Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Adv Exp Med Biol ; 1460: 297-327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287856

RESUMEN

Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKß)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.


Asunto(s)
Tejido Adiposo , Inflamación , Obesidad , Transducción de Señal , Humanos , Obesidad/metabolismo , Obesidad/inmunología , Obesidad/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Animales , Inflamación/metabolismo , Inflamación/patología , Citocinas/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mediadores de Inflamación/metabolismo
2.
Food Res Int ; 191: 114735, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059967

RESUMEN

The present study was carried out to investigate the proximate composition, fatty acid (FA) profile and volatile compounds (VC) of cooked green licuri (Syagrus coronata) - an unripe stage that is then cooked - and naturally ripe licuri almonds. The FA profiles were determined by gas chromatography (GC) and the VC composition was evaluated using headspace-solid-phase microextraction coupled with GC-MS. The cooked green licuri presented higher moisture, and lower contents of ashes, proteins and lipids than naturally ripe licuri almonds. The FA profiles of cooked green licuri and naturally ripe licuri almonds showed that saturated FAs were predominant (80%) in both samples, and the concentrations of lauric, palmitic, and oleic acids in naturally ripe licuri almonds were higher than those in cooked green licuri. Limonene was the predominant compound in naturally ripe licuri almonds. The main class of VC in the cooked green licuri were aldehydes, with 3-methyl-butanal and furfural being the main species. Alcohols, such as 3-methyl-butanol and 2-heptanol, were the main class of VC in naturally ripe licuri almonds. Among the volatile compounds, 1-hexanol and 2-nonanone contributed to the aroma of cooked green licuri almonds, whereas 2-heptanone, ethanol, and limonene contributed to the aroma of naturally ripe licuri almonds (almonds not subjected to any cooking process). In a word, cooked green licuri and naturally riped licuri almonds, despite having different proximate compositions, present similar fatty acid profile and distinct aromatic characteristics. Therefore, cooked green licuri and naturally riped licuri almonds are an alternative source of nutrient and could be investigated for the use in the food industry to enhance flavor and aroma to new products.


Asunto(s)
Culinaria , Ácidos Grasos , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Ácidos Grasos/análisis , Brasil , Microextracción en Fase Sólida , Ciclohexenos/análisis , Terpenos/análisis , Limoneno/análisis , Odorantes/análisis , Ácido Palmítico/análisis , Ácido Oléico/análisis , Aldehídos/análisis , Ácidos Láuricos/análisis , Pentanoles/análisis
3.
Food Sci Biotechnol ; 33(8): 1947-1956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38752121

RESUMEN

Heptadecanoic acid (C17:0), an odd-chain saturated fatty acid (OCSFA) in ruminant lipid, has been demonstrated to be potential for treating cancers. Our results also showed that sheep tail fat (STF) with higher level of C17:0-containing saturated fatty acids (SFAs) whereas lower level of oleic acid (C18:1), performed remarkable inhibition against non-small-cell lung cancer (NSCLC) cells. To enrich the content of C17:0, a C17:0-rich SFA concentrate (HRSC) was prepared from STF by solvent crystallization and urea complexation methods (hexane/STF = 3.5/1, 4 °C for 8 h, and 80% ethanol/urea/free fatty acids = 8/1/1, 4 °C for 6 h). The content of C17:0 was up from 3.02 to 6.34% and the recovery was 4.17%. Biological experiments showed that HRSC exerted better antiproliferative effect against NSCLC cells. Moreover, HRSC performed enhanced inhibitory effect in A549 cell xenograft mouse model. Therefore, HRSC has the potential to be applied in adjuvant therapy for NSCLC. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01504-w.

4.
Sci Rep ; 14(1): 11016, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745035

RESUMEN

The aim of this study is to assess the relationship between dietary intake of fatty acids and the age-related macular degeneration (AMD) in the United States population. Adult participants of the 2005-2008 National Health and Nutrition Examination Survey (NHANES) were included in this nationwide cross-sectional study. Dietary fatty acid intake was obtained from two 24-h dietary recall interviews. The intake of dietary fatty acids was analyzed as a continuous and categorical variable. AMD status was assessed using nonmydriatic fundus photographs. Univariate and multivariate logistic regression analyses were used to assess the association between dietary fatty acid intake and AMD. The unweighted population included 4702 individuals of whom 374 had AMD. After adjusting for relevant variables, each 1 unit increase (1 mg/1000 kcal) intake of EPA (OR: 0.996, 95% CI: 0.993-0.996, P = 0.018), DPA (OR: 0.976, 95% CI: 0.962-0.990, P = 0.002), and DHA (OR: 0.996, 95% CI: 0.994-0.999, P = 0.003) were significantly decreased odds of any AMD. The highest versus lowest quartile of EPA (OR: 0.476, P for trend < 0.001), DPA (OR: 0.467, P for trend = 0.005) and DHA (OR: 0.586, P for trend = 0.008) were negatively associated with the odds of any AMD. Subgroup analysis showed that higher quartiles of EPA (OR: 0.461, P for trend < 0.002), DPA (OR: 0.467, P for trend = 0.006) and DHA (OR: 0.578, P for trend = 0.007) exhibited a negative association with early AMD. The study found no significant association between the intake of dietary fatty acids, including n-3 PUFA, and the odds of late AMD. In the 2005-2008 NHANES population, higher dietary DHA, DPA and EPA intake associated with decreased odds of early AMD. However, no clear association was found between specific types of FAs and late AMD.


Asunto(s)
Ácidos Grasos , Degeneración Macular , Encuestas Nutricionales , Humanos , Degeneración Macular/epidemiología , Degeneración Macular/etiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Transversales , Ácidos Grasos/administración & dosificación , Estados Unidos/epidemiología , Grasas de la Dieta/administración & dosificación , Adulto , Dieta , Ácido Eicosapentaenoico/administración & dosificación
5.
Clin Chim Acta ; 556: 117852, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38438006

RESUMEN

BACKGROUND: Coronary heart disease (CHD) is the most important complication of type 2 diabetes mellitus (T2DM) and the leading cause of death. Identifying the risk of CHD in T2DM patients is important for early clinical intervention. METHODS: A total of 213 participants, including 81 healthy controls (HCs), 69 T2DM patients and 63 T2DM patients complicated with CHD were recruited in this study. Serum metabolomics were conducted by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Demographic information and clinical laboratory test results were also collected. RESULTS: Metabolic phenotypes were significantly altered among HC, T2DM and T2DM-CHD. Acylcarnitines were the most disturbed metabolites between T2DM patients and HCs. Lower levels of bile acids and higher levels of fatty acids in serum were closely associated with CHD risk in T2DM patients. Artificial neural network model was constructed for the discrimination of T2DM and T2DM complicated with CHD based on myristic acid, palmitic acid and heptanoylcarnitine, with accuracy larger than 0.95 in both training set and testing set. CONCLUSION: Altogether, these findings suggest that myristic acid, palmitic acid and heptanoylcarnitine have a good prospect for the warning of CHD complications in T2DM patients, and are superior to traditional lipid, blood glucose and blood pressure indicators.


Asunto(s)
Carnitina/análogos & derivados , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Enfermedad de la Arteria Coronaria/complicaciones , Ácido Palmítico , Espectrometría de Masas en Tándem , Ácido Mirístico , Arterias/metabolismo , Biomarcadores , Aprendizaje Automático
6.
Neuropharmacology ; 249: 109865, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342377

RESUMEN

Protein pathology spreading within the nervous system, accompanies neurodegeneration and a spectrum of motor and cognitive dysfunctions. Currently available therapies against Parkinson's disease and other synucleinopathies are mostly symptomatic and fail to slow the disease progression in the long term. Modification of α-synuclein (αS) aggregation and toxicity of its pathogenic forms is one of the main goals in neuroprotective approach. Since the discovery of lipid component of Lewy bodies, fatty acids became a crucial, yet little explored target for research. MUFAs (monounsaturated fatty acids) are substrates for lipids, such as phospholipids, triglycerides and cholesteryl esters. They regulate membrane fluidity, take part in signal transduction, cellular differentiation and other fundamental processes. αS and MUFA interactions are essential for Lewy body pathology. αS increases levels of MUFAs, mainly oleic acid, which in turn can enhance αS toxicity and aggregation. Thus, reduction of MUFAs synthesis by inhibition of stearoyl-CoA desaturase (SCD) activity could be the new way to prevent aggravation of αS pathology. Due to the limited distribution in peripheral tissues, SCD5 is a potential target in novel therapies and therefore could be an important starting point in search for disease-modifying neuroprotective therapy. Here we summarize facts about physiology and pathology of αS, explain recently discovered lipid-αS interactions, review SCD function and involved mechanisms, present available SCD inhibitors and discuss their pharmacological potential in disease management. Modulation of MUFA synthesis, decreasing αS and lipid toxicity is clearly essential, but unexplored avenue in pharmacotherapy of Parkinson's disease and synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Ácidos Grasos/metabolismo
7.
Pharmaceutics ; 16(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399300

RESUMEN

We performed this study to evaluate whether saturated fatty acid (SFA) emulsions affect the BBB and determine the duration of BBB opening, thereby promoting drug delivery to the brain. Butyric, valeric, caproic, enanthic, and caprylic acid emulsions were infused into the carotid artery of the rat model. We evaluated the BBB opening and drug delivery over time. The trypan blue and doxorubicin delivery studies were repeated from 30 min to 6 h. In the 1 h rats in each group, transmission electron microscopy (TEM) was performed to morphologically evaluate tight junctions, and the delivery of temozolomide was assessed by desorption electrospray ionization mass spectrometry. The ipsilateral hemisphere was positive for trypan blue staining in all the five SFA emulsion groups. In the valeric, enanthic, and caprylic acid emulsion groups, RGB ratios were significantly higher at 30 min and decreased thereafter. Doxorubicin delivery increased in all emulsion groups at all time points. Tight junctions were observed to be open in all groups. TMZ delivery was significantly higher in the ipsilateral hemisphere. In conclusion, intra-arterially infused SFA emulsions opened the BBB and promoted drug delivery within 30 min, which decreased thereafter. Therefore, SFA emulsions may aid BBB research and promote drug delivery to the brain.

8.
J Anim Sci Technol ; 65(5): 922-938, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37969340

RESUMEN

The current study was designed to evaluate the effect of sequential low and high dietary linseed oil (LO; as omega-3 enriched fatty acid; FA) before and post insemination, respectively, on different plasma variables of ewes. Fat-tailed Qezel ewes were assigned randomly to be fed a diet enriched with 3% LO (n = 30) or the saturated FA (SFA; n = 30) three weeks before insemination (Day 0). The lipogenic diet supplemented with 6% LO or SFA was fed after insemination until Day +21. The control ewes were fed an isocaloric and isonitrogenous diet with no additional FA during the study. Estrus was synchronized by inserting a vaginal sponge (Spongavet®) for 12 days + 500 IU equine chorionic gonadotropin (eCG; Gonaser®), and ewes were inseminated via laparoscopic approach 56-59 h after eCG injection. The size of ovarian structures was assessed by transvaginal ultrasonography at -21, -14, -2, 0, and +10 days. Blood samples were collected weekly to measure the plasma's different biochemical variables and FA profile. Treatment did not affect the amounts of glucose, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, interleukin-10, interleukin-2, and non-esterified FA (p > 0.05). Conversely, concentrations of triglyceride, cholesterol, tumor necrosis factor-alpha, and insulin-like growth factor-1 were higher in SFA-fed ewes relative to control animals (p < 0.05). LO feeding resulted in greater amounts of n-3 FA isomers in plasma, while higher amounts of stearic acid were detected in SFA fed group 0 and +21 (p < 0.05). The number of ovarian follicles and corpora lutea also were not affected by treatment. Other reproductive variables were not affected by treatment except for the reproductive rate. It seems that LO or SFA feeding of fat-tailed ewes peri-insemination period was not superior to the isocaloric non-additional fat diet provided for the control group during the non-breeding season.

9.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686029

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of fibrosis-driving factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expression in MASLD and hepatoma cells. RT-PCR, ELISA and Western blotting analyses were performed in both human liver samples and an in vitro steatosis model. IL-32 and CCL20 mRNA expression was increased in tissues of patients with NASH compared to normal liver tissue. Stratification for patatin-like phospholipase domain-containing protein 3 (PNPLA3) status revealed significance for IL-32 only in patients with I148M (rs738409, CG/GG) carrier status. Furthermore, a positive correlation was observed between IL-32 expression and steatosis grade, and between IL-32 as well as CCL20 expression and fibrosis grade. Treatment with the saturated fatty acid palmitic acid (PA) induced mRNA and protein expression of IL-32 and CCL20 in hepatoma cells. This induction was mitigated by the substitution of PA with monounsaturated oleic acid (OA), suggesting the involvement of oxidative stress. Consequently, analysis of stress-induced signaling pathways showed the activation of Erk1/2 and p38 MAPK, which led to an enhanced expression of IL-32 and CCL20. In conclusion, cellular stress in liver epithelial cells induced by PA enhances the expression of IL-32 and CCL20, both known to trigger inflammation and fibrosis.


Asunto(s)
Hígado Graso , Hepatocitos , Enfermedades Metabólicas , Humanos , Carcinoma Hepatocelular/genética , Quimiocina CCL20/genética , Quimiocinas , Hepatocitos/metabolismo , Ligandos , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Ácido Palmítico , Regulación hacia Arriba , Grasas Insaturadas/metabolismo
10.
Front Immunol ; 14: 1204126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711626

RESUMEN

In obesity, adipose tissue infiltrating macrophages acquire a unique pro-inflammatory polarization, thereby playing a key role in the development of chronic inflammation and Type 2 diabetes. Increased saturated fatty acids (SFAs) levels have been proposed to drive this specific polarization. Accordingly, we investigated the immunometabolic reprogramming in SFA-treated human macrophages. As expected, RNA sequencing highlighted a pro-inflammatory profile but also metabolic signatures including glycolysis and hypoxia as well as a strong unfolded protein response. Glycolysis upregulation was confirmed in SFA-treated macrophages by measuring glycolytic gene expression, glucose uptake, lactate production and extracellular acidification rate. Like in LPS-stimulated macrophages, glycolysis activation in SFA-treated macrophages was dependent on HIF-1α activation and fueled the production of pro-inflammatory cytokines. SFAs and LPS both induced IRE1α endoribonuclease activity, as demonstrated by XBP1 mRNA splicing, but with different kinetics matching HIF-1α activation and the glycolytic gene expression. Interestingly, the knockdown of IRE1α and/or the pharmacological inhibition of its RNase activity prevented HIF-1α activation and significantly decreased glycolysis upregulation. Surprisingly, XBP1s appeared to be dispensable, as demonstrated by the lack of inhibiting effect of XBP1s knockdown on glycolytic genes expression, glucose uptake, lactate production and HIF-1α activation. These experiments demonstrate for the first time a key role of IRE1α in HIF-1α-mediated glycolysis upregulation in macrophages stimulated with pro-inflammatory triggers like LPS or SFAs through XBP1s-independent mechanism. IRE1 could mediate this novel function by targeting other transcripts (mRNA or pre-miRNA) through a mechanism called regulated IRE1-dependent decay or RIDD. Deciphering the underlying mechanisms of this novel IRE1 function might lead to novel therapeutic targets to curtail sterile obesity- or infection-linked inflammation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Endorribonucleasas , Humanos , Glucosa , Glucólisis , Lipopolisacáridos/farmacología , Proteínas Serina-Treonina Quinasas , Ribonucleasa Pancreática , Ribonucleasas , Regulación hacia Arriba , Proteína 1 de Unión a la X-Box/genética
11.
Acta Neuropathol Commun ; 11(1): 131, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568198

RESUMEN

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant inherited disease characterized by age-related cerebellar degeneration and ataxia caused by mutations in the Elongation of Very Long Chain Fatty Acid-4 (ELOVL4) gene. The ELOVL4 enzyme catalyzes the biosynthesis of both very long chain saturated fatty acids (VLC-SFA) and very long chain polyunsaturated fatty acids (VLC-PUFA) that are important for neuronal, reproductive, and skin function. Several variants in ELOVL4 have been shown to cause different tissue-specific disorders including SCA34 with or without Erythrokeratodermia Variabilis (EKV), a skin condition characterized by dry, scaly skin, Autosomal Dominant Stargardt-Like Macular Dystrophy (STGD3), and seizures associated with neuro-ichthyotic disorders. What is puzzling is how different mutations in the same gene seem to cause different tissue-specific disorders. To date, no SCA34 patients have presented with both SCA34 and STGD3 pathology that is caused by ELOVL4 variants that cause truncation of ELOVL4. Here, we report a novel case of an early childhood onset and rapidly progressive cerebellar degeneration and retinal dysfunction in a Belgian-Italian girl who developed severe dysarthria and gait problems starting at about 3.5 years of age and progressed to immobility by 4.5 years of age. Brain magnetic resonance imaging (MRI) revealed progressive vermian, cerebellar, cortical atrophy, progressive corpus callosum slimming, and hot cross bun sign visible on the MRI. Ophthalmological examinations also revealed progressive macular dysfunction as measured by electroretinography. Using exome sequencing, we identified a novel heterozygous ELOVL4 variant, c.503 T > C (p. L168S) in the patient. To understand the enzymatic function of this novel ELOVL4 variant and how it alters the levels of VLC-PUFA and VLC-SFA biosynthesis to contribute to cerebellar and retinal dysfunction, we expressed wild-type ELOVL4 or the L168S ELOVL4 variant in cell culture and supplemented the cultures with VLC-PUFA or VLC-SFA precursors. We showed that the L168S ELOVL4 variant is deficient in the biosynthesis of VLC-SFA and VLC-PUFA. Our work suggests that differential depletion of these fatty acids may be a contributing factor to the pathogenic mechanism of SCA34 with or without EKV. Further studies will help further define how the different ELOVL4 variants cause different tissue-specific disorders with variable ages of onset.


Asunto(s)
Degeneración Macular , Ataxias Espinocerebelosas , Preescolar , Femenino , Humanos , Degeneración Macular/genética , Ataxia , Convulsiones , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética , Proteínas del Ojo/genética , Proteínas de la Membrana/genética
12.
Eur J Pharmacol ; 956: 175990, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37572940

RESUMEN

During ischemic stroke, higher glucose level linked worse outcomes were reported even in patients without pre-existing diabetes. Evidence suggest that such worse stroke outcomes were mainly due to production of reactive, toxic glucose metabolites that expands oxidative damage inside the brain. As a consequence of high oxidative stress, microvasculature structures and tight junctions compromised their functionally, infarct volume expands and brain edema exacerbates. In a mouse model of ischemic stroke with induced acute hyperglycaemia, Lauric acid (LA) as a natural saturated fatty acid demonstrated neuroprotection by attenuating infarct volume and brain edema. In addition, in the ipsilateral hyperglycaemic brain, the LA significantly increased the expression of tight junction representative protein (occludin) as well as anti-oxidative markers; Manganese superoxide dismutase (Mn) SOD, Extracellular superoxide dismutase (Ec-SOD) and nuclear factor-erythroid factor 2-related factor 2 (Nrf2) in the ipsilateral region against hyperglycemic ischemic stroke. LA treated animals showed a significant reduction in the production of lipid peroxidation products (4-HNE) in the microvascular structures, maintained the blood brain barrier (BBB) integrity. LA linked neuroprotective outcomes were further confirmed by behavioral tests, where functional outcomes and motor coordination were improved significantly. Furthermore, LA treatment enhanced food intake, decreased mortality rate, and net body weight loss. Conclusively, LA modulated ischemic insult exacerbated by hyperglycemia and provided neuroprotection.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Hiperglucemia , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Ratones , Animales , Neuroprotección , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Estrés Oxidativo , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Glucosa/farmacología , Infarto
13.
Front Nutr ; 10: 1208047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388632
14.
Foods ; 12(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37174432

RESUMEN

Humans have consumed lard for thousands of years, but in recent decades, it has become much less popular because it is regarded as saturated fat. Animal studies showed that lard plus soybean oil (blend oil) was more advantageous for liver health than using either oil alone. This study aims to assess the effects of blend oil on liver function markers in healthy subjects. The 345 healthy subjects were randomized into 3 isoenergetic diet groups with different edible oils (30 g/day) (soybean oil, lard, and blend oil (50% lard and 50% soybean oil)) for 12 weeks. The reductions in both aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were greater in the blend oil group than in the two other groups (p = 0.001 and <0.001 for the interaction between diet group and time, respectively). The reductions in AST and ALT in the blend oil group were more significant compared with those in the soybean oil group (p < 0.001) or lard group (p < 0.001). There were no significant differences in the other liver function markers between the groups. Thus, blend oil was beneficial for liver function markers such as AST and ALT compared with soybean oil and lard alone, which might help prevent non-alcoholic fatty liver disease in the healthy population.

15.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175748

RESUMEN

Aging continues to be the main cause of the development of Alzheimer's, although it has been described that certain chronic inflammatory pathologies can negatively influence the progress of dementia, including obesity and hyperlipidemia. In this sense, previous studies have shown a relationship between low-density lipoprotein receptor (LDLR) and the amyloid-beta (Aß) binding activity, one of the main neuropathological features of Alzheimer's disease (AD). LDLR is involved in several processes, including lipid transport, regulation of inflammatory response and lipid metabolism. From this perspective, LDLR-/- mice are a widely accepted animal model for the study of pathologies associated with alterations in lipid metabolism, such as familial hypercholesterolemia, cardiovascular diseases, metabolic syndrome, or early cognitive decline. In this context, we induced hyperlipidemia in LDLR-/- mice after feeding with a high-saturated fatty acid diet (HFD) for 44 weeks. LDLR-/--HFD mice exhibited obesity, hypertriglyceridemia, higher glucose levels, and early hepatic steatosis. In addition, HFD increased plasmatic APOE and ubiquitin 60S levels. These proteins are related to neuronal integrity and health maintenance. In agreement, we detected mild cognitive dysfunctions in mice fed with HFD, whereas LDLR-/--HFD mice showed a more severe and evident affectation. Our data suggest central nervous system dysfunction is associated with a well-established metabolic syndrome. As a late consequence, metabolic syndrome boots many behavioral and pathological alterations recognized in dementia, supporting that the control of metabolic parameters could improve cognitive preservation and prognosis.


Asunto(s)
Enfermedad de Alzheimer , Hiperlipidemias , Síndrome Metabólico , Ratones , Animales , Síndrome Metabólico/genética , Síndrome Metabólico/complicaciones , Dieta Alta en Grasa , Enfermedad de Alzheimer/patología , Obesidad/complicaciones , Hiperlipidemias/complicaciones , Cognición , Ácidos Grasos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Modelos Animales de Enfermedad
16.
Front Nutr ; 10: 1106153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125046

RESUMEN

Background: Dietary patterns which exclude whole food groups, such as vegetarian, vegan and low carbohydrate high fat diet (LCHF), are increasingly popular in general public. When carefully planned, all these diets have some known benefits for health, but concerns are also raised in particular for LCHF. The quality of LCHF diet which individuals follow in real life without supervision is not known. Methods: One hundred thirty healthy individuals with stable body mass following LCHF, vegan, vegetarian and omnivorous diet for at least six months, were compared in a cross-sectional study. Diet was analyzed through 3-day food records and FFQ, anthropometric measurements were performed and serum metabolic biomarkers determined from fasting blood. Results: Participants on LCHF diet had the intakes of micronutrients comparable to other groups, while the intakes of macronutrients differed in line with the definition of each diet. The intakes of saturated fats, cholesterol and animal proteins were significantly higher and the intakes of sugars and dietary fibers were lower compared to other groups. Healthy eating index 2015 in this group was the lowest. There were no differences in the levels of glucose, triacylglycerols and CRP among groups. Total and LDL cholesterol levels were significantly higher in LCHF group, in particular in participants with higher ketogenic ratio. Fatty acids intakes and intakes of cholesterol, dietary fibers and animal proteins explained 40% of variance in total cholesterol level, with saturated fatty acids being the strongest positive predictor and monounsaturated fatty acids a negative predictor. Conclusion: None of the self-advised diets provided all the necessary nutrients in optimal levels. Due to the detected increased levels of serum cholesterols, selection of healthy fat sources, higher intake of dietary fibers and partial replacing of animal sources with plant sources of foods should be recommended to the individuals selecting LCFH dietary pattern.Clinical Trial Registration: ClinicalTrials.gov, identifier NCT04347213.

17.
J Oleo Sci ; 72(6): 645-653, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164689

RESUMEN

Hypertension is one of the most prevalent diseases and a risk factor for stroke and cardiovascular disease. Our previous study indicated a negative correlation between fat intake and blood pressure in subjects with a fat mass and obesity-associated gene variant. We investigated the effects of four fatty acid groups on blood pressure in healthy Japanese women with the gene variants, including the involvement of body mass index. A total of 227 Japanese women aged 18-64 years completed a 3-day nutritional intake diary and their blood pressure was measured. The single nucleotide polymorphism rs9939609 of the gene was genotyped, and the participants were divided into two genetic groups (those with or without at least one minor allele). Spearman's rank correlation coefficient was applied to investigate the relationships between the fatty acids and blood pressure. A path analysis was performed to determine the effect of fatty acids on blood pressure including the involvement of body mass index. In the group with the gene variant, a significant negative correlation was detected between saturated fatty acid intake and systolic and diastolic blood pressures, and between monounsaturated fatty acid intake and only diastolic blood pressure. In a path analysis of both systolic and diastolic blood pressures, the path from only saturated fatty acid intake to blood pressure was significant, but the path from saturated fatty acids to body mass index was not significant. These results suggest that saturated fatty acid intake, without the involvement of body mass index, may be associated with the lower systolic and diastolic blood pressures in healthy Japanese women with a fat mass and obesity-associated gene variant.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Presión Sanguínea , Pueblos del Este de Asia , Ácidos Grasos , Femenino , Humanos , Presión Sanguínea/genética , Ácidos Grasos/administración & dosificación , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
18.
Immunometabolism (Cobham) ; 5(2): e00021, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37197687

RESUMEN

Dietary saturated fats have recently been appreciated for their ability to modify innate immune cell function, including monocytes, macrophages, and neutrophils. Many dietary saturated fatty acids (SFAs) embark on a unique pathway through the lymphatics following digestion, and this makes them intriguing candidates for inflammatory regulation during homeostasis and disease. Specifically, palmitic acid (PA) and diets enriched in PA have recently been implicated in driving innate immune memory in mice. PA has been shown to induce long-lasting hyper-inflammatory capacity against secondary microbial stimuli in vitro and in vivo, and PA-enriched diets alter the developmental trajectory of stem cell progenitors in the bone marrow. Perhaps the most relevant finding is the ability of exogenous PA to enhance clearance of fungal and bacterial burdens in mice; however, the same PA treatment enhances endotoxemia severity and mortality. Westernized countries are becoming increasingly dependent on SFA-enriched diets, and a deeper understanding of SFA regulation of innate immune memory is imperative in this pandemic era.

19.
Int J Cancer ; 153(3): 499-511, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087737

RESUMEN

Previous investigations mainly focused on the associations of dietary fatty acids with colorectal cancer (CRC) risk, which ignored gene-environment interaction and mechanisms interpretation. We conducted a case-control study (751 cases and 3058 controls) and a prospective cohort study (125 021 participants) to explore the associations between dietary fatty acids, genetic risks, and CRC. Results showed that high intake of saturated fatty acid (SFA) was associated with a higher risk of CRC than low SFA intake (HR =1.22, 95% CI:1.02-1.46). Participants at high genetic risk had a greater risk of CRC with the HR of 2.48 (2.11-2.91) than those at low genetic risk. A multiplicative interaction of genetic risk and SFA intake with incident CRC risk was found (PInteraction = 7.59 × 10-20 ), demonstrating that participants with high genetic risk and high SFA intake had a 3.75-fold greater risk of CRC than those with low genetic risk and low SFA intake. Furthermore, incorporating PRS and SFA into traditional clinical risk factors improved the discriminatory accuracy for CRC risk stratification (AUC from 0.706 to 0.731). Multi-omics data showed that exposure to SFA-rich high-fat dietary (HFD) can responsively induce epigenome reprogramming of some oncogenes and pathological activation of fatty acid metabolism pathway, which may contribute to CRC development through changes in gut microbiomes, metabolites, and tumor-infiltrating immune cells. These findings suggest that individuals with high genetic risk of CRC may benefit from reducing SFA intake. The incorporation of SFA intake and PRS into traditional clinical risk factors will help improve high-risk sub-populations in individualized CRC prevention.


Asunto(s)
Neoplasias Colorrectales , Grasas de la Dieta , Humanos , Estudios Prospectivos , Estudios de Casos y Controles , Grasas de la Dieta/efectos adversos , Factores de Riesgo , Ácidos Grasos/efectos adversos , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inducido químicamente
20.
Food Chem X ; 17: 100558, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36845467

RESUMEN

World trends in oil crop growing area, yield, and production over the last 10 years exhibited an increase of 48 %, 82 %, and 240 %, respectively. Concerning reduced shelf-life of oil-containing food products caused by oil oxidation and the demand for sensory quality of oil, the development of methods the improvement oil quality is urgently required. This critical review presented a concise overview of the recent literature related to the inhibition ways of oil oxidation. The mechanism of different antioxidants and nanoparticle delivery systems on oil oxidation was also explored. The current review provides scientific findings on control strategies: (i) design oxidation quality assessment model; (ii) packaging by antioxidant coatings and eco-friendly film nanocomposite: ameliorate physicochemical properties; (iii) molecular investigations on inhibitory effects of selected antioxidants and underlying mechanisms; (iv) explore the interrelationship between the cysteine/citric acid and lipoxygenase pathway in the progression of oxidative/fragmentation degradation of unsaturated fatty acid chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA