Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1424073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109341

RESUMEN

Introduction: As effective growth-promoters and immune-modulators, yeast fermented products have shown positive effects in ruminants. To explore the mechanisms of yeast culture promoting growth and regulating immunity, this study investigated the effects of yeast culture, and ß-glucan as one of its main active ingredients, on the growth performance, immune function, antioxidant capacity and hormonal profile in Mongolian ram lambs. Methods: One hundred and five Mongolian ram lambs were randomly assigned to 3 groups, with 35 replicates in each group. The dietary treatments were: total mixed ration (TMR) as the control group, TMR supplemented with 50-70 g/kg yeast culture (YC) or 75 mg/kg ß-glucan. The test period was 137 days. All the sheep were weighed and 6 serum samples were collected in each group on days 0, 30, 60, 90 and 130, respectively. Results: The results showed that both YC and ß-glucan could promote the growth performance with increased average daily gain and decreased feed to weight gain ratio. Moreover, these two feed additives facilitated the immune function by selectively increasing the serum levels of lysozyme, IgG, IgM, INF-γ, TNF-α and some interleukins (IL-1ß, IL-2, IL-6 and IL-8); ameliorated the antioxidant capacity with higher total antioxidant capacity and enzyme activities of catalase and glutathione peroxidase; altered the metabolism-associated hormone levels with higher growth hormone and thyroid hormone T3 but lower cortisol and insulin. Discussion: In conclusion, both YC and ß-glucan could improve the growth performance, immune function and antioxidant capacity, and regulate the serum levels of metabolism-associated hormones, thus exerting effects of promoting growth and improving immune function. Therefore, YC could be considered as a suitable potential alternative strategy to antibiotics and be used as an animal feed additive. This article provides a theoretical basis for the clinical application of such yeast fermented preparations in mutton sheep husbandry.

2.
Antioxidants (Basel) ; 13(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061848

RESUMEN

Yeast culture (YC) plays a significant role in enhancing the performance and health of poultry breeding. This study investigated the impact of different YC supplementation concentrations (basal diet with 1.0 g/kg and 2.0 g/kg of YC, YC1.0, and YC2.0) on egg production performance, egg quality, antioxidant properties, intestinal mucosal structure, and intestinal flora of laying hens. Both YC1.0 and YC2.0 groups significantly enhanced the egg protein height, Haugh unit, and crude protein content of egg yolks compared to the control group (p < 0.05). The supplementation with YC2.0 notably increased the egg production rate, reduced feed-to-egg ratio, and decreased the broken egg rate compared to the control group (p < 0.05). Additionally, YC supplementation enhanced serum total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity while reducing malondialdehyde (MDA) content (p < 0.05). Moreover, YC supplementation promoted duodenal villus height and villus ratio in the duodenum and jejunum (p < 0.05). Analysis of cecal microorganisms indicated a decrease in Simpson and Shannon indices with YC supplementation (p < 0.05). YC1.0 reduced the abundance of Proteobacteria, while YC2.0 increased the abundance of Bacteroidales (p < 0.05). Overall, supplementation with YC improved egg production, quality, antioxidant capacity, intestinal morphology, and cecal microbial composition in laying hens, with significant benefits observed at the 2.0 g/kg supplementation level.

3.
J Sep Sci ; 47(13): e2400318, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982556

RESUMEN

Monitoring the levels of amino acids (AAs) in biological cell cultures provides key information to understand the regulation of cell growth and metabolism. Saccharomyces cerevisiae can naturally excrete AAs, making accurate detection and determination of amino acid levels within the cultivation medium pivotal for gaining insights into this still poorly known process. Given that most AAs lack ultraviolet (UV) chromophores or fluorophores necessary for UV and fluorescence detection, derivatization is commonly utilized to enhance amino acid detectability via UV absorption. Unfortunately, this can lead to drawbacks such as derivative instability, labor intensiveness, and poor reproducibility. Hence, this study aimed to develop an accurate and stable hydrophilic interaction liquid chromatography-tandem mass spectrometry analytical method for the separation of all 20 AAs within a short 17-min run time. The method provides satisfactory linearity and sensitivity for all analytes. The method has been validated for intra- and inter-day precision, accuracy, recovery, matrix effect, and stability. It has been successfully applied to quantify 20 AAs in samples of yeast cultivation medium. This endeavor seeks to enhance our comprehension of amino acid profiles in the context of cell growth and metabolism within yeast cultivation media.


Asunto(s)
Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Saccharomyces cerevisiae , Espectrometría de Masas en Tándem , Aminoácidos/metabolismo , Aminoácidos/análisis , Espectrometría de Masas en Tándem/métodos , Saccharomyces cerevisiae/metabolismo , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos
4.
J Sci Food Agric ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963133

RESUMEN

BACKGROUND: Yeast culture (YC) is a product fermented on a specific medium, which is a type of postbiotic of anaerobic solid-state fermentation. Although YC has positive effects on the animal growth and health, it contains a variety of beneficial metabolites as dark matter, which have not been quantified. In the present study, liquid chromatography-tandem mass spectrometry is employed to identify the unknown metabolites. Following their identification, the important chemicals are quantified using HPLC-diode array detection methods. RESULTS: Non-targeted metabolomics studies showed that 670 metabolites in total were identified in YC, of which 23 metabolites significantly increased, including organic acids, amino acids, nucleosides and purines, isoflavones, and other substances. The chemical quantitative analysis showed that the contents of succinic acid, aminobutyric acid, glutamine, purine and daidzein increased by 84.42%, 51.07%, 100%, 68.85% and 4.60%, respectively. CONCLUSION: Therefore, the use of non-targeted metabolomics combined with chemical quantitative analysis to reveal the nutritional and functional substances of YC could help to elucidate the postbiotic mechanism and provide theoretical support for the regulation of the directional accumulation of beneficial metabolites. © 2024 Society of Chemical Industry.

5.
Front Microbiol ; 15: 1407024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081884

RESUMEN

Introduction: Yeast culture (YC) enhances ruminant performance, but its functional mechanism remains unclear because of the complex composition of YC and the uncertain substances affecting rumen fermentation. The objective of this study was to determine the composition of effective metabolites in YC by exploring its effects on rumen fermentation in vitro, growth and slaughter performance, serum index, rumen fermentation parameters, rumen microorganisms, and metabolites in lambs. Methods: In Trial 1, various YCs were successfully produced, providing raw materials for identifying effective metabolites. The experiment was divided into 5 treatment groups with 5 replicates in each group: the control group (basal diet without additives) and YC groups were supplemented with 0.625‰ of four different yeast cultures, respectively (groups A, B, C, and D). Rumen fermentation parameters were determined at 3, 6, 12, and 24 h in vitro. A univariate regression model multiple factor associative effects index (MFAEI; y) was established to correlate the most influential factors on in vitro rumen fermentation with YC metabolites (x). This identified the metabolites promoting rumen fermentation and optimal YC substance levels. In Trial 2, metabolites in YC not positively correlated with MFAEI were excluded, and effective substances were combined with pure chemicals (M group). This experiment validated the effectiveness of YC metabolites in lamb production based on their impact on growth, slaughter performance, serum indices, rumen parameters, microorganisms, and metabolites. Thirty cross-generation rams (Small tail Han-yang ♀ × Australian white sheep ♂) with good body condition and similar body weight were divided into three treatment groups with 10 replicates in each group: control group, YC group, pure chemicals combination group (M group). Results: Growth performance and serum index were measured on days 30 and 60, and slaughter performance, rumen fermentation parameters, microorganisms, and metabolites were measured on day 60. The M group significantly increased the dressing percentage, and significantly decreased the GR values of lambs (p < 0.05). The concentration of growth hormone (GH), Cortisol, insulin (INS), and rumen VFA in the M group significantly increased (p < 0.05). Discussion: These experiments confirmed that YC or its screened effective metabolites positively impact lamb slaughter performance, rumen fermentation, and microbial metabolism.

6.
Animals (Basel) ; 14(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38929418

RESUMEN

It is a common practice among farmers to utilize high-grain diets with the intention of promoting ruminant growth. However, this approach bears the risk of inducing rumen disorders and nutrient metabolism diseases. Yeast culture (YC) showed advantages in ruminant applications. The objective of this study was to evaluate the effects of adding two different types of YC to high-grain conditions on production performance, rumen fermentation profile, microbial abundance, and immunity in goats. A total of 30 male goats with similar body condition were randomly distributed into 3 dietary treatments with 10 replicates per treatment as follows: basic diet group (CON); basic diet + 0.5% yeast culture 1 (YC1) group; basic diet + 0.5% yeast culture 2 (YC2) group. The trial lasted for 36 days. The results demonstrated that dietary YC supplementation led to an increase in the average daily gain and a reduction in feed intake and weight gain ratio in goats. It increased the apparent digestibility of crude protein, NDF, and ADF (p < 0.05). The serum concentrations of interleukin (IL)-1ß, IL-6, and Tumor Necrosis Factor-α in the control group were significantly higher than those of the YC groups (p < 0.05). The serum concentrations of Immunoglobulin (Ig)A and IgG in the control group were significantly lower than those in the YC groups (p < 0.05). The rumen concentration of microbial protein (MCP) in the control group was significantly lower than that in the YC groups (p < 0.05). There was a negative correlation between the concentration of IL-10 and Bacteroidota, Spirochaetota, and Succinivibrio, while there was a positive correlation between concentrations of IL-10 and Firmicutes. Nevertheless, discrepancies were observed in the impact of the two different types of YC on the physiological and biochemical indicators of the animals. The concentration of triglyceride in the YC1 group was significantly higher than that of the CON and YC2 groups, while the concentration of urea in the YC2 group was significantly higher than that of the CON and YC1 groups (p < 0.05). At the phylum level, the addition of YC2 to the diet significantly increased the relative abundance of Bacteroidota and Fibrobacterota and significantly decreased Firmicutes compared to the control. At the genus level, the addition of YC1 to the HGD significantly reduced the relative abundance of Rikenellaceae_RC9_gut_group, while the addition of YC2 to the HGD significantly increased the relative abundance of Prevotellace-ae_UCG-001, Fibrobacter, and Prevotellaceae_UCG-003 (p < 0.05). The addition of YC significantly improved growth performance, increased nutrient digestibility, beneficially manipulated ruminal fermentation and microbial diversity, and improved immune function. The choice of yeast cultures can be customized according to specific production conditions.

7.
AMB Express ; 14(1): 37, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622373

RESUMEN

This research aimed to investigate effects of different yeast culture (YC) levels on in vitro fermentation characteristics and bacterial and fungal community under high concentrate diet. A total of 5 groups were included in the experiment: control group without YC (CON), YC1 (0.5% YC proportion of substrate dry matter), YC2 (1%), YC3 (1.5%) and YC4 (2%). After 48 h of fermentation, the incubation fluids and residues were collected to analyze the ruminal fermentation parameters and bacterial and fungal community. Results showed that the ruminal fluid pH of YC2 and YC4 groups was higher (P < 0.05) than that of CON group. Compared with CON group, the microbial protein, propionate and butyrate concentrations and cumulative gas production at 48 h of YC2 group were significantly increased (P < 0.05), whereas an opposite trend of ammonia nitrogen and lactate was observed between two groups. Microbial analysis showed that the Chao1 and Shannon indexes of YC2 group were higher (P < 0.05) than those of CON group. Additionally, YC supplementation significantly decreased (P < 0.05) Succinivibrionaceae_UCG-001, Streptococcus bovis and Neosetophoma relative abundances. An opposite tendency of Aspergillus abundance was found between CON and YC treatments. Compared with CON group, the relative abundances of Prevotella, Succiniclasticum, Butyrivibrio and Megasphaera elsdenii were significantly increased (P < 0.05) in YC2 group, while Apiotrichum and unclassified Clostridiales relative abundances were decreased (P < 0.05). In conclusion, high concentrate substrate supplemented with appropriate YC (1%) can improve ruminal fermentation and regulate bacterial and fungal composition.

8.
Animals (Basel) ; 14(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38539966

RESUMEN

Yeast culture is a complex fermentation product consisting of fermentation substrate, yeast cells and their metabolites. This study investigated the potential of yeast culture in replacing fishmeal in the diet of yellow catfish (Pelteobagrus fulvidraco). First, a basal diet was formulated to contain 160 g/kg fishmeal (CON), and then the dietary fishmeal was decreased to 120, 80, 40 and 0 g/kg via yeast culture inclusion, respectively, to form another four isonitrogenous and isolipidic diets (YC-12, YC-8, YC-4 and YC-0). Yellow catfish (3.00 ± 0.10 g) were fed with the above five diets with triplicates per treatment and 40 fish per replicate. After 8 weeks of feeding, the weight gain (WG), protein efficiency rate and protein retention in the YC-12 group and the feed conversion ratio (FCR) in the YC-12 and YC-8 groups showed no significant differences to the CON group (p > 0.05), but the WG in the YC-8, YC-4 and YC-0 groups was significantly lower, and the FCR in the YC-4 and YC-0 groups was significantly higher than in the CON group (p < 0.05). In terms of the whole-body composition, only the crude lipid content in the YC-0 group decreased significantly (p < 0.05). Compared with the CON group, the aspartate aminotransferase and alanine aminotransferase activities and D-lactic acid content in the YC-0 group were significantly increased, and the total cholesterol content was significantly reduced (p < 0.05). The activities of catalase, superoxide dismutase, and alkaline phosphatase, as well as the content of complement C3 and immunoglobulin M, were significantly increased, while the MDA content was significantly reduced in the YC-12 and YC-8 groups (p < 0.05). There were no significant differences in the intestinal amylase and lipase activity among all the groups (p > 0.05), while the trypsin activity in the YC-12 and YC-8 groups, as well as the diamine oxidase in the YC-4 and YC-0 groups, were significantly higher than those in the CON group (p < 0.05). In the intestine histology, there was a significant decrease in the intestinal villus height in the YC-4 and YC-0 groups as well as in the villus width in the YC-0 group (p < 0.05). In the hepatopancreas histology, lipid droplets appeared in the YC-4 and YC-0 groups, and severe cell vacuolation was observed in the YC-0 group. As a summary, in a practical diet containing 160 g/kg fishmeal, yeast culture can effectively replace 40 g/kg fishmeal without negatively affecting the growth performance, nutrient utilization, serum immune and antioxidant, intestinal and hepatopancreas histology of yellow catfish.

9.
Front Vet Sci ; 11: 1335765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496306

RESUMEN

Microorganisms inhabit the gastrointestinal tract of ruminants and regulate body metabolism by maintaining intestinal health. The state of gastrointestinal health is influenced not only by the macro-level factors of optimal development and the physiological structure integrity but also by the delicate equilibrium between the intestinal flora and immune status at the micro-level. Abrupt weaning in young ruminants causes incomplete development of the intestinal tract resulting in an unstable and unformed microbiota. Abrupt weaning also induced damages to the microecological homeostasis of the intestinal tract, resulting in the intestinal infections and diseases, such as diarrhea. Recently, nutritional and functional yeast culture has been researched to tackle these problems. Herein, we summarized current known interactions between intestinal microorganisms and the body of young ruminants, then we discussed the regulatory effects of using yeast culture as a feed supplement. Yeast culture is a microecological preparation that contains yeast, enriched with yeast metabolites and other nutrient-active components, including ß-glucan, mannan, digestive enzymes, amino acids, minerals, vitamins, and some other unknown growth factors. It stimulates the proliferation of intestinal mucosal epithelial cells and the reproduction of intestinal microorganisms by providing special nutrient substrates to support the intestinal function. Additionally, the ß-glucan and mannan effectively stimulate intestinal mucosal immunity, promote immune response, activate macrophages, and increase acid phosphatase levels, thereby improving the body's resistance to several disease. The incorporation of yeast culture into young ruminants' diet significantly alleviated the damage caused by weaning stress to the gastrointestinal tract which also acts an effective strategy to promote the balance of intestinal flora, development of intestinal tissue, and establishment of mucosal immune system. Our review provides a theoretical basis for the application of yeast culture in the diet of young ruminants.

10.
J Sci Food Agric ; 104(3): 1441-1449, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822013

RESUMEN

BACKGROUND: Soybean meal (SBM) is the main protein source for animal diets but its anti-nutritional constituents affect animal growth and immunity. The yeast culture of soybean meal (SBM-YC) that fermented with yeast and hydrolyzed by protease simultaneously could reduce anti-nutritional factors effectively and accumulate beneficial metabolites. RESULTS: The crude protein and acid-soluble protein content of SBM-YC reached 542.5 g kg-1 and 117.2 g kg-1 , respectively, and the essential amino acid content increased by 17.9%. Raffinose and stachyose decreased over 95.0%, and the organic acid content such as acetic acid, butyric acid, citric acid, lactic acid, succinic acid, and propionic acid produced by fermentation reached 6.1, 3.8, 3.6, 2.5, 1.2, and 0.4 g kg-1 , respectively. As biomarkers of yeast culture, nucleosides and their precursors reached 1.7 g kg-1 ; in particular, the inosine content increased from 0 to 0.3 g kg-1 . The total antioxidant capacity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical activity, metal chelating ability, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability were increased by 50.3%, 46.1%, 43.9%, and 20.6%, respectively. CONCLUSION: This study established a diversified evaluation index, which could lay the foundations for the production and quality control of SBM-YC in the future. © 2023 Society of Chemical Industry.


Asunto(s)
Mejoramiento de la Calidad , Saccharomyces cerevisiae , Animales , Fermentación , Harina , Alimentación Animal/análisis , Glycine max , Dieta
11.
J Fungi (Basel) ; 9(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38132738

RESUMEN

Although proline is the most or second most abundant amino acid in wort and grape must, it is not fully consumed by the yeast Saccharomyces cerevisiae during alcoholic fermentation, unlike other amino acids. Our previous studies showed that arginine, the third most abundant amino acid in wort, inhibits the utilization of proline in most strains of S. cerevisiae. Furthermore, we found that some non-Saccharomyces yeasts utilized proline in a specific artificial medium with arginine and proline as the only nitrogen source, but these yeasts were not suitable for beer fermentation due to their low alcohol productivity. For yeasts to be useful for brewing, they need to utilize proline and produce alcohol during fermentation. In this study, 11 S. cerevisiae strains and 10 non-Saccharomyces yeast strains in the Phaff Yeast Culture Collection were identified that utilize proline effectively. Notably, two of these S. cerevisiae strains, UCDFST 40-144 and 68-44, utilize proline and produce sufficient alcohol in the beer fermentation model used. These strains have the potential to create distinctive beer products that are specifically alcoholic but with a reduction in proline in the finished beer.

12.
Front Microbiol ; 14: 1305772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107864

RESUMEN

This study delves into the impact of yeast culture (YC) on rumen epithelial development, microbiota, and metabolome, with the aim of investigating YC's mechanism in regulating rumen fermentation. Thirty male lambs of Hu sheep with similar age and body weight were selected and randomly divided into three groups with 10 lambs in each group. Lambs were fed a total mixed ration [TMR; rough: concentrate (R:C) ratio ≈ 30:70] to meet their nutritional needs. The experiment adopted completely randomized design (CRD). The control group (CON) was fed the basal diet with high concentrate, to which 20 g/d of YC was added in the low dose YC group (LYC) and 40 g/d of YC in the high dose YC group (HYC). The pretrial period was 14 days, and the experimental trial period was 60 days. At the end of a 60-day trial, ruminal epithelial tissues were collected for histomorphological analysis, and rumen microorganisms were analyzed by 16S rDNA sequencing and rumen metabolites by untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics techniques. The results showed that YC improved rumen papilla development and increased rumen papilla length (p < 0.05), while decreased cuticle thickness (p < 0.05). The 16S rDNA sequencing results showed that YC reduced the relative abundance of Prevotella_1 (p < 0.05), while significantly increased the relative abundance of Ruminococcaceae_UCG-005, uncultured_bacterium_f_Lachnospiraceae, and Ruminococcus_1 genus (p < 0.05). Metabolomics analysis showed that YC changed the abundance of metabolites related to amino acid metabolism, lipid metabolism and vitamin metabolism pathways in the rumen. In summary, YC might maintain rumen health under high-concentrate diet conditions by changing rumen microbiota structure and fermentation patterns, thereby affecting rumen metabolic profiles and repairing rumen epithelial injury.

13.
Transl Anim Sci ; 7(1): txad119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942177

RESUMEN

The objective of this study was to determine if supplementation and delivery method of a "stress pack" composed of organic trace minerals and Saccharomyces cerevisiae yeast culture product influenced growth performance, feed efficiency, and hepatic trace mineral concentration in newly weaned steers. Crossbred steers (n = 192; 256 ±â€…14.0 kg) were used in a 49-day receiving phase experiment. Within 36 hours of weaning, steers were weighed, allotted to 24 pens (n = 8 steers/pen; 8 pens/treatment), and randomly assigned to treatments: 1) a traditional receiving diet (CON), 2) a traditional receiving diet plus the "stress-pack" directly in the diet (FORCE), and 3) a traditional receiving diet plus a low-moisture, cooked molasses block fortified with the "stress-pack" (TUB). The "stress-pack" was offered the first 28 day of the 49-day receiving period. Due to adverse weather conditions forecasted on day 1, biopsy samples were collected from a subsample of steers (n = 14 steers) on day 1 to establish hepatic trace mineral concentration baseline. Steers were selected based on the mean body weight (BW) from allotment (day -1) of the pen for collection of subsequent samples (n = 1 steer/pen) on days 14, 28, and 49 for hepatic trace mineral concentration determination. Cumulative dry matter intake (DMI) (P = 0.01) was greater for FORCE compared to CON and TUB. Final BW and average daily gain (ADG) tended (P ≤ 0.10) to be greater for FORCE compared to TUB and CON by 5.4% and 9.4%, respectively. Feed efficiency did not differ between treatments (P = 0.28). A treatment × day interaction (P ≤ 0.01) for hepatic Cu concentration was noted. The FORCE treatment had greater hepatic Cu compared to TUB and CON for the entire period. The steers that received TUB had greater hepatic Cu compared to CON on days 14 and 28, but similar to CON on day 49. The addition of a "stress-pack" to diets offered to newly weaned cattle enhanced hepatic trace mineral concentration, and delivery method influences DMI and daily gain.

14.
Trop Anim Health Prod ; 55(4): 283, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535251

RESUMEN

An experimental work was conducted to evaluate the effects of Saccharomyces cerevisiae live cells and its culture on dry matter intake (DMI), milk yield, milk composition, body condition score, selected blood metabolites, feed conversion efficiency (FCE), nutrient digestibility, body weight gain, and economics of milk production in lactating multiparous Nili-Ravi buffaloes. In total, 20 buffaloes of age 5 years ± 6 months and weighing 550 ± 20 kg were selected and assigned to four dietary treatments (n=5 buffalo/treatment) under completely randomized design. The dietary treatments include treatment 1 (T1) control, treatment 2 (T2) 5g/head live yeast, treatment 3 (T3) 5g/head yeast culture, and treatment 4 (T4) 10 g/head yeast culture per day for 60 days excluding 14 days as an adjustment period. The results indicated that T4 showed significant (p<0.05) improvement in DMI, milk yield and components, blood glucose level, digestibility of nutrients, and body weight gain while significant decrease in blood urea nitrogen as compared to other treatment groups. Body condition score was not affected among treatments. In conclusion, yeast culture supplementation significantly improved (p <0.05) milk yield, milk composition, DMI, body weight gain, blood glucose level, and digestibility while significantly decreased blood urea level as compare to control. Economic return was also improved. BCS was not improved. Comparatively, yeast culture showed significant improvement in growth and productive performance as compare to live yeast. Meanwhile, 10-g yeast culture showed better results as compare to 5-g yeast culture.


Asunto(s)
Bison , Búfalos , Animales , Femenino , Alimentación Animal/análisis , Glucemia/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Lactancia , Leche/metabolismo , Saccharomyces cerevisiae , Aumento de Peso
15.
J Dairy Sci ; 106(9): 6080-6093, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479577

RESUMEN

Increased diet fermentability may decrease ruminal pH and fiber digestibility, and increase the flow of trans fatty acids (FA) to the lower tract ultimately leading to milk fat depression. We recently showed that feeding super-conditioned corn, a new method of corn processing (95°C for 6 min in super-conditioner) for ruminants has potential to the reduction in milk fat yield caused by changes in ruminal pH and increased trans FA in milk fat. Supplementing yeast culture (YC) and replacing starch with sugar sources in diet can counteract the negative effects of high fermentable diets by improving ruminal pH and milk fat output. This study aimed to evaluate the effect of feeding beet liquid molasses (LM) and YC on intake and total-tract digestibility of nutrients, milk yield and composition, ruminal fermentation, milk FA profile, and plasma concentrations of glucose, nonesterified FA, ß-hydroxybutyric acid, and urea N in early-lactation dairy cows fed high-starch diets containing super-conditioned corn. Twelve primiparous and 18 multiparous Holstein cows (mean ± SD; 67 ± 12 d in milk and 42 ± 2.1 kg of milk at the beginning of the experiment) were blocked by parity, pre-experimental milk yield, and DIM. Cows were used in a randomized complete block design experiment with 14 d as covariate period and 37 d for the experimental period. The following dietary treatments were fed as total mixed rations: (1) control diet (CTRL = no YC or LM supplementation), (2) LM supplementation at 5% of the diet dry matter (MOL diet), and (3) CTRL supplemented with 10 g/d of YC (YST diet). Diets were formulated to be isonitrogenous and isoenergetic. Intake of nutrients and apparent total-tract digestibility of crude protein and starch did not change across treatments. In contrast, cows fed the YST diet had the greatest apparent total-tract digestibility of dry matter, organic matter and neutral detergent fiber. Compared with the CTRL diet, yield of 4% FCM increased by 2.4 and 1.8 kg in cows fed MOL or YST, respectively. The ruminal molar proportions of acetate and butyrate increased in cows fed the YST or MOL diets, respectively, but the proportion of ruminal propionate was not affected by treatments. Milk fat concentration increased by supplementing both LM and YC and the milk yield of total trans-18:1 dropped by 45% and 18% relative to CTRL with MOL or YST diets, respectively. While the MOL diet increased the milk proportion and yield of de novo FA, no treatment effects were observed for the proportion and yield of preformed FA in the milk fat. Apart from ß-hydroxybutyric acid concentration in plasma, which was greatest in cows fed MOL, remaining blood metabolites were not affected by treatments. Overall, MOL and YST diets increased 4% FCM and milk fat concentration and reduced the proportion of total trans-18:1 FA in milk fat in cows fed a concentrate based on super-conditioned corn. These responses were associated with increased ruminal pH and the molar proportions of acetate and butyrate with feeding the MOL and YST diets.


Asunto(s)
Saccharomyces cerevisiae , Zea mays , Femenino , Embarazo , Bovinos , Animales , Leche , Ácido 3-Hidroxibutírico , Melaza , Nutrientes , Butiratos , Lactancia
16.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394233

RESUMEN

The aim of this study was to investigate the effect of dietary supplementation of sows with yeast cultures (XPC) during late gestation and lactation on the immune performance of their weaned offspring under lipopolysaccharide (LPS) stress. A total of 40 Landrace × Yorkshire sows (parity 3 to 7) with similar backfat thickness were selected and randomly divided into two treatment groups: a control group (basal diet) and a yeast culture group (basal diet + 2.0 g/kg XPC). The trial was conducted from day 90 of gestation to day 21 of lactation. At the end of the experiment, 12 piglets with similar weights were selected from each group and slaughtered 4 h after intraperitoneal injection with either saline or LPS. The results showed that the concentrations of interleukin-6 (IL-6) in the thymus and tumor necrosis factor-α in the liver increased significantly (P < 0.05) in weaned piglets after LPS injection. Maternal dietary supplementation with XPC significantly reduced the concentration of inflammatory factors in the plasma and thymus of weaned piglets (P < 0.05). LPS injection significantly upregulated the expression of some tissue inflammation-related genes, significantly downregulated the expression of intestinal tight junction-related genes, and significantly elevated the protein expression of liver phospho-nuclear factor kappa B (p-NF-κB), the phospho-inhibitory subunit of NF-κB (p-IκBα), phospho-c-Jun N-terminal kinase (p-JNK), Nuclear factor kappa-B (NF-κB), and the inhibitory subunit of NF-κB (IκBα) in weaned piglets (P < 0.05). Maternal dietary supplementation with XPC significantly downregulated the gene expression of IL-6 and interleukin-10 (IL-10) in the thymus and decreased the protein expression of c-Jun N-terminal kinase (JNK) in the liver of weaned piglets (P < 0.05). In summary, injection of LPS induced an inflammatory response in weaned piglets and destroyed the intestinal barrier. Maternal dietary supplementation of XPC improved the immune performance of weaned piglets by inhibiting inflammatory responses.


Weaning older, more mature pigs helps prevent many of the adverse gastrointestinal effects associated with weaning stress, and maternal nutritional interventions can influence offspring gut health and growth performance. Therefore, it is important to explore the effects of maternal nutritional interventions on their offspring. Yeast cultures are a class of biological products consisting of metabolites produced during the anaerobic fermentation of yeast and some live yeast cells, and function to maintain the intestinal health of animals and improve production performance. The effect of sow dietary supplementation with yeast cultures on the immune performance of their weaned offspring under lipopolysaccharide stress has not so far been reported. This study provided a basis for understanding the effects of maternal transfer of yeast cultures to their offspring and provided data to support the application of yeast cultures in actual production.


Asunto(s)
Suplementos Dietéticos , Lipopolisacáridos , Porcinos , Animales , Embarazo , Femenino , Lipopolisacáridos/farmacología , Inhibidor NF-kappaB alfa/farmacología , Saccharomyces cerevisiae , Interleucina-6 , FN-kappa B , Dieta/veterinaria , Destete , Lactancia , Alimentación Animal/análisis
17.
Heliyon ; 9(3): e14178, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36923902

RESUMEN

The use of Saccharomyces cerevisiae (SC) feed additives to improve animal performance are on the increase; however, the results of the action of SC supplementation on goats performance indices are conflicting. Thus, the thrust of this meta-analysis was to examine the influence of dietary SC intervention on the growth performance, haemato-biochemical indices and ruminal fermentation characteristics of growing goats fed total mixed ration (TMR). The search conducted in Google Scholar, PubMed and Scopus databases using several keywords yielded 500 studies of which 16 full-text articles were utilised for study. Response variables were aggregated via a random-effects model. The results showed that goats fed SC experienced higher average daily gain (ADG) than the controls (as standardized mean difference, SMD = 2.14; 95% confidence interval, CI: 1.40 to 2.89). In converse, dietary SC intervention had a small impact on dry matter intake (DMI) and feed conversion ratio (FCR). Subgroup analysis demonstrated that SC type (active vs inactive) improved FCR and ADG in growing goats. Results suggested that SC preparation increased blood glucose, white blood cell (WBC), ruminal propionate and total volatile fatty acid levels. There is heterogeneity among the articles used in the study, and aspects of studied covariates explained the variation. In conclusion, this study indicated that dietary yeast can positively influence growth performance, haemato-biochemical indices, and rumen fermentation parameters of growing goats.

18.
Animals (Basel) ; 13(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36670844

RESUMEN

This study evaluated the effects of feeding a commercial yeast culture on blood biomarkers and polymorphonuclear leukocyte (PMNL) gene expression in dairy cows during the transition period until 50 d postpartum. Forty Holstein dairy cows were used in a randomized complete block design from -30 to 50 d. At -30 d, cows were assigned to a basal diet plus 114 g/d of top-dressed ground corn (control; n = 20) or 100 g/d of ground corn and 14 g/d of a yeast culture product (YC; n = 20). Blood samples were collected at various time points from -30 to 30 DIM to evaluate blood biomarkers and PMNL gene expression related to inflammation, liver function, and immune response. Liver function biomarkers, gamma-glutamyl transferase (GGT) and albumin were greater and lower, respectively, in YC cows in comparison to control. However, these biomarkers remained within physiological levels, indicating an active inflammatory process. Genes in PMNL expression related to inflammation (NFKB1, TNFA, TRAF6), anti-inflammation (IL10), and cell membrane receptors (SELL) were upregulated in the YC group in comparison to control. These results suggest that YC could stimulate a more active inflammatory response with signs of a resolution of inflammation in transition cows.

19.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 598-606, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35357043

RESUMEN

The objective of this experiment is to evaluate the effects of yeast culture (YC) supplementation on blood characteristics, body size, carcass characteristics, organ weights, intestinal morphology, and enzyme activities. Five groups of geese were randomly assigned to five dietary treatments: the basal diet (control) and basal diets plus 0.5%, 1.0%, 2.0%, or 4.0% YC. Compared with the controls, YC supplementation at 0.5% and 1.0% increased the serum total protein (TP), albumin (ALB), and globulin (GLO) and decreased the uric acid and creatine kinase (CK) contents (p < 0.05). YC supplementation at 2.0% and 4.0% increased the CK, growth hormone, catalase and glutathione reductase contents, and relative proventriculus weights, and decreased the TP, ALB, and GLO contents, relative liver, gizzard, jejunum, ileum, and thymus weights (p < 0.05). YC supplementation at 2.0% improved fossil bone length, breast muscle percentage, jejunal villus height, ileal and jejunal villus height/crypt depth ratios, pepsin, lipase, amylase and pancreatic trypsin activities, and decreased abdominal fat percentage (p < 0.05). Furthermore, YC inclusion increased the body slope length (linear, p = 0.002; quadratic, p = 0.02), breast width (quadratic, p = 0.02), ileal (linear, p = 0.04; quadratic, p = 0.01) and duodenal villus height (cubic, p = 0.04), and decreased the relative gizzard (quadratic, p = 0.04) and thymus (linear, p = 0.002; quadratic, p = 0.02; cubic, p = 0.02) weights, liver (linear, p = 0.002; quadratic, p = 0.02), and serum (linear, p = 0.006; quadratic, p = 0.03) malondialdehyde contents, and jejunal crypt depth (quadratic, p = 0.03). The findings indicated that the YC supplementation had a positive effect on the growth and development of geese, with 2% YC being the most effective.


Asunto(s)
Suplementos Dietéticos , Saccharomyces cerevisiae , Animales , Gansos , Dieta , Intestinos , Alimentación Animal/análisis , Pollos/fisiología
20.
Anim Biosci ; 36(1): 63-74, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36108683

RESUMEN

OBJECTIVE: The objective of this study was to investigate the effects of feeding active dry yeast (ADY) and yeast culture (YC) on fecal bacterial community in finishing bulls fed high-concentrate diets in the same experimental environment. METHODS: Forty-five healthy finishing cattle (Simmental×Chinese Luxi yellow bulls; 24 months; 505±29 kg) were randomly divided into three groups: i) CON group (control group, only fed basal diet), ii) ADY group (fed basal diet + active dry yeast), and iii) YC group (fed basal diet + yeast culture). At the end of the trial, nine rectum fecal samples were randomly selected from each group for bacterial DNA sequencing. RESULTS: There was no difference among groups about alpha diversity indices (all p>0.05), including ACE, Chao 1, Shannon, and Simpson indices. Principal component analysis and non-metric multidimensional scaling analysis showed a high similarity among three groups. Compared with CON group, ADY and YC groups had greater relative abundance of c_Clostridia, o_Oscillospirales, and f_Oscillospiraceae, but lesser relative abundance of g_Megasphaera, and s_Megasphaera_elsdenii (all p<0.01). And, the relative abundances of p_Firmicutes (p = 0.03), s_Prevotella_sp (p = 0.03), o_Clostridiales (p<0.01), g_Clostridium (p<0.01), f_Caloramatoraceae (p<0.01), and f_Ruminococcaceae (p = 0.04) were increased in the ADY group. The PICRUSt2 prediction results showed that the metabolic pathways had no significant differences among groups (p>0.05). Besides, the relative abundance of c_Clostridia (r = 0.42), and f_Oscillospiraceae (r = 0.40) were positively correlated to average daily gain of finishing bulls (p<0.05). CONCLUSION: Both of ADY and YC had no effect on diversity of fecal bacteria in finishing bulls, but the supplementation of ADY and YC can improve the large intestinal function in finishing bulls by increasing the abundance of cellulolytic bacteria and altering the abundance of lactic acid-utilizing bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA