and water extracts. Catechin and ferulic acid were the major phenolic compounds identified by HPLC-DAD. After digestion, both the powder and the gabiroba extract exhibited a bioaccessibility of more than 30% for total phenolic compounds and antioxidant activity during the gastric phase. However, the dry ethanol extract displayed higher total phenolic compounds after both the gastric and intestinal phases compared to the flour. Processing gabiroba into powder and extract is a promising approach to fully utilize this seasonal fruit, minimize waste, concentrate health-beneficial compounds, and valorize a by-product for use as a functional ingredient and raw material within the food and pharmaceutical industries.
Asunto(s)
Antioxidantes , Myrtaceae , Antioxidantes/análisis , Frutas/química , alfa-Glucosidasas , Polvos/análisis , Fenoles/análisis , Extractos Vegetales/química , Etanol , alfa-Amilasas , Antibacterianos/análisis , DigestiónRESUMEN
Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Salvia , Humanos , alfa-Amilasas , alfa-Glucosidasas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Salvia hispanica , SemillasRESUMEN
The fruits of the native tree Cryptocarya alba Mol. (Lauraceae), known as "peumo" were consumed by the Mapuche Amerindians in Chile both raw and after boiling. The aim of this work was to compare the content of phenolic, procyanidins, antioxidant capacity and inhibition of enzymes related with metabolic syndrome (α-glucosidase, α-amylase and pancreatic lipase) from the phenolic enriched extracts (PEEs) of peumo fruits. Fruits were collected during two years in three different places in central Chile and were investigated raw, boiled, and after separation into cotyledons and peel. The water resulting from the fruit decoction was also analyzed. The composition of the PEE was assessed by HPLC-DAD-MS/MS and the main compounds were quantified by HPLC. The strong inhibitory effect on α-glucosidase, with IC50 values below 1 µg/mL for several samples, was related, at least in part, to the content of 3-caffeoylquinic acid, 5-caffeoylquinic acid and (-)-epicatechin. The effect of the PEE on pancreatic lipase is of interest and can be partially explained by the (-)-epicatechin content. PCA analyses showed a clear separation of the samples according to the fruit parts and processing. However, no differences by geographic origin were observed. The activity of peumo PEEs on enzymes related to metabolic syndrome and its antioxidant capacity support further studies on the health promoting properties of this native Chilean food plant.
Asunto(s)
Catequina , Cryptocarya , Síndrome Metabólico , Antioxidantes/farmacología , Cryptocarya/metabolismo , Frutas/química , Espectrometría de Masas en Tándem , alfa-Glucosidasas/metabolismo , Fenoles/análisis , LipasaRESUMEN
The tender green pods of the common bean (Phaseolus vulgaris L.) are marketed fresh, frozen or canned. The main bean accessions cultivated for green pods in central Chile are Arroz, Magnum, Peumo and the introduced Malibú. Little is known about the identity of phenolics in the processed pods or in the boiled bean leaves. Raw leaves from Chilean bean landraces showed a strong inhibition towards the enzyme α-glucosidase, associated with flavonoids and caffeoyl malic acid content. The aim of this work was to assess the phenolic composition, antioxidant capacity and activity towards α-glucosidase of boiled leaves and green pods from selected bean landraces. The study was performed with four green pods samples and six leaf accessions, respectively. The leaves included the continuous growth bean Ñuño (red seed and black seed). Antioxidant capacity and inhibition of α-glucosidase were measured. The main phenolics were identified by comparison with standards and were quantified using calibration curves. The extracts of most boiled green pods inhibited α-glucosidase while the leaves were inactive. The content of phenolics in the boiled pods is low, with rutin and quercetin 3-O-glucuronide as the main constituents. In boiled leaves, the main phenolics were quercetin 3-O-glucuronide and kaempferol 3-O-glucuronide. The main flavonoids and caffeoyl malic acid in leaves decreased after boiling. Boiling affected the phenolic profile, reducing antioxidant capacity and glucosidase inhibition, highlighting the importance of characterizing foods as they are ingested.
Asunto(s)
Antioxidantes , Phaseolus , Antioxidantes/farmacología , alfa-Glucosidasas , Chile , Fenoles/análisis , Flavonoides , Hojas de la Planta/químicaRESUMEN
Berries are rich in bioactive compounds, including antioxidants and especially polyphenols, known inhibitors of starch metabolism enzymes. Lactic acid fermentation of fruits has received considerable attention due to its ability to enhance bioactivity. This study investigated the effect of fermentation with L. mesenteroides of juice from the Chilean berry murta on antioxidant activity, release of polyphenols, and inhibitory activity against α-amylase and α-glucosidase enzymes. Three types of juices (natural fruit, freeze-dried, and commercial) were fermented. Total polyphenol content (Folin-Ciocalteu), antioxidant activity (DPPH and ORAC), and the ability to inhibit α-amylase and α-glucosidase enzymes were determined. Fermented murta juices exhibited increased antioxidant activity, as evidenced by higher levels of polyphenols released during fermentation. Inhibition of α-glucosidase was observed in the three fermented juices, although no inhibition of α-amylase was observed; the juice from freeze-dried murta stood out. These findings highlight the potential health benefits of fermented murta juice, particularly its antioxidant properties and the ability to modulate sugar assimilation by inhibiting α-glucosidase.
Asunto(s)
Antioxidantes , alfa-Glucosidasas , Antioxidantes/farmacología , Antioxidantes/química , alfa-Glucosidasas/química , Fermentación , Glucosa , Polifenoles/farmacología , alfa-AmilasasRESUMEN
Among antihyperglycemic drugs used for treating diabetes, α-glucosidase inhibitors generate the least adverse effects. This contribution aimed to evaluate the potential antidiabetic activity of Rumex crispus L. by testing its in vitro α-glucosidase inhibition and in vivo antihyperglycemic effects on rats with streptozotocin (STZ)-induced diabetes. Better inhibition of α-glucosidase was found with the methanol extract versus the n-hexane and dichloromethane extracts. The methanol extract of the flowers (RCFM) was more effective than that of the leaves (RCHM), with an IC50 of 7.3 ± 0.17 µg/mL for RCFM and 112.0 ± 1.23 µg/mL for RCHM. A bioactive fraction (F89s) also showed good α-glucosidase inhibition (IC50 = 3.8 ± 0.11 µg/mL). In a preliminary study, RCHM and RCFM at 150 mg/kg and F89s at 75 mg/kg after 30 days showed a significant effect on hyperglycemia, reducing glucose levels (82.2, 80.1, and 84.1%, respectively), and improved the lipid, renal, and hepatic profiles of the rats, comparable with the effects of metformin and acarbose. According to the results, the activity of R. crispus L. may be mediated by a diminished rate of disaccharide hydrolysis, associated with the inhibition of α-glucosidase. Thus, R. crispus L. holds promise for the development of auxiliary drugs to treat diabetes mellitus.
Asunto(s)
Diabetes Mellitus Experimental , Rumex , Ratas , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , alfa-Glucosidasas , Metanol , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Hojas de la Planta , Diabetes Mellitus Experimental/tratamiento farmacológico , FloresRESUMEN
Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ácido Glicirretínico , Humanos , Animales , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Calidad de Vida , alfa-Glucosidasas , Ácido Glicirretínico/farmacologíaRESUMEN
INTRODUCTION: Type 2 diabetes mellitus is a globally prevalent chronic disease characterised by hyperglycaemia and oxidative stress. The search for new natural bioactive compounds that contribute to controlling this condition and the application of analytical methodologies that facilitate rapid detection and identification are important challenges for science. Annona cherimola Mill. is an important source of aporphine alkaloids with many bioactivities. OBJECTIVE: The aim of this study is to isolate and identify antidiabetic compounds from alkaloid extracts with α-glucosidase and α-amylase inhibitory activity from A. cherimola Mill. leaves using an effect-directed analysis by thin-layer chromatography (TLC)-bioautography. METHODOLOGY: Guided fractionation for α-glucosidase and α-amylase inhibitors in leaf extracts was done using TLC-bioassays. The micro-preparative TLC was used to isolate the active compounds, and the identification was performed by mass spectrometry associated with web-based molecular networks. Additionally, in vitro estimation of the inhibitory activity and antioxidant capacity was performed in the isolated compounds. RESULTS: Five alkaloids (liriodenine, dicentrinone, N-methylnuciferine, anonaine, and moupinamide) and two non-alkaloid compounds (3-methoxybenzenepropanoic acid and methylferulate) with inhibitory activity were isolated and identified using a combination of simple methodologies. Anonaine, moupinamide, and methylferulate showed promising results with an outstanding inhibitory activity against both enzymes and antioxidant capacity that could contribute to controlling redox imbalance. CONCLUSIONS: These high-throughput methodologies enabled a rapid isolation and identification of seven compounds with potential antidiabetic activity. To our knowledge, the estimated inhibitory activity of dicentrinone, N-methylnuciferine, and anonaine against α-glucosidase and α-amylase is reported here for the first time.