Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.423
Filtrar
1.
Food Microbiol ; 124: 104614, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244366

RESUMEN

Salmonella is a major bacterial concern for public health globally. Although there are limited documentation on the prevalence of Salmonella species in Cambodia's food chain, some reports indicate that salmonellosis is a severe gastrointestinal infection in its population and especially in children. To investigate the presence of Salmonella spp., 285 food samples (75 meat, 50 seafood, and 160 leafy green vegetable samples) were randomly collected from various local markets in Phnom Penh capital and nearby farms in Cambodia. Concurrently, field observations were conducted to collect data on food hygiene and practices among the relevant actors. All food samples were analyzed using bacterial culture and plate counts, and the findings were confirmed serially with biochemical, serological, and PCR tests. The observational data on food hygiene and practices from farm to market revealed that the spread of Salmonella in the food-value chain from farm to market could pose health risks to consumers. The overall prevalence of Salmonella spp. was 48.4% (138/285), while the prevalence in meat, seafood, and vegetables was 71% (53/75), 64% (32/50), and 33% (53/160), respectively. Mean Salmonella plate count ranged from 1.2 to 7.40 log10 CFU/g, and there was no significant difference in bacterial counts between meat, seafood, and vegetable samples (p > 0.05). The most common serogroups among the isolated Salmonella spp. were B and C. These results suggest that a large proportion of meat, seafood, and vegetable products sold at local markets in Phnom Penh are contaminated with Salmonella spp. This is likely linked to inadequate hygiene and sanitation practices, including handling, storage, and preservation conditions. Observations on farms suggested that the prevalence of Salmonella in vegetables sold at the market could be linked to contamination relating to agricultural practices. Thus, controlling the spread of foodborne salmonellosis through the food-value chain from farms and retailers to consumers is warranted to enhance food safety in Cambodia.


Asunto(s)
Granjas , Contaminación de Alimentos , Carne , Salmonella , Alimentos Marinos , Verduras , Cambodia/epidemiología , Verduras/microbiología , Salmonella/aislamiento & purificación , Salmonella/clasificación , Contaminación de Alimentos/análisis , Contaminación de Alimentos/estadística & datos numéricos , Prevalencia , Alimentos Marinos/microbiología , Carne/microbiología , Animales , Microbiología de Alimentos , Humanos , Higiene
2.
Food Microbiol ; 124: 104617, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244369

RESUMEN

This study aimed to assess the bacterial microbiota involved in the spoilage of pacu (Piaractus mesopotamics), patinga (female Piaractus mesopotamics x male Piaractus brachypomus), and tambacu (female Colossoma macropomum × male Piaractus mesopotamics) during ice and frozen storage. Changes in the microbiota of three fish species (N = 22) during storage were studied through 16S rRNA amplicon-based sequencing and correlated with volatile organic compounds (VOCs) and metabolites assessed by nuclear magnetic resonance (NMR). Storage conditions (time and temperature) affected the microbiota diversity in all fish samples. Fish microbiota comprised mainly of Pseudomonas sp., Brochothrix sp., Acinetobacter sp., Bacillus sp., Lactiplantibacillus sp., Kocuria sp., and Enterococcus sp. The relative abundance of Kocuria, P. fragi, L. plantarum, Enterococcus, and Acinetobacter was positively correlated with the metabolic pathways of ether lipid metabolism while B. thermosphacta and P. fragi were correlated with metabolic pathways involved in amino acid metabolism. P. fragi was the most prevalent spoilage bacteria in both storage conditions (ice and frozen), followed by B. thermosphacta. Moreover, the relative abundance of identified Bacillus strains in fish samples stored in ice was positively correlated with the production of VOCs (1-hexanol, nonanal, octenol, and 2-ethyl-1-hexanol) associated with off-flavors. 1H NMR analysis confirmed that amino acids, acetic acid, and ATP degradation products increase over (ice) storage, and therefore considered chemical spoilage index of fish fillets.


Asunto(s)
Bacterias , Peces , Almacenamiento de Alimentos , Congelación , Microbiota , ARN Ribosómico 16S , Alimentos Marinos , Compuestos Orgánicos Volátiles , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Peces/microbiología , Brasil , Alimentos Marinos/microbiología , Alimentos Marinos/análisis , ARN Ribosómico 16S/genética , Hielo , Microbiología de Alimentos , Biodiversidad , Femenino
3.
BMC Biol ; 22(1): 202, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256748

RESUMEN

BACKGROUND: Seafood is increasingly traded worldwide, but its supply chain is particularly prone to frauds. To increase consumer confidence, prevent illegal trade, and provide independent validation for eco-labelling, accurate tools for seafood traceability are needed. Here we show that the use of microbiome profiling (MP) coupled with machine learning (ML) allows precise tracing the origin of Manila clams harvested in areas separated by small geographic distances. The study was designed to represent a real-world scenario. Clams were collected in different seasons across the most important production area in Europe (lagoons along the northern Adriatic coast) to cover the known seasonal variation in microbiome composition for the species. DNA extracted from samples underwent the same depuration process as commercial products (i.e. at least 12 h in open flow systems). RESULTS: Machine learning-based analysis of microbiome profiles was carried out using two completely independent sets of data (collected at the same locations but in different years), one for training the algorithm, and the other for testing its accuracy and assessing the temporal stability signal. Briefly, gills (GI) and digestive gland (DG) of clams were collected in summer and winter over two different years (i.e. from 2018 to 2020) in one banned area and four farming sites. 16S DNA metabarcoding was performed on clam tissues and the obtained amplicon sequence variants (ASVs) table was used as input for ML MP. The best-predicting performances were obtained using the combined information of GI and DG (consensus analysis), showing a Cohen K-score > 0.95 when the target was the classification of samples collected from the banned area and those harvested at farming sites. Classification of the four different farming areas showed slightly lower accuracy with a 0.76 score. CONCLUSIONS: We show here that MP coupled with ML is an effective tool to trace the origin of shellfish products. The tool is extremely robust against seasonal and inter-annual variability, as well as product depuration, and is ready for implementation in routine assessment to prevent the trade of illegally harvested or mislabeled shellfish.


Asunto(s)
Bivalvos , Aprendizaje Automático , Microbiota , Alimentos Marinos , Alimentos Marinos/microbiología , Animales , Bivalvos/microbiología , Comercio
4.
BMC Microbiol ; 24(1): 334, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39251908

RESUMEN

BACKGROUND: Characteristics of non-clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) especially from fishery environment are poorly understood. This research, in addition to comprehensive characterisation, sought to delineate the genetic relatedness between the MRSA strains originating from clinical as well as non-clinical settings. Out of 39 methicillin-resistant staphylococcal isolates from 197 fish samples, 6 (Three each of methicillin-resistant S. haemolyticus (MRSH) and MRSA) with distinct resistance profiles were selected for whole-genome sequencing. Using respective bioinformatics tools, MRSA genomes were comprehensively characterized for resistome, virulomes, molecular epidemiology and phylogenetic analysis. Simultaneously, MRSH genomes were specifically examined to characterize antimicrobial resistance genes (ARGs), owing to the fact that MRSH is often recognized as a reservoir for resistance determinants. RESULTS: Three MRSA clones identified in this study include ST672-IVd/t13599 (sequence type-SCCmec type/spa type), ST88-V/t2526, and ST672-IVa/t1309. Though, the isolates were phenotypically vancomycin-sensitive, five of the six genomes carried vancomycin resistance genes including the VanT (VanG cluster) or VanY (VanM cluster). Among the three MRSA, only one harbored the gene encoding Panton-Valentine Leukocidin (PVL) toxin, while staphylococcal enterotoxin (SEs) genes such as sea and seb, associated with staphylococcal food poisoning were identified in two other MRSA. Genomes of MRSH carried a composite of type V staphylococcal cassette chromosome mec (SCCmec) elements (5C2 & 5). This finding may be explained by the inversion and recombination events that may facilitate the integration of type V elements to the SCC elements of S. aureus with a methicillin-susceptible phenotype. Phylogenetically, MRSA from a non-clinical setting displayed a considerable relatedness to that from clinical settings. CONCLUSION: This study highlights the genetic diversity and resistance profiles of MRSA and MRSH, with non-clinical MRSA showing notable relatedness to clinical strains. Future research should explore resistance gene transfer mechanisms and environmental reservoirs to better manage MRSA spread.


Asunto(s)
Peces , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina , Filogenia , Intoxicación Alimentaria Estafilocócica , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Animales , Peces/microbiología , Intoxicación Alimentaria Estafilocócica/microbiología , Genoma Bacteriano/genética , Antibacterianos/farmacología , Secuenciación Completa del Genoma , Virulencia/genética , Pruebas de Sensibilidad Microbiana , Humanos , Factores de Virulencia/genética , Alimentos Marinos/microbiología , Microbiología de Alimentos , Toxinas Bacterianas/genética , Epidemiología Molecular , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/efectos de los fármacos , Staphylococcus haemolyticus/aislamiento & purificación , Staphylococcus haemolyticus/patogenicidad
5.
Arch Microbiol ; 206(9): 376, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141167

RESUMEN

Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.


Asunto(s)
Medios de Cultivo , Viabilidad Microbiana , Vibrio parahaemolyticus , Vibrio parahaemolyticus/crecimiento & desarrollo , Animales , Medios de Cultivo/química , Serogrupo , Frío , Microbiología de Alimentos , Artemia/microbiología , Alimentos Marinos/microbiología
6.
World J Microbiol Biotechnol ; 40(10): 294, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112832

RESUMEN

Rahnella aquatilis causes seafoods to spoil by metabolizing sulfur-containing amino acids and/or proteins, producing H2S in products. The type II secretion system (T2SS) regulates the transport of proteases from the cytoplasm to the surrounding environment and promotes bacterial growth at low temperatures. To prevent premature fish spoilage, new solutions for inhibiting the T2SS of bacteria should be researched. In this study, global transcriptome sequencing was used to analyze the spoilage properties of R. aquatilis KM05. Two of the mapped genes/coding sequences (CDSs) were matched to the T2SS, namely, qspF and gspE, and four of the genes/CDSs, namely, ftsH, rseP, ptrA and pepN, were matched to metalloproteases or peptidases in R. aquatilis KM05. Subinhibitory concentrations of citric (18 µM) and acetic (41 µM) acids caused downregulation of T2SS-related genes (range from - 1.0 to -4.5) and genes involved in the proteolytic activities of bacteria (range from - 0.5 to -4.0). The proteolytic activities of R. aquatilis KM05 in vitro were reduced by an average of 40%. The in situ experiments showed the antimicrobial properties of citric and acetic acids against R. aquatilis KM05; the addition of an acidulant to salmon fillets limited microbial growth. Citric and acetic acids extend the shelf life of fish-based products and prevent food waste.


Asunto(s)
Ácido Cítrico , Rahnella , Alimentos Marinos , Animales , Ácido Cítrico/metabolismo , Alimentos Marinos/microbiología , Rahnella/genética , Rahnella/metabolismo , Salmón/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacología , Microbiología de Alimentos , Transcriptoma , Regulación Bacteriana de la Expresión Génica
7.
Artículo en Inglés | MEDLINE | ID: mdl-39136676

RESUMEN

A novel, Gram-positive, facultatively anaerobic, and non-motile bacterial strain, designated B2T-5T, was isolated from jeotgal, a traditional Korean fermented seafood. Colonies grown on gifu anaerobic medium agar plates were cream-coloured, irregular, and umbonate with curled margins. Optimal growth of strain B2T-5T occurred at 20 °C, pH 8.0, and in the presence of 1% (w/v) NaCl. Strain B2T-5T was negative for oxidase and catalase activity. Hippurate was not hydrolysed and acetoin was not produced. The major cellular fatty acids were C18 : 1 ω9c and C16 : 0. The cell-wall peptidoglycan was of the A4α type containing l-Lys-d-Asp. The predominant respiratory quinone was menaquinone 7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylcholine. According to the phylogenetic analysis based on 16S rRNA gene sequences, strain B2T-5T was most closely related to Vagococcus teuberi DSM 21459T, showing 98.2% sequence similarity. Genome sequencing of strain B2T-5T revealed a genome size of 2.0 Mbp and a G+C content of 33.8 mol%. The average nucleotide identities of strain B2T-5T with Vagococcus teuberi DSM 21459T, Vagococcus bubulae SS1994T, and Vagococcus martis D7T301T were 75.0, 74.7, and 75.1%, respectively. Based on the phenotypic, chemotaxonomic, and genotypic data, strain B2T-5T represents a novel species of the genus Vagococcus, for which the name Vagococcus jeotgali sp. nov. is proposed. The type strain is B2T-5T (=KCTC 21223T=JCM 35937T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Alimentos Fermentados , Peptidoglicano , Filogenia , ARN Ribosómico 16S , Alimentos Marinos , Análisis de Secuencia de ADN , Vitamina K 2 , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Alimentos Marinos/microbiología , ADN Bacteriano/genética , República de Corea , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Animales , Alimentos Fermentados/microbiología , Secuenciación Completa del Genoma , Enterococcaceae/aislamiento & purificación , Enterococcaceae/genética , Enterococcaceae/clasificación , Genoma Bacteriano , Fermentación , Microbiología de Alimentos
8.
Methods Mol Biol ; 2851: 97-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39210174

RESUMEN

Fishy odor of fish flesh (meat) presents a severe problem for marine production. The main cause of fishy odor is trimethylamine (TMA), which increases during storage. It is produced from trimethylamine oxide (TMAO), an osmosis-regulating substance in fish cells that functions by a reduction reaction. Bacterial growth in fish meat increases TMA. Its odor reduces the commercial value of the meat. Technologies for its regulation and elimination are desired. This chapter presents a description of the use of lactic acid to eliminate TMA. The lactic acid is producible safely by bacteria during food processing using picric acid-toluene.A method of eliminating TMA was demonstrated using Lactobacillus plantarum H78. Furthermore, an assay method was explained for reducing TMA in fish meat by fermenting the H78 strain.


Asunto(s)
Explotaciones Pesqueras , Metilaminas , Metilaminas/metabolismo , Animales , Odorantes/análisis , Manipulación de Alimentos/métodos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Fermentación , Microbiología de Alimentos , Lactobacillales/metabolismo , Lactobacillales/crecimiento & desarrollo , Peces/microbiología , Ácido Láctico/metabolismo , Alimentos Marinos/microbiología
9.
PLoS One ; 19(8): e0309304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39173020

RESUMEN

The aim of this study was to investigate the prevalence of Vibrionaceae family in retail seafood products available in the Qidong market during the summer of 2023 and to characterize Vibrio parahaemolyticus isolates, given that this bacterium is the leading cause of seafood-associated food poisoning. We successfully isolated a total of 240 Vibrionaceae strains from a pool of 718 seafood samples. The breakdown of the isolates included 146 Photobacterium damselae, 59 V. parahaemolyticus, 18 V. campbellii, and 11 V. alginolyticus. Among these, P. damselae and V. parahaemolyticus were the predominant species, with respective prevalence rates of 20.3% and 8.2%. Interestingly, all 59 isolates of V. parahaemolyticus were identified as non-pathogenic. They demonstrated proficiency in swimming and swarming motility and were capable of forming biofilms across a range of temperatures. In terms of antibiotic resistance, the V. parahaemolyticus isolates showed high resistance to ampicillin, intermediate resistance to cefuroxime and cefazolin, and were sensitive to the other antibiotics evaluated. The findings of this study may offer valuable insights and theoretical support for enhancing seafood safety measures in Qidong City.


Asunto(s)
Alimentos Marinos , Vibrio parahaemolyticus , Alimentos Marinos/microbiología , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/genética , Microbiología de Alimentos , Prevalencia , China/epidemiología , Vibrionaceae/genética , Vibrionaceae/aislamiento & purificación , Vibrionaceae/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana
10.
Int J Food Microbiol ; 424: 110853, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39116462

RESUMEN

Salmon aquaculture is the fastest growing food production system in the world. Deficiencies in the quality or safety of salmon can have global repercussions. Controlling food safety aspects during production is therefore essential. Here, we investigate the state of hygiene in a salmon processing plant using next generation sequencing and classical culture-dependent methods to characterize the surface microbiota before and after cleaning and disinfection (C&D) at ten surface sampling points. Total aerobic counts revealed an average reduction in the bacterial loads of 1.1 log CFU/cm2 by C&D. The highest relative abundance in the core microbiota before C&D was assigned to Acinetobacter, Mycoplasmataceae, Pseudomonas and Enterobacteriaceae in descending order. After C&D, we observed a significant increase in the relative abundance of Pseudomonas (p < 0.05). However, variations were found between conveyors, processing machines and drains. To assess the efficacy of commercial disinfectants, we performed susceptibility assays using advanced robotic high-throughput technologies and included foodborne bacteria which may affect food safety and spoilage. These included 128 Pseudomonas isolates, 46 Aeromonas isolates and 59 Enterobacterales isolates sampled from the salmon processing plant. Generally, minimum inhibitory concentrations (MICs) of the disinfectants were below the user concentration recommended by the producer for most isolates. BacTiter-Glo biofilm assays revealed that 30 min exposure to six out of eight commercial disinfectants resulted in an average reduction of relative luminescence >95 % in 59 single-species biofilms selected for screening. However, disinfection alone may not always be sufficient to eradicate biofilms completely. C&D routines must therefore be continuously assessed to maintain food safety and quality. The results from this study can contribute to understand and improve the state of hygiene in salmon processing environments.


Asunto(s)
Bacterias , Biopelículas , Desinfectantes , Desinfección , Microbiología de Alimentos , Salmón , Salmón/microbiología , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Animales , Desinfección/métodos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Desinfectantes/farmacología , Alimentos Marinos/microbiología , Manipulación de Alimentos/métodos , Acuicultura , Pruebas de Sensibilidad Microbiana , Microbiota , Industria de Procesamiento de Alimentos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos
11.
Food Res Int ; 192: 114819, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147512

RESUMEN

Vibrio parahaemolyticus, a prevalent foodborne pathogen found in both water and seafood, poses substantial risks to public health. The conventional countermeasure, antibiotics, has exacerbated the issue of antibiotic resistance, increasing the difficulty of controlling this bacterium. Phage lysins, as naturally occurring active proteins, offer a safe and reliable strategy to mitigate the impact of V. parahaemolyticus on public health. However, there is currently a research gap concerning bacteriophage lysins specific to Vibrio species. To address this, our study innovatively and systematically evaluates 37 phage lysins sourced from the NCBI database, revealing a diverse array of conserved domains and notable variations in similarity among Vibrio phage lysins. Three lysins, including Lyz_V_pgrp, Lyz_V_prgp60, and Lyz_V_zlis, were successfully expressed and purified. Optimal enzymatic activity was observed at 45℃, 800 mM NaCl, and pH 8-10, with significant enhancements noted in the presence of 1 mM membrane permeabilizers such as EDTA or organic acids. These lysins demonstrated effective inhibition against 63 V. parahaemolyticus isolates from clinical, food, and environmental sources, including the reversal of partial resistance, synergistic interactions with antibiotics, and disruption of biofilms. Flow cytometry analyses revealed that the combination of Lyz_V_pgp60 and gentamicin markedly increased bacterial killing rates. Notably, Lyz_V_pgrp, Lyz_V_pgp60, and Lyz_V_zlis exhibited highly efficient biofilm hydrolysis, clearing over 90 % of preformed V. parahaemolyticus biofilms within 48 h. Moreover, these lysins significantly reduced bacterial loads in various food samples and environmental sources, with reductions averaging between 1.06 and 1.29 Log CFU/cm2 on surfaces such as stainless-steel and bamboo cutting boards and approximately 0.87 CFU/mL in lake water and sediment samples. These findings underscore the exceptional efficacy and versatile application potential of phage lysins, offering a promising avenue for controlling V. parahaemolyticus contamination in both food and environmental contexts.


Asunto(s)
Bacteriófagos , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virología , Vibrio parahaemolyticus/efectos de los fármacos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Microbiología de Alimentos , Alimentos Marinos/microbiología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo
12.
Food Chem ; 460(Pt 1): 140469, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029368

RESUMEN

Microorganisms, proteins, and lipids play crucial and intricate roles in the aroma generation of aquatic products. To explore the impact of the interaction between microorganisms and proteins on the volatile compounds (VOCs) in grouper, this study employed whey protein isolate (WPI) to inhibit lipid oxidation and reduce mutual interference. Changes in bacterial profiles, metabolites, and VOCs were detected. Eighteen key VOCs associated with the overall flavor of grouper were identified, and the potential relationships among microorganisms, proteins, and VOCs were explored using a correlation network. Five microorganisms (Vibrio, Vagococcus, Pseudomonas, Psychrobacter, and Shewanella) closely related to characteristic flavor compounds were identified. Additionally, 30 differential metabolites related to proteins and six metabolic pathways were screened. Therefore, this study unveils the potential interaction between microorganisms and proteins in flavor formation and provides new insights into the relationships among microorganisms, proteins, and VOCs.


Asunto(s)
Bacterias , Microbiota , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Animales , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Almacenamiento de Alimentos , Lubina/metabolismo , Lubina/microbiología , Alimentos Marinos/análisis , Alimentos Marinos/microbiología , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/química , Proteolisis , Frío
13.
Food Chem ; 460(Pt 1): 140505, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39033638

RESUMEN

The flavor alterations in bighead carp subjected to varying storage temperatures and the underlying metabolic mechanism were elucidated. Analysis of volatile flavor compounds, electronic nose, free amino acids, ATP-related compounds, and sensory evaluations uncovered a progressive flavor deterioration during storage, especially at 25 °C. Metabolomics-based flavor relating component profiling analysis showed that free fatty acids formed various fatty aldehydes including (E, E)-2,4-heptadienal and nonanal under lipoxygenase catalysis. Alcohol dehydrogenase and alcohol acyltransferases were intimately involved in alcohol and ester generation, while alkaline phosphatase, 5'-nucleotidase, and acid phosphatase were closely associated with IMP, Hx, and HxR conversion, respectively. Aeromonas, Serratia, Lactococcus, Pseudomonas, and Peptostreptococcus notably influenced flavor metabolism and enzyme activities. The metabolism disparities of valine, leucine, isoleucine, lysine, and α-linolenic acid could be the primary factors contributing to flavor metabolism distinctions. This study offers novel insights into the flavor change mechanisms and potential regulation strategies of bighead carp during storage.


Asunto(s)
Carpas , Almacenamiento de Alimentos , Gusto , Carpas/metabolismo , Animales , Aromatizantes/metabolismo , Aromatizantes/química , Bacterias/metabolismo , Bacterias/enzimología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Alimentos Marinos/análisis , Alimentos Marinos/microbiología , Aminoácidos/metabolismo , Aminoácidos/análisis , Humanos
14.
Lancet Planet Health ; 8(7): e515-e520, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38969478

RESUMEN

Globally, the diverse bacterial genus Vibrio is the most important group of bacterial pathogens found in marine and coastal waters. These bacteria can cause an array of human infections via direct exposure to seawater or through the consumption of seafoods grown and cultivated in coastal and estuarine settings. Crucially, we appear to be on the cusp of an alarming global increase in Vibrio disease. A worldwide increase in seafood consumption, the globalisation of the seafood trade, the more frequent use of coastal waters for recreational activities, and climate change all contribute to greatly increased human health risks associated with Vibrio bacteria. Coupled with a population that is increasingly susceptible to more serious infections, we are likely to see a marked increase in both reported cases and fatalities in the near future. In this Personal View, we discuss and frame this important and emerging public health issue, and provide various contemporary case studies to illustrate how the risk profiles of pathogenic Vibrio bacteria have transformed in the past two decades-particularly in response to changing climatological and meteorological drivers such as marine coastal warming and extreme weather events such as heatwaves and storms. We share various approaches to help better understand and manage risks associated with these bacteria, ranging from risk mitigation strategies to enhanced epidemiological monitoring and surveillance approaches.


Asunto(s)
Cambio Climático , Vibriosis , Vibrio , Humanos , Vibriosis/epidemiología , Alimentos Marinos/microbiología , Agua de Mar/microbiología , Salud Global
15.
PLoS One ; 19(7): e0302038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38976679

RESUMEN

This study is aimed to determine the effects of different marination conditions (1, 2, 3, 4% acetic and 6, 8, 10% NaCl) on the anchovy fillets inoculated with Morganella psychrotolerans during refrigerated storage (4±1°C) for three months. According to the results of study, marination has great inhibitory effects on the growth of M. psychrotolerans. Total psychrophilic bacteria, total lactic acid bacteria, total yeast and mold, Total Enterobacteriaceae and M. psychrotolerans growth were not observed in the groups treated with 3 and 4% acetic acid. Control groups and fillets marinated with 1% acetic acid showed lower sensory scores. Those groups were rejected on 30th, 45th and 60th days of the storage, respectively, while the groups marinated with 2%, 3%, and 4% acetic acid had higher sensory scores and they were still acceptable until at the end of the study. According to peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) assessment, lipid oxidation was delayed in the fillets marinated with high acetic acid concentrations (3 and 4%) comparing with the control and other inoculated fillets. From this research it can be revealed that high acetic acid and salt concentrations suppress the bacteria growth in the anchovy fillets. Thus, marination process can be recommended to be used as a preservation method to inhibit bacterial growth in anchovy fillets for a safe consumption.


Asunto(s)
Peces , Microbiología de Alimentos , Animales , Peces/microbiología , Conservación de Alimentos/métodos , Alimentos Marinos/microbiología , Ácido Acético/farmacología , Frío , Almacenamiento de Alimentos/métodos
16.
PLoS One ; 19(7): e0306826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38980872

RESUMEN

The growing concern over antibiotic resistance in foodborne pathogens necessitates comprehensive assessments of its prevalence and associated risks in various food products. The present study aimed to assess the occurrence of Enterococcus spp. in samples of fish purchased at various points of sale in the Tricity region. The selection of products (n = 74) was based on their availability and included both fish caught in the Baltic region and products imported from, Vietnam, China, Norway, and European Union (EU) countries. For bacterial isolation, samples were inoculated into selective broth, and the growth of enterococci was assessed based on turbidity. Positive cultures were confirmed by a change in color in bromocresol purple broth and were isolated on Slanetz-Bartley agar. Bacteria were present in all tested samples regardless of the degree of raw material processing as follows: frozen (F)- 55%, fresh/raw (FS)- 70.6%, thawed (DF)- 30%, smoked (S)- 50%, and the packaging methods, modified atmosphere packaging (MAP)- 34.4%, unit packaging (UP)- 75%, and sold in bulk (SB)- 76.9%, with an overall frequency of occurrence of 58.1%. The number of bacteria ranged from not detected to 4.28-log cfu/g, with the lowest mean values for thawed fish and those packed in MAP. Tests conducted on 24 strains isolated from samples showed their varied sensitivity to tetracyclines. Single cases of multidrug resistance of the tested strains were also observed. The conducted statistical analysis did not show statistically significant differences in the count of enterococci based on the origin, degree of processing, or packaging (p < 0.05). Moreover, differences in strain sensitivity to ampicillin were observed. Detected cases of resistance, especially to tetracycline, require careful monitoring and action to limit the health risks associated with resistant bacterial strains in food products.


Asunto(s)
Antibacterianos , Enterococcus , Peces , Microbiología de Alimentos , Animales , Enterococcus/aislamiento & purificación , Enterococcus/efectos de los fármacos , Polonia , Peces/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana , Alimentos Marinos/microbiología
17.
Food Microbiol ; 123: 104594, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038897

RESUMEN

Despite the crucial role of microbial community composition in the quality and stability of seafood, little emphasis has been given to the microbiota profile of sea urchin gonads. This study investigates the microbial quality and community composition of sea urchin gonads (Echinus esculentus) as a function of harvesting season (autumn, winter, spring, and summer) and location (one site proximal to urban activity areas while the other is located in open water close to the coastline). Significant season-dependent variations were found in psychrotrophic and aerobic plate counts, with higher counts in summer, followed by autumn, spring, and winter. H2S-producing bacteria and Pseudomonas spp. counts were unaffected by harvesting season or location. Sea urchin gonad microbial composition proved resilient and dynamic, primarily shaped by seasonal variations, and minimally influenced by location. Winter and spring samples exhibited higher diversity than autumn and summer. Key genera like Pseudomonas, Psychromonas, Vibrio, Chryseobacterium, Shewanella, and Photobacterium varied seasonally. Pseudomonas, Vibrio, and Photobacterium are crucial in assessing microbial quality and safety due to their roles as specific spoilage organisms (SSOs) and, in some cases, human pathogens. Though relative abundances differed slightly between locations, harvesting location did not notably impact microbial community shaping in gonads. However, the results suggest that harvesting locations near areas with urban activity may lead to contamination with specific bacterial species, possibly due to water quality variations. These findings emphasize the importance of considering seasonality when evaluating sea urchin gonad microbial quality. Identifying key genera enhances insights into potential SSOs and human pathogens, enhancing food safety considerations in the consumption of raw or lightly processed sea urchin gonads and guiding the development of preservation methods to extend shelf life.


Asunto(s)
Bacterias , Gónadas , Microbiota , Erizos de Mar , Estaciones del Año , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Erizos de Mar/microbiología , Gónadas/microbiología , Alimentos Marinos/microbiología , Microbiología de Alimentos
18.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39020257

RESUMEN

AIMS: This research aimed to analyze cutting board surfaces in seafood markets to find Vibrio parahaemolyticus, assess the isolates' ability to form biofilms, generate and evaluate characteristics of plasma-activated water (PAW), and compare the effect of PAW on planktonic and biofilm cells of the isolated V. parahaemolyticus strains. METHODS AND RESULTS: A total of 11 V. parahaemolyticus strains were isolated from 8.87% of the examined cutting boards. Biofilm-forming ability was evaluated for these isolates at temperatures of 10°C, 20°C, and 30°C using crystal violet staining. Four strains with the highest biofilm potential were selected for further analysis. The pH of the PAW used in the study was 3.41 ± 0.04, and the initial concentrations of hydrogen peroxide, nitrate, and nitrite were 108 ± 9.6, 742 ± 61, and 36.3 ± 2.9 µM, respectively. However, these concentrations decreased significantly within 3-4 days during storage at room temperature. PAW exhibited significant antimicrobial effects on V. parahaemolyticus planktonic cells, reducing viable bacteria up to 4.54 log CFU/ml within 20 min. PAW also reduced the number of biofilm cells on stainless steel (up to 3.55 log CFU/cm2) and high-density polyethylene (up to 3.06 log CFU/cm2) surfaces, although to a lesser extent than planktonic cells. CONCLUSIONS: PAW exhibited significant antibacterial activity against V. parahaemolyticus cells, although its antibacterial properties diminished over time. Furthermore, the antibacterial activity of PAW against biofilm cells of V. parahaemolyticus was less pronounced compared to the planktonic cells. Therefore, the actual effectiveness of PAW in seafood processing environments can be affected by biofilms that may form on various surfaces such as cutting boards if they are not cleaned properly.


Asunto(s)
Biopelículas , Alimentos Marinos , Vibrio parahaemolyticus , Vibrio parahaemolyticus/fisiología , Vibrio parahaemolyticus/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Alimentos Marinos/microbiología , Gases em Plasma/farmacología , Microbiología de Alimentos , Plancton/fisiología , Acero Inoxidable
19.
Compr Rev Food Sci Food Saf ; 23(4): e13410, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030812

RESUMEN

Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.


Asunto(s)
Bacterias , Microbiología de Alimentos , Alimentos Marinos , Virus , Alimentos Marinos/microbiología , Bacterias/aislamiento & purificación , Virus/aislamiento & purificación , Humanos , Inocuidad de los Alimentos , Contaminación de Alimentos/análisis , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/virología , Animales , Manipulación de Alimentos/métodos
20.
Food Res Int ; 188: 114464, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823834

RESUMEN

Vibrio parahaemolyticus and Vibrio vulnificus are bacteria with a significant public health impact. Identifying factors impacting their presence and concentrations in food sources could enable the identification of significant risk factors and prevent incidences of foodborne illness. In recent years, machine learning has shown promise in modeling microbial presence based on prevalent external and internal variables, such as environmental variables and gene presence/absence, respectively, particularly with the generation and availability of large amounts and diverse sources of data. Such analyses can prove useful in predicting microbial behavior in food systems, particularly under the influence of the constant changes in environmental variables. In this study, we tested the efficacy of six machine learning regression models (random forest, support vector machine, elastic net, neural network, k-nearest neighbors, and extreme gradient boosting) in predicting the relationship between environmental variables and total and pathogenic V. parahaemolyticus and V. vulnificus concentrations in seawater and oysters. In general, environmental variables were found to be reliable predictors of total and pathogenic V. parahaemolyticus and V. vulnificus concentrations in seawater, and pathogenic V. parahaemolyticus in oysters (Acceptable Prediction Zone >70 %) when analyzed using our machine learning models. SHapley Additive exPlanations, which was used to identify variables influencing Vibrio concentrations, identified chlorophyll a content, seawater salinity, seawater temperature, and turbidity as influential variables. It is important to note that different strains were differentially impacted by the same environmental variable, indicating the need for further research to study the causes and potential mechanisms of these variations. In conclusion, environmental variables could be important predictors of Vibrio growth and behavior in seafood. Moreover, the models developed in this study could prove invaluable in assessing and managing the risks associated with V. parahaemolyticus and V. vulnificus, particularly in the face of a changing environment.


Asunto(s)
Aprendizaje Automático , Ostreidae , Agua de Mar , Vibrio parahaemolyticus , Vibrio vulnificus , Ostreidae/microbiología , Agua de Mar/microbiología , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio parahaemolyticus/crecimiento & desarrollo , Animales , Vibrio vulnificus/aislamiento & purificación , Vibrio vulnificus/crecimiento & desarrollo , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Mariscos/microbiología , Alimentos Marinos/microbiología , Temperatura , Vibrio/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA