Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39272486

RESUMEN

In dairy-based imitation mozzarella cheese (IMC) formulations, intact casein is critical and imparts IMC with a firm and elastic, stringy, melted texture. Rennet casein (RCN) is the desired ingredient to provide intact casein in IMC and is preferred over milk protein concentrate (MPC) and micellar casein concentrate (MCC). Transglutaminase (TGase), a crosslinking enzyme, alters the physical properties of MPC or MCC and may change IMC functionality. The objective of this study was to determine the effect of TGase-crosslinked MPC and MCC powders on the functionality of IMCs. The TGase treatment included TGase at 0.3 (L) and 3.0 (H) units/g of protein and a control (C) with no TGase addition. Each IMC formulation was balanced for constituents and was produced in a Rapid Visco Analyzer (RVA). The MCC or MPC powder with high TGase enzyme in IMC formulation did not form an emulsion. The IMC containing TGase-treated powders had a significantly (p ≤ 0.05) higher RVA-viscosity during manufacture and transition temperature (TT), and a significantly (p ≤ 0.05) lower Schreiber melt test area. The IMC made from MPC (with or without TGase) had lower TT values and Schreiber melt test area as compared with that made from MCC. The TGase-treated MPC and MCC, when used for IMC manufacture, were comparable to IMC manufactured with RCN in texture and some measured melted characteristics. In conclusion, TGase treatment alters the melt characteristics of MCC and MPC in IMC applications.

2.
J Dairy Sci ; 107(2): 695-710, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37709031

RESUMEN

Our objective was to determine the effects of dipotassium phosphate (DKP) addition, heat treatments (no heat, high temperature, short time [HTST]: 72°C for 15 s, and direct steam injection UHT: 142°C for 2.3 s), and storage time on the soluble protein composition and mineral (P, Ca, K) concentration of the aqueous phase around casein micelles in 7.5% milk protein-based beverages made with liquid skim milk protein concentrate (MPC) and micellar casein concentrate (MCC). Milk protein concentrate was produced using a spiral wound polymeric membrane, and MCC was produced using a 0.1-µm ceramic membrane by filtration at 50°C. Two DKP concentrations were used (0% and 0.15% wt/wt) within each of the 3 heat treatments. All beverages had no other additives and ran through heat treatment without coagulation. Ultracentrifugation (2-h run at 4°C) supernatants of the beverages were collected at 1, 5, 8, 12, and 15-d storage at 4°C. Phosphorus, Ca, and K concentrations in the beverages and supernatants were measured using inductively coupled plasma spectrometry. Protein composition of supernatants was measured using Kjeldahl and sodium dodecyl sulfate-PAGE. Micellar casein concentrate and MPC beverages with 0.15% DKP had higher concentrations of supernatant protein, Ca, and P than beverages without DKP. Protein, Ca, and P concentrations were higher in MCC supernatant than in MPC supernatant when DKP was added, and these concentrations increased over storage time, especially when lower heat treatments (HTST or no heat treatment) had been applied. Dipotassium phosphate addition caused the dissociation of αS-, ß-, and κ-casein, and casein proteolysis products out of the casein micelles, and DKP addition explained over 70% of the increase in supernatant protein, P, and Ca concentrations. Dipotassium phosphate could be removed from 7.5% of protein beverages made with fresh liquid MCC and MPC (containing a residual lactose concentration of 0.6% to 0.7% and the proportional amount of soluble milk minerals), as these beverages maintain heat-processing stability without DKP addition.


Asunto(s)
Caseínas , Proteínas de la Leche , Compuestos de Potasio , Animales , Proteínas de la Leche/análisis , Caseínas/química , Micelas , Calor , Minerales , Bebidas/análisis , Fosfatos
3.
Foods ; 12(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38137323

RESUMEN

This research reveals the underlying mechanisms that make high-intensity ultrasound an effective tool to reduce the viscosity of micellar casein concentrates and to enhance the solubility of the respective powders. Micellar casein concentrates (MCC) gained great importance in the production of valuable food products with high protein content, but the processing properties of the reconstituted solutions are deficient. Even though several presumptions were established, the reasons why ultrasound is able to reduce the product viscosity and what limitations occur when using sonication technology are still not clear yet. Our study aims to investigate those reasons by combining analyses of viscosity measurements, particle size distributions, solubility, and hydration. The data presented demonstrate that undissolved, highly hydrated particles play an important role in micellar casein concentrates showing a high viscosity. We conclude on the high voluminosity of those particles, since improved solubility and decreased viscosity are accompanying effects. The determined voluminosities of those particles are 35-40% higher than for colloidal dissolved micelles. Hence, the viscosity reduction of up to 50% can be only obtained by sonicating micellar casein concentrates derived from powder reconstitution, whereas ultrasonication of freshly prepared membrane-filtrated MCC does not reduce viscosity.

4.
J Dairy Sci ; 106(12): 8331-8340, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641294

RESUMEN

Liquid micellar casein concentrate (MCC) is an ideal milk-based protein ingredient for neutral-pH ready-to-drink beverages. The texture and mouthfeel of liquid MCC-based beverages depend on the beverage protein content, as well as the composition of soluble proteins in the aqueous phase around the casein micelle. The objective of this study was to determine the composition of soluble proteins in the aqueous phase around the casein micelles in skim milk and liquid MCC containing 7.0% and 11.6% protein content. Skim milk was pasteurized and concentrated to 7% protein content by microfiltration and then to 18% protein content by ultrafiltration. The 18% MCC was then serially diluted with distilled water to produce 11.6% and 7.0% protein MCC. Skim milk, 7.0% MCC, and 11.6% MCC representing starting materials with different protein concentrations were each ultracentrifuged at 100,605 × g for 2 h. The ultracentrifugation for each of the starting materials was performed at 3 different temperatures: 4°C, 20°C, and 37°C. The ultracentrifugation supernatants were collected to represent the aqueous phase around the casein micelle in MCC solutions. The supernatants were analyzed by Kjeldahl to determine the crude protein, casein, and casein as a percentage of crude protein content, and by sodium dodecyl sulfate PAGE to determine the composition of the individual proteins. Most of the proteins in MCC supernatant (about 45%) were casein proteolysis products. The remaining proteins in the MCC supernatant consisted of a combination of intact αS-, ß-, and κ-caseins (about 40%) and serum proteins (14-18%). Concentrations of αS-casein and ß-casein in the supernatant increased with decreasing temperature, especially at higher protein concentrations. Temperature and interaction between temperature and protein explained about 80% of the variation in concentration of supernatant αS- and ß-caseins. Concentration of supernatant κ-casein, casein proteolysis products, and serum protein increased with increasing MCC protein concentration, and MCC protein concentration explained most of the variation in supernatant κ-casein, casein proteolysis products, and serum protein concentrations. Predicted MCC apparent viscosity was positively associated with the dissociation of αS- and ß-caseins. Optimal beverage viscosity could be achieved by controlling the dissociation of these proteins in MCC.


Asunto(s)
Caseínas , Micelas , Animales , Caseínas/química , Temperatura , Proteínas de la Leche/análisis , Leche/química , Proteínas Sanguíneas/análisis , Ultracentrifugación/veterinaria
5.
Food Sci Nutr ; 11(8): 4616-4624, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576028

RESUMEN

The objectives of this study were to develop a process to produce acid curd from micellar casein concentrate (MCC) using starter cultures and to manufacture imitation Mozzarella cheese (IMC) using a combination of acid curd and MCC that would confer emulsification ability to the caseins without the use of emulsifying salts (ES). The formulations were targeted to produce IMC with 49.0% moisture, 20.0% fat, 18.0% protein, and 1.5% salt. In the IMC formulation made without ES (FR-2:1), the acid curd was blended with MCC so that the formula contained a 2:1 ratio of protein from acid curd relative to MCC. IMC with ES was also produced as a control. The melt and stretch characteristics of IMC made from FR-2:1 were similar to those of control IMC. We conclude that IMC can be made without ES using a 2:1 ratio of protein from acid curd relative to MCC.

6.
J Dairy Sci ; 106(6): 3884-3899, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105877

RESUMEN

Our objective was to determine the effect of addition of dipotassium phosphate (DKP) at 3 different thermal treatments on color, viscosity, and sensory properties of 7.5% milk protein-based beverages during 15 d of storage at 4°C. Micellar casein concentrate (MCC) and milk protein concentrate (MPC) containing about 7.5% protein were produced from pasteurized skim milk using a 3×, 3-stage ceramic microfiltration process and a 3×, 3-stage polymeric ultrafiltration membrane process, respectively. The MCC and MPC were each split into 6 batches, based on thermal process and addition of DKP. The 6 batches were no postfiltration heat treatment with added DKP (0.15%), no postfiltration heat without added DKP (0%), postfiltration high-temperature, short time (HTST) with DKP, postfiltration HTST without DKP, postfiltration direct steam injection with DKP, and postfiltration direct steam injection without DKP. The 6 MCC milk-based beverages and the 6 MPC milk-based beverages were stored at 4°C. Viscosity, color, and sensory properties were determined over 15 d of refrigerated storage. MCC- and MPC-based beverages at 7.5% protein with and without 0.15% added dipotassium phosphate were successfully run through an HTST and direct steam injection thermal process. The 7.5% protein MCC-based beverage contained a higher calcium and phosphorus content (2,425 and 1,583 mg/L, respectively) than the 7.5% protein MPC-based beverages (2,141 and 1,338 mg/L, respectively). Pasteurization (HTST) had very little effect on beverage particle size distribution, whereas direct steam injection thermal processing produced protein aggregates with medians in the range of 10 and 175 µm for MPC beverages. A population of casein micelles at about 0.15 µm was found in both MCC- and MPC-based beverages. Larger particles in the 175-µm range were not detected in the MCC beverages. In general, the apparent viscosity (AV) of MCC beverages was higher than MPC beverages. Added DKP increased the AV of both MCC- and MPC-based beverages, while increasing heat treatment decreased AV. The AV of beverages with DKP increased during 15 d of 4°C of storage for both MCC and MPC, whereas there was very little change in AV during storage without DKP and a similar effect was observed for sensory viscosity scores. The L value of beverages was higher with higher heat treatment, but DKP addition decreased L value and sensory opacity greatly. Sulfur-eggy flavors were detected in MPC beverages, but not MCC-based beverages.


Asunto(s)
Caseínas , Proteínas de la Leche , Animales , Proteínas de la Leche/análisis , Viscosidad , Calor , Vapor , Micelas , Fosfatos , Bebidas/análisis , Manipulación de Alimentos
7.
J Dairy Sci ; 106(5): 3137-3154, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907765

RESUMEN

Micellar casein concentrate (MCC) is a high protein ingredient that is typically produced using 3 stages of microfiltration with a 3× concentration factor and diafiltration. Acid curd is an acid protein concentrate, which can be obtained by precipitating the casein at pH 4.6 (isoelectric point) using starter cultures or direct acids without the use of rennet. Process cheese product (PCP) is a dairy food prepared by blending dairy ingredients with nondairy ingredients and then heating the mixture to get a product with an extended shelf-life. Emulsifying salts are critical for the desired functional characteristics of PCP because of their role in calcium sequestration and pH adjustment. The objectives of this study were to develop a process to produce a novel cultured micellar casein concentrate ingredient (cMCC; culture-based acid curd) and to produce PCP without emulsifying salts using different combinations of protein from cMCC and MCC in the formulations (2.0:1.0, 1.9:1.1, and 1.8:1.2). Skim milk was pasteurized at 76°C for 16 s and then microfiltered in 3 microfiltration stages using graded permeability ceramic membranes to produce liquid MCC (11.15% total protein; TPr and 14.06% total solids; TS). Part of the liquid MCC was spray dried to produce MCC powder (75.77% TPr and 97.84% TS). The rest of the MCC was used to produce cMCC (86.9% TPr and 96.4% TS). Three PCP treatments were formulated with different ratios of cMCC:MCC, including 2.0:1.0, 1.9:1.1, and 1.8:1.2 on the protein basis. The composition of PCP was targeted to 19.0% protein, 45.0% moisture, 30.0% fat, and 2.4% salt. This trial was repeated 3 times using different batches of cMCC and MCC powders. All PCP were evaluated for their final functional properties. No significant differences were detected in the composition of PCP made with different ratios of cMCC and MCC except for the pH. The pH was expected to increase slightly with elevating the MCC amount in the PCP formulations. The end apparent viscosity was significantly higher in 2.0:1.0 formulation (4,305 cP) compared with 1.9:1.1 (2,408 cP) and 1.8:1.2 (2,499 cP). The hardness ranged from 407 to 512 g with no significant differences within the formulations. However, the melting temperature showed significant differences with 2.0:1.0 having the highest melting temperature (54.0°C), whereas 1.9:1.1 and 1.8:1.2 showed 43.0 and 42.0°C melting temperature, respectively. The melting diameter (38.8 to 43.9 mm) and melt area (1,183.9 to 1,538.6 mm2) did not show any differences in different PCP formulations. The PCP made with a 2.0:1.0 ratio of protein from cMCC and MCC showed better functional properties compared with other formulations.


Asunto(s)
Caseínas , Queso , Animales , Caseínas/química , Micelas , Queso/análisis , Sales (Química) , Leche/química , Manipulación de Alimentos , Proteínas de la Leche/análisis
8.
J Dairy Sci ; 106(1): 117-131, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36357208

RESUMEN

Process cheese products (PCP) are dairy foods prepared by blending dairy ingredients (such as natural cheese, protein concentrates, butter, nonfat dry milk, whey powder, and permeate) with nondairy ingredients [such as sodium chloride, water, emulsifying salts (ES), color, and flavors] and then heating the mixture to obtain a homogeneous product with an extended shelf life. The ES, such as sodium citrate and disodium phosphate, are critical for the unique microstructure and functional properties of PCP because they improve the emulsification characteristics of casein by displacing the calcium phosphate complexes that are present in the insoluble calcium-paracaseinate-phosphate network in natural cheese. The objectives of this study were to determine the optimum protein content (3, 6, and 9% protein) in micellar casein concentrate (MCC) to produce acid curd and to manufacture PCP using a combination of acid curd cheese and MCC that would provide the desired improvement in the emulsification capacity of caseins without the use of ES. To produce acid curd, MCC was acidified using lactic acid to get a pH of 4.6. In the experimental formulation, the acid curd was blended with MCC to have a 2:1 ratio of protein from acid curd relative to MCC. The PCP was manufactured by blending all ingredients in a KitchenAid blender (Professional 5 Plus, KitchenAid) to produce a homogeneous paste. A 25-g sample of the paste was cooked in the rapid visco analyzer (RVA) for 3 min at 95°C at 1,000 rpm stirring speed during the first 2 min and 160 rpm for the last min. The cooked PCP was then transferred into molds and refrigerated until further analysis. This trial was repeated 3 times using different batches of acid curd. MCC with 9% protein resulted in acid curd with more adjusted yield. The end apparent viscosity (402.0-483.0 cP), hardness (354.0-384.0 g), melting temperature (48.0-51.0°C), and melting diameter (30.0-31.4 mm) of PCP made from different acid curds were slightly different from the characteristics of typical PCP produced with conventional ingredients and ES (576.6 cP end apparent viscosity, 119.0 g hardness, 59.8°C melting temperature, and 41.2 mm melting diameter) due to the differences in pH of final PCP (5.8 in ES PCP compared with 5.4 in no ES PCP). We concluded that acid curd can be produced from MCC with different protein content. Also, we found that PCP can be made with no ES when the formulation uses a 2:1 ratio of acid curd relative to MCC (on a protein basis).


Asunto(s)
Queso , Animales , Queso/análisis , Caseínas/química , Sales (Química)/análisis , Micelas , Leche/química , Fosfatos/análisis , Manipulación de Alimentos/métodos
9.
J Dairy Sci ; 105(10): 7891-7903, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055836

RESUMEN

The amount of intact casein provided by dairy ingredients is a critical parameter in dairy-based imitation mozzarella cheese (IMC) formulation because it has a significant effect on unmelted textural parameters such as hardness. From a functionality perspective, rennet casein (RCN) is the preferred ingredient. Milk protein concentrate (MPC) and micellar casein concentrate (MCC) cannot provide the required functionality due to the higher steric stability of casein micelle. However, the use of transglutaminase (TGase) has the potential to modify the surface properties of MPC and MCC and may improve their functionality in IMC. The objective of this study was to determine the effect of TGase-treated MPC and MCC powders on the unmelted textural properties of IMC and compare them with IMC made using commercially available RCN. Additionally, we studied the degree of crosslinking by TGase in MPC and MCC retentates using capillary gel electrophoresis. Three lots of MCC and MPC retentate were produced from pasteurized skim milk via microfiltration and ultrafiltration, respectively, and randomly assigned to 1 of 3 treatments: no TGase (control); low TGase: 0.3 units/g of protein; and high TGase: 3.0 units/g of protein, followed by inactivation of enzyme (72°C for 10 min), and spray drying. Each MCC, MPC, and RCN was then used to formulate IMC that was standardized to 21% fat, 1% salt, 48% moisture, and 20% protein. The IMC were manufactured by blending, mixing, and heating ingredients (4.0 kg) in a twin-screw cooker. The capillary gel electrophoresis analysis showed extensive inter- and intramolecular crosslinking. The IMC formulation using the highest TGase level in MCC or MPC did not form an emulsion because of extensive crosslinking. In MPC with a high level of TGase, whey protein and casein crosslinking were observed. In contrast, crosslinking and hydrolysis of proteins were observed in MCC. The IMC made from MCC powder had significantly higher texture profile analysis hardness compared with the corresponding MPC powder. Further, many-to-one (multiple) comparisons using the Dunnett test showed no significant differences between IMC made using RCN and treatment powders in hardness. Our results demonstrated that TGase treatment causes crosslinking hydrolysis of MCC and MPC at higher TGase levels, and MPC and MCC have the potential to be used as ingredients in IMC applications.


Asunto(s)
Caseínas , Queso , Animales , Caseínas/análisis , Queso/análisis , Emulsiones , Manipulación de Alimentos/métodos , Conducta Imitativa , Micelas , Proteínas de la Leche/análisis , Polvos , Transglutaminasas , Proteína de Suero de Leche/análisis
10.
J Dairy Sci ; 105(10): 7904-7916, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055846

RESUMEN

Melt and stretch properties in dairy-based imitation mozzarella cheese (IMC) are affected by the amount of intact casein provided by dairy ingredients in the formulation. Rennet casein (RCN) is the preferred ingredient to provide intact casein in a formulation. Ingredients produced using membrane technology, such as milk protein concentrate (MPC) and micellar casein concentrate (MCC), are unable to provide the required functionality. However, the use of transglutaminase (TGase) has potential to modify the physical properties of MPC or MCC and may improve their functionality in IMC. The objective of this study was to determine the effect of TGase-treated MPC and MCC retentates on melt and stretch properties when they are used in IMC and to compare them with IMC made using RCN. The MCC and MPC retentates were produced using 3 different lots of pasteurized skim milk and treated with 3 levels of TGase enzyme: no TGase (control), low TGase: 0.3 units/g of protein, and high TGase: 3.0 units/g of protein. Each of the MCC and MPC treatments was heated to 72°C for 10 min to inactivate TGase and then spray dried. Each MCC, MPC, and RCN powder was then used in an IMC formulation that was standardized to 48% moisture, 21% fat, 20% protein, and 1% salt. The IMC were manufactured in a twin-screw cooker by blending, mixing, and heating various ingredients (4.0 kg). Due to extensive crosslinking, the IMC formulation with the highest TGase level (MCC or MPC) did not form an emulsion. The IMC made from MCC treatments had significantly higher stretchability on pizza compared with their respective MPC treatments. The IMC made from TGase-treated MCC and MPC had significantly lower melt area and significantly higher transition temperature (TT) and stretchability compared with their respective controls. Comparison of IMC made using TGase-treated MCC and MPC to the RCN IMC indicated no difference in TT or texture profile analysis-stretchability; however, the Schreiber melt test area was significantly lower. Our results demonstrated that TGase treatment modifies the melt and stretch characteristics of MCC and MPC in IMC applications, and TGase-treated MPC and MCC can be used to replace RCN in IMC formulations.


Asunto(s)
Queso , Animales , Caseínas , Queso/análisis , Emulsiones , Manipulación de Alimentos/métodos , Conducta Imitativa , Micelas , Proteínas de la Leche/metabolismo , Polvos , Transglutaminasas
11.
Foods ; 11(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35626947

RESUMEN

This study aimed to examine the physicochemical properties of 30% calcium (Ca)-reduced micellar casein 80% protein powders (RC-MCC) and the functional properties of the resultant dispersions. The calcium reduction in the micellar casein (MCC) powder was achieved by subjecting the liquid micellular casein obtained from the microfiltration of pasteurized skim milk to carbon dioxide (CO2) treatment before and during ultrafiltration. The CO2 injection was controlled to obtain a 0 and 30% reduction in calcium in the C-MCC (control) and RC-MCC powders, respectively. The MCC powders were tested for physicochemical properties such as chemical composition, particle size distribution, and bulk density. The MCC powders were reconstituted in deionized water to test the functional properties of the dispersions, i.e., solubility, viscosity, heat stability, emulsifying capacity, emulsion stability, foam capacity, and foam stability. The CO2 injection did not result in any significant differences in the composition except mineral contents, particularly calcium. The particle size and bulk density of RC-MCC powders were significantly (p < 0.05) lower than control powders. The RC-MCC powder dispersions showed increased heat stability compared to control, whereas no significant changes in viscosity and emulsification capacity were observed between the two dispersions. However, the emulsion stability and foam stability of RC-MCC dispersions were significantly lower than C-MCC dispersions. This study showed that by utilizing a novel microfiltration−CO2 injection−ultrafiltration process, 30% calcium-reduced MCC powder was commercially feasible. This research also provides a detailed understanding of the effect of calcium reduction on the functional properties of resultant MCC dispersions. It showed that calcium reduction could improve the solubility of the powders and heat stability and foam capacity of the dispersions.

12.
J Dairy Sci ; 105(7): 5700-5713, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35525620

RESUMEN

Our objectives were to determine the level of milk-derived whey protein (MDWP) removal necessary to achieve no detectable sulfur/eggy flavor in ultrapasteurized fat-free micellar casein concentrate (MCC) beverages (6.5% protein) and in the same beverages containing 1 and 2% milk fat. Micellar casein concentrate with 95% MDWP removal was produced from skim milk (50°C) with a 3×, 3-stage ceramic microfiltration (MF) process using 0.1-µm pore size graded permeability membranes (n = 3). In experiment 1, MCC-based beverages at about 6.5% (wt/wt) true protein were formulated at a fat content of 0.15% fat (wt/wt) at 4 different levels of MDWP removal percentages (95.2%, 91.0%, 83.2%, and 69.3%). In experiment 2, a similar series of beverages at 3 MDWP removal percentages (95.2%, 83.2%, and 69.3%) with 0.1, 1, and 2% fat content were produced. The purity (or completeness of removal of whey protein by MF) of MCC was determined by the Kjeldahl method and sodium dodecyl sulfate (SDS)-PAGE. Sensory properties of beverages were documented by descriptive sensory analysis, and volatile sulfur compounds were evaluated using solid-phase microextraction followed by gas chromatography-triple quadrupole mass spectrometry. The purity of MCC measured by the Kjeldahl method (casein as a percentage of true protein) was higher after thermal treatment than before, whereas MCC purity evaluated by SDS-PAGE was unchanged by heat treatment. The purity of MCC had an effect on the flavor profile of thermally processed beverages at 6.5% protein made with fresh liquid MCC. No sulfur/eggy flavor was detected in MCC beverages when 95% of the MDWP was removed (MCC purity about 93 to 94%) from skim milk by microfiltration at 0.1, 1, and 2% fat. As the fat content of 6.5% protein beverages produced with MCC increased, sulfur/eggy flavor intensity and hydrogen sulfide concentration decreased. However, the effect of increasing milk fat on reducing sulfur/eggy flavor in MCC-based beverages at 6.5% protein was less than that of increasing MDWP removal from MCC. Sulfur off-flavors in neutral-pH dairy protein beverages can be mitigated by use of high-purity MCC or by incorporation of fat in the beverage, or both.


Asunto(s)
Caseínas , Leche , Animales , Bebidas/análisis , Caseínas/análisis , Manipulación de Alimentos/métodos , Micelas , Leche/química , Proteínas de la Leche/análisis , Azufre/análisis , Proteína de Suero de Leche/análisis
13.
Foods ; 11(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35206095

RESUMEN

The objective of this study was to develop an alternative novel process technology for enhancing the rheological and functional properties of Greek-style yogurt (GSY). The GSY was formulated and prepared in the lab using micellar casein concentrate as a source of protein to achieve a protein content of 10% (w/w). The changes in physicochemical, microstructural, rheological, and functional properties of control (C-GSY) and micro- and nano-bubbles-treated GSY (MNB-GSY) were studied and compared before and after storage for 1, 2, 3, and 4 weeks. Before storage, the apparent viscosity at 100 s-1 (η100) was 1.09 Pa·s for C-GSY and 0.71 Pa·s for MNB-GSY. Incorporation of MNBs into GSY significantly (p < 0.05) decreased the η100 by 30% on 1 week of storage. Additionally, the η100 of MNB-GSY was lesser than C-GSY on week 2, 3, and 4 of storage. Notable microstructural changes and significant rheological differences were observed between the C-GSY and MNB-GSY samples. Differences were also noticed in syneresis, which was lower for the MNB-GSY compared with the control. Overall, the incorporation of MNBs into GSY showed considerable improvements in rheological and functional properties. Additionally, it's a simple, cost-effective process to implement in existing GSY production plants.

14.
Foods ; 10(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34828953

RESUMEN

Micellar casein concentrate (MCC) is a novel dairy ingredient with high protein content. However, its poor functional properties impair its potential for further application, highlighting the importance of using innovative processing methods to produce modified MCC, such as ultrasound (US). This work investigated the impact of US on the physical and functional properties of MCC under temperature-controlled and -uncontrolled conditions for different time intervals. Under temperature-controlled ultrasound (TC-US) treatment, a reduction was found in the supernatant particle size of casein micelles. Soluble calcium content and hydrophobicity increased following ultrasound treatment at 20 °C, resulting in a remarkable improvement in emulsification. However, long-time ultrasonication led to an unstable state, causing the MCC solutions to show shear thinning behavior (pseudoplastic fluid). Compared with 50 °C temperature-controlled ultrasonication, ultrasonication at 20 °C had a greater influence on particle size, viscosity and hydrophobicity. These findings indicate that 20 °C TC-US could be a promising technology for the modification of MCC.

15.
J Dairy Sci ; 104(12): 12263-12273, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34531054

RESUMEN

Our objective was to determine the effects of temperature and protein concentration on viscosity increase and gelation of liquid micellar casein concentrate (MCC) at protein concentrations from 6 to 20% during refrigerated storage. Skim milk (∼350 kg) was pasteurized (72°C for 16 s) and filtered through a ceramic microfiltration system to make MCC and replicated 3 times. The liquid MCC was immediately concentrated via a plate ultrafiltration system to 18% protein (wt/wt). The MCC was then diluted to various protein concentrations (6-18%, wt/wt). The highest protein concentrations of MCC formed gels almost immediately on cooling to 4°C, whereas lower concentrations of MCC were viscous liquids. Apparent viscosity (AV) determination using a rotational viscometer, gel strength using a compression test, and protein analysis of supernatants from ultracentrifugation by the Kjeldahl method were performed. The AV data were collected from MCC (6.54, 8.75, 10.66, and 13.21% protein) at 4, 20, and 37°C, and compression force test data were collected for MCC (15.6, 17.9, and 20.3% protein) over a period of 2-wk storage at 4°C. The maximum compressive load was compared at each time point to determine the changes in gel strength over time. Supernatants from MCC of 6.96 and 11.61% protein were collected after ultracentrifugation (100,605 × g for 2 h at 4, 20, and 37°C) and the nitrogen distributions (total, noncasein, casein, and nonprotein nitrogen) were determined. The protein and casein as a percent of true protein concentration in the liquid phase around casein micelles in MCC increased with increasing total MCC protein concentration and with decreasing temperature. Casein as a percent of true protein at 4°C in the liquid phase around casein micelles increased from about 16% for skim milk to about 78% for an MCC containing 11.6% protein. This increase was larger than expected, and this may promote increased viscosity. The AV of MCC solutions in the range of 6 to 13% casein increased with increasing casein concentration and decreasing temperature. We observed a temperature by protein concentration interaction, with AV increasing more rapidly with decreasing temperature at high protein concentration. The increase in AV with decreasing temperature may be due to the increase in protein concentration in the aqueous phase around the casein micelles. The MCC containing about 16 and 18% casein gelled upon cooling to form a gel that was likely a particle jamming gel. These gels increased in strength over 10 d of storage at 4°C, likely due either to the migration of casein (CN) out of the micelles and interaction of the nonmicellar CN to form a network that further strengthened the random loose jamming gel structure or to a gradual increase in voluminosity of the casein micelles during storage at 4°C.


Asunto(s)
Caseínas , Micelas , Animales , Geles , Leche , Viscosidad
16.
Membranes (Basel) ; 11(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34564473

RESUMEN

A systematic selection of different transmembrane pressures (TMP) and levels of diafiltration (DF) was studied to optimize these critical process parameters during the manufacturing of micellar casein concentrate (MCC) using spiral-wound polymeric membrane filtration. Three TMPs (34.5, 62.1, and 103.4 kPa) and four DF levels (0, 70, 100, and 150%) were applied in the study. The effect of the TMP and DF level on flux rates, serum protein (SP) removal, the casein-to-total-protein ratio, the casein-to-true-protein ratio, and the rejection of casein and SP were evaluated. At all transmembrane pressures, the overall flux increased with increases in the DF level. The impact of DF on the overall flux was more pronounced at lower pressures than at higher pressures. With controlled DF, the instantaneous flux was maintained within 80% of the initial flux for the entire process run. The combination of 34.5 kPa and a DF level of 150% resulted in 81.45% SP removal, and a casein-to-true-protein ratio of 0.96. SP removal data from the lab-scale experiments were fitted into a mathematical model using DF levels and the square of TMPs as factors. The model developed in this study could predict SP removal within 90-95% of actual SP removal achieved from the pilot plant experiments.

17.
Foods ; 10(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34441737

RESUMEN

Glycomacropeptide (GMP) shows potential for enhancing the rehydration properties of high-protein dairy powders due to its hydrophilic nature. This study involved formulating micellar casein concentrate (MCC) solutions (8.6% final protein content) with 0, 10, and 20% GMP as a percentage of total protein, and investigated the physicochemical and rehydration properties of the resultant freeze-dried powders (P-MCC-0G, P-MCC-10G, and P-MCC-20G, respectively). The surface charges of caseins in the control MCC and 10 or 20% GMP blended solutions were -25.8, -29.6, and -31.5 mV, respectively. Tablets prepared from P-MCC-10G or P-MCC-20G powders displayed enhanced wettability with contact angle values of 80.6° and 79.5°, respectively, compared with 85.5° for P-MCC-0G. Moreover, blending of GMP with MCC resulted in faster disintegration of powder particles during rehydration (i.e., dispersibility) compared to P-MCC-0G. Faster and more extensive release of caseins from powder particles into solution was evident with the increasing proportion of GMP, with the majority of GMP released within the first 15 min of rehydration. The results of this study will contribute to further development of formulation science for achieving enhanced solubility characteristics of high-protein dairy powder ingredients, such as MCC.

18.
Compr Rev Food Sci Food Saf ; 20(5): 4426-4449, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34288367

RESUMEN

Micellar casein concentrate (MCC) is a novel ingredient with high casein content. Over the past decade, MCC has emerged as one of the most promising dairy ingredients having applications in beverages, yogurt, cheese, and process cheese products. Industrially, MCC is manufactured by microfiltration (MF) of skim milk and is commercially available as a liquid, concentrated, or dried containing ≥9, ≥22, and ≥80% total protein, respectively. As an ingredient, MCC not only imparts a bland flavor but also offers unique functionalities such as foaming, emulsifying, wetting, dispersibility, heat stability, and water-binding ability. The high protein content of MCC represents a valuable source of fortification in a number of food formulations. For the last 20 years, MCC is utilized in many applications due to the unique physiochemical and functional characteristics. It also has promising applications to eliminate the cost of drying by producing concentrated MCC. This work aims at providing a succinct overview of the historical progress of the MCC, a review on the manufacturing methods, a discussion of MCC properties, varieties, and applications.


Asunto(s)
Caseínas , Queso , Animales , Micelas , Leche , Yogur
19.
Foods ; 11(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35010150

RESUMEN

Micellar casein concentrate (MCC) is a high protein ingredient (obtained by microfiltration of skim milk) with an elevated level of casein as a percentage of total protein (TP) compared to skim milk. It can be used as an ingredient in cheese making. Feta-type cheese is a brined soft cheese with a salty taste and acid flavor. We theorize that Feta-type cheese can be produced from MCC instead of milk, which can improve the efficiency of manufacture and allow for the removal of whey proteins before manufacturing Feta-type cheese. The objectives of this study were to develop a process of producing Feta-type cheese from MCC and to determine the optimum protein content in MCC to make Feta-type cheese. MCC solutions with 3% (MCC-3), 6% (MCC-6), and 9% (MCC-9) protein were prepared and standardized by mixing water, MCC powder, milk permeate, and cream to produce a solution with 14.7% total solids (TS) and 3.3% fat. Thermophilic cultures were added at a rate of 0.4% to MCC solutions and incubated at 35 °C for 3 h to get a pH of 6.1. Subsequently, calcium chloride and rennet were added to set the curd in 20 min at 35 °C. The curd was then cut into cubes, drained for 20 h followed by brining in 23% sodium chloride solutions for 24 h. Compositional analysis of MCC solutions and cheese was carried out. The yield, color, textural, and rheological measurements of Feta-type cheese were evaluated. Feta-type cheese was also made from whole milk as a control. This experiment was repeated three times. The yield and adjusted yield of Feta-type cheese increased from 19.0 to 54.8 and 21.4 to 56.5, respectively, with increasing the protein content in MCC from 3% to 9%. However, increasing the protein content in MCC did not show significant differences in the hardness (9.2-9.7 kg) of Feta-type cheese. The color of Feta-type cheese was less white with increasing the protein content in MCC. While the yellowish and greenish colors were high in Feta-type cheese made from MCC with 3% and 6% protein, no visible differences were found in the overall cheese color. The rheological characteristics were improved in Feta-type cheese made from MCC with 6% protein. We conclude that MCC with different levels of protein can be utilized in the manufacture of Feta-type cheese.

20.
Ultrason Sonochem ; 47: 10-16, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29908598

RESUMEN

This work investigated the impact of high intensity ultrasound (HIUS) pretreatment on the functional properties and structural characteristics of micellar casein concentrate (MCC). Microfiltered casein protein retentates were treated with HIUS for 0.5, 1, 2, and 5 min prior to spray drying. The results showed that conductivity, solubility, emulsifying, gelling increased significantly as the ultrasonic time prolonged, but the change of pH value were insignificant. In addition, the structural characteristics of MCC for all samples were studied. There was an increase in surface hydrophobicity (Ho) and a reduction in particle size compared with the control (without HIUS pretreatment). The secondary structure of HIUS pretreated MCC samples changed significantly with an increase in ß-sheets and random coils and a reduction in α-helix and ß-turn. It can be speculated that HIUS pretreatment facilitate the change of functional properties of MCC and these changes would promote its application in food industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA