Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.789
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124989, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154403

RESUMEN

A newly developed 2H5MA-MOF sensor by covalently linking NH2-MIL-53(Al) with 2'-Hydroxy-5'-methylacetophenon, designed for highly sensitive and selective detection of Cd2+ ions using fluorometric methods. Detailed structural and morphological analyses confirmed the sensor's unique properties. It demonstrated an impressive linear detection range from 0 to 2 ppm, with an exceptionally low detection limit of 5.77 × 10-2 ppm and a quantification limit of 1.75 × 10-1 ppm, indicating its high sensitivity (R2 = 0.9996). The sensor also responded quickly, detecting Cd2+ within just 30 s at pH 4. We successfully tested it on real samples of tap water and human blood plasma, achieving recovery rates between 96 % and 104 %. The accuracy of these findings was further validated by comparison with ICP-OES. Overall, the 2H5MA-MOF sensor shows great potential for fast, ultra-sensitive, and reliable detection of Cd2+ ions, making it a promising tool for environmental and biomedical applications.


Asunto(s)
Cadmio , Agua Potable , Límite de Detección , Estructuras Metalorgánicas , Cadmio/sangre , Cadmio/análisis , Humanos , Estructuras Metalorgánicas/química , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/sangre , Iones/sangre , Concentración de Iones de Hidrógeno
2.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095155

RESUMEN

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Dióxido de Carbono/química , Adsorción , Estructuras Metalorgánicas/química , Contaminantes Atmosféricos/química , Carbón Orgánico/química
3.
Mater Today Bio ; 28: 101165, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221218

RESUMEN

The antiviral effect of four porphyrin-based Metal-Organic Frameworks (PMOFs) with Al and Zr, namely Al-TCPP, PCN-222, PCN-223 and PCN-224 was assessed for the first time against HCoV-229E, two highly pathogenic coronaviruses (SARS-CoV-2 and MERS-CoV) and hepatitis C virus (HCV). Infection tests in vitro were done under dark or light exposure for different contact times, and it was found that 15 min of light exposure were enough to give antiviral properties to the materials, therefore inactivating HCoV-229E by 99.98 % and 99.96 % for Al-TCPP and PCN-222. Al-TCPP diminished the viral titer of SARS-CoV-2 greater than PCN-222 in the same duration of light exposure, having an effect of 99.95 % and 93.48 % respectively. Next, Al-TCPP was chosen as the best candidate possessing antiviral properties and was tested against MERS-CoV and HCV, showcasing a reduction of infectivity of 99.28 % and 98.15 % respectively for each virus. The mechanism of the antiviral activity of the four PMOFs was found to be the production of singlet oxygen 1O2 from the porphyrin ligand TCPP when exposed to visible light, by using sodium azide (NaN3) as a scavenger, that can later attack the phospholipids on the envelope of the viruses, thus preventing their entry into the cells.

4.
Adv Sci (Weinh) ; : e2406890, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225582

RESUMEN

Interactions between lone pairs and aromatic π systems are significant across biology and self-assembled materials. Herein, employing an achiral confinement metal-organic framework (MOF) encapsulates guest molecules, it is successfully realized that lone pair (lp)-π interaction induces fluorescence "turn-on" and circularly polarized luminescence for the first time. The MOFs synthesized based on naphthalenediimide show nearly non-emissive, which can be light-up by introducing acetone or ester guests containing lone pairs-π interaction. Furthermore, the introduction of a series of lp-rich chiral esters induces supramolecular chirality as well as circularly polarized luminescence in achiral MOFs, while also observing chiral adaptability. This work first demonstrates the luminescence and chiral induction via lone pair electrons-π interactions, presenting a fresh paradigm for the advancement of chiroptical materials.

5.
J Chromatogr A ; 1736: 465352, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39255650

RESUMEN

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are pervasive contaminants in aquatic environments. They are characterized by persistence, toxicity, bioaccumulation, and long-range transport, significantly threatening human health. The development of sensitive methods for nitro-PAH analysis in environmental samples is in great need. This study developed a novel carbonaceous SPME coating derived from metal-organic framework (MOF), namely a spherical assembly consisting of carbon nanorods with hierarchical porosity (HP-MOF-C), for the extraction and determination of nitro-PAHs in waters. The HP-MOF-C coated fiber demonstrated superior nitro-PAH extraction efficiencies, with enrichment factors 2∼70 times higher than commercial fibers. This enhancement was due to the strong hydrophobic, π-π electron coupling/stacking, and π-π electron donor-acceptor interactions between the carbonaceous framework of HP-MOF-C and the nitro-PAHs. Moreover, the unique hierarchical porous structure of HP-MOF-C accelerated the diffusion of nitro-PAHs, further facilitating their enrichment. The fiber also exhibited good thermal stability, remarkable chemical stabilities against common acid, base, and polar/non-polar solvents, and long service life (> 150 SPME cycles). The nitro-PAH determination method based on HP-MOF-C coating yielded wide linear ranges, low detection limits (0.4∼5.0 ng L-1), satisfactory repeatability and reproducibility, and good recoveries in real water samples. The proposed method was considered to be green according to the Analytical GREEnness assessment. The present study not only offers an efficient SPME coating for the enrichment of nitro-PAHs, but also provides insights into the design of porous coating materials.

6.
Colloids Surf B Biointerfaces ; 245: 114209, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39255750

RESUMEN

Abnormal cell growth and proliferation can lead to tumor formation and cancer, one of the most fatal diseases worldwide. Hydrogen peroxide (H2O2) has emerged as a cancer biomarker, with its concentration being crucial for distinguishing cancer cells from normal cells. Herein, a cost-effective and enzymeless electrochemical sensing system for the monitoring of intracellular H2O2 has been constructed. The sensor is fabricated using gold nanoparticles embedded bimetallic copper/nickel metal organic framework (Au-CNMOF) immobilized reduced graphene oxide (RGO) modified screen printed electrode (SPE). The synthesized materials were characterized and confirmed by XRD, FTIR, SEM with EDS, and electrochemical analysis. The fabricated sensor displayed a redox peak at a formal potential (E°) of -0.155 V, corresponding to CuII/I redox couple of CNMOF in 0.1 M phosphate buffer. Electrochemical investigations revealed that the proposed sensor has a large electrochemical active surface area (1.113 cm2) and a higher surface roughness (5.67). Additionally, the sensor demonstrated excellent electrocatalytic activity towards H2O2 at -0.3 V, over a wide linear detection range from 28.5 µM to 4.564 mM with a limit of detection of 4.2 µM (S/N=3). Furthermore, the proposed sensor exhibits excellent stability, repeatability, reproducibility, and good anti-interference activity. Ultimately, the sensor was validated through real-time analysis of H2O2 released from cancer cells, successfully quantifying the released H2O2. The developed sensor holds great promise for real-time H2O2 analysis, with potential applications in clinical diagnostics, biological research and environmental monitoring.

7.
Adv Mater ; : e2405494, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252688

RESUMEN

The efficacy of radiotherapy (RT) is limited by inefficient X-ray absorption and reactive oxygen species generation, upregulation of immunosuppressive factors, and a reducing tumor microenvironment (TME). Here, the design of a mitochondria-targeted and digitonin (Dig)-loaded nanoscale metal-organic framework, Th-Ir-DBB/Dig, is reported to overcome these limitations and elicit strong antitumor effects upon low-dose X-ray irradiation. Built from Th6O4(OH)4 secondary building units (SBUs) and photosensitizing Ir(DBB)(ppy)2 2+ (Ir-DBB, DBB = 4,4'-di(4-benzoato)-2,2'-bipyridine; ppy = 2-phenylpyridine) ligands, Th-Ir-DBB exhibits strong RT-radiodynamic therapy (RDT) effects via potent radiosensitization with high-Z SBUs for hydroxyl radical generation and efficient excitation of Ir-DBB ligands for singlet oxygen production. Th-Ir-DBB/Dig releases digitonin in acidic TMEs to trigger disulfidptosis of cancer cells and sensitize cancer cells to RT-RDT through glucose and glutathione depletion. The released digitonin simultaneously downregulates multiple immune checkpoints in cancer cells and T cells through cholesterol depletion. As a result, Th-Ir-DBB/dig plus X-ray irradiation induces strong antitumor immunity to effectively inhibit tumor growth in mouse models of colon and breast cancer.

8.
Talanta ; 281: 126812, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243440

RESUMEN

Because of rapid industrialization and agriculturalization, solving the pressing problems of environment pollution, especially water and food quality, requires innovative solutions. In this paper, a novel and versatile metal-organic framework (ZIF-8)-hybrid monolithic column (ZIF-HMC) was prepared for in-tube solid-phase microextraction (IT-SPME) of organic nitrogen pesticides (ONPs). The prepared monolithic columns had superior adsorption sites, high porosity, excellent permeability, and ideal specific surface area based on Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Thermal Field Emission Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), X-ray Photoelectron Spectroscopy (XPS), and N2 adsorption-desorption. The ZIF-HMC contained a large number of nitrogen and oxygen atoms, benzene rings and ZIF-8, which could synergistically promote the adsorption efficiency of ONPs through multiple interactions, such as hydrogen bonding, π-π accumulation, hydrophobic interactions, cation-π interactions, and pore adsorption by MOFs. Under the optimal conditions, a simple, efficient, and sensitive method for the analysis of six organic pesticides in environmental water samples was developed by using the ZIF-HMC as the extraction medium coupled with high performance liquid chromatography-ultraviolet (HPLC-UV). The method had a wide linear range (0.63-1000 µg L-1), a low detection limit (0.19-1.91 µg L-1) and satisfactory recoveries (87.4 %-110.2 %), the linear correlation coefficient was (R2) 0.9972-0.9995 and the relative standard deviation (RSD) was less than 2.64 %. The study had demonstrated the potential application of the developed method for the enrichment and analysis of organic pesticides in complex matrices of environmental samples, as well as the feasibility of MOFs materials for IT-SPME sample preparation.

9.
Int J Pharm ; 665: 124665, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236772

RESUMEN

Stimuli-responsive nanoplatforms have been popular in controlled drug delivery research because of their ability to differentiate the tumor microenvironment from the normal tissue environment in a spatiotemporally controllable manner. The synergistic therapeutic approach of combining cancer chemotherapy with photothermal tumor ablation has improved the therapeutic efficacy of cancer therapeutics. In this study, a UiO-66 metal organic framework (MOF)-based system loaded with doxorubicin (DOX), surface decorated with the photothermal agents indocyanine green (ICG) and polydopamine (PDA), and conjugated with transferrin (TF) was successfully designed to operate as a responsive system to pH changes, featuring photothermal capabilities and target specificity for the purpose of treating breast cancer. The synthesized nanoplatform benefits from its uniform size, excellent DOX encapsulation efficiency (91.66 %), and efficient pH/NIR-mediated controlled release of the drug. In vitro photothermal studies indicate excellent photothermal stability of the formulation even after 6 on-off cycles of NIR irradiation. The in vitro cytotoxicity assessment using an NIR laser (808 nm) revealed that the DOX-loaded functionalized UiO-66 nanocarriers had outstanding inhibitory effects on 4T1 cells because of synergistic chemo-photo therapies, with no substantial toxicity by the carriers. In addition, cellular uptake evaluations revealed that UiO-DOX-ICG@PDA-TF could specifically target 4T1 cells on the basis of receptor-mediated internalization of transferrin receptors. Additionally, in vivo toxicity studies in Wistar rats indicated no signs of significant toxicity. The UiO-based nanoformulations effectively inhibited and destroyed cancer cells under 808 nm laser irradiation because of their minimal toxicity, strong biocompatibility, and outstanding synergistic chemo/photothermal/photodynamic treatment.

10.
J Colloid Interface Sci ; 678(Pt B): 559-569, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39260303

RESUMEN

Proton exchange membranes (PEMs) play an important role in fuel cells. For realizing a nanofiber (NF) structure design in PEMs, the material should have tunable pores and a high specific area. In this study, we attempt to design a novel NF with synergistic architecture doped MOF for constructing three-dimensional (3D) proton conduction networks in PEMs. In this framework, UiO-66-COOH serves as a platform for proton sites to synergistically promote proton conductivity via polyvinylpyrrolidone dissolution, hydrolyzation of polyacrylonitrile, and sulfamic acid functionalization of the shell-layer NF. Benefiting from enriched proton-transfer sites in NFs, the obtained composite membrane overcomes the trade-off among proton conductivity, methanol permeability, and mechanical stability. The composite membrane with 50 % fiber (Nafion/S@NF-50) exhibited a high proton conductivity of 0.212 S cm-1 at 80 °C and 100 % relative humidity, suppressed methanol permeability of 0.66 × 10-7 cm2 s-1, and the maximum power density of direct methanol fuel cell is 182.6 mW cm-2. Density functional theory was used to verify the important role of sulfamic acid in proton transfer, and the activation energy barriers under anhydrous and hydrous conditions are only 0.337 and 0.081 kcal, respectively. This study opens up new pathways for synthesizing NF composite PEMs.

11.
ACS Appl Mater Interfaces ; 16(36): 47348-47356, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39223076

RESUMEN

The development of effective multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven photocatalysis holds great significance. In this study, we incorporated two multibranched cyclometallated iridium(III) modules with varying degrees of conjugation onto MPA-inert metal-organic frameworks (MOFs) to active MPA performance. Subsequently, the MOFs were further modified with Co(II) and hyaluronic acid (HA) to fabricate MINCH and MISCH, respectively. By introducing octupolar molecules and expanding the conjugation, MISCH exhibited a larger MPA cross section for efficient NIR light absorption and improved carrier transfer, leading to outstanding NIR light-driven multiphoton photocatalytic hydrogen production. Moreover, the HA modification enabled MISCH to achieve specific multiphoton photocatalytic hydrogen therapy for cancer cells. This study provides valuable insights into constructing highly active MPA materials for NIR light-driven photocatalysis, presenting a potential platform for hydrogen therapy in tumor treatment.

12.
Chemosphere ; 364: 143249, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233296

RESUMEN

Conventional electro-Fenton (EF) process at acidic pH ∼3 is recognized as a highly effective strategy to degrade organic pollutants; however, homogeneous metal catalysts cannot be employed in more alkaline media. To overcome this limitation, pyrolytic derivatives from metal-organic frameworks (MOFs) have emerged as promising heterogeneous catalysts. Cu-based MOFs were prepared using trimesic acid as the organic ligand and different pyrolysis conditions, yielding a set of nano-Cu/C catalysts that were analyzed by conventional methods. Among them, XPS revealed the surface of the Cu/C-A2-Ar/H2 catalyst was slightly oxidized to Cu(I) and, combined with XRD and HRTEM data, it can be concluded that the catalyst presents a core-shell structure where metallic copper is embedded in a carbon layer. The antihistamine diphenhydramine (DPH), spiked into either synthetic Na2SO4 solutions or actual urban wastewater, was treated in an undivided electrolytic cell equipped with a DSA-Cl2 anode and a commercial air-diffusion cathode able to electrogenerate H2O2. Using Cu/C as suspended catalyst, DPH was completely degraded in both media at pH 6-8, outperforming the EF process with Fe2+ catalyst at pH 3 in terms of degradation rate and mineralization degree thanks to the absence of refractory Fe(III)-carboxylate complexes that typically decelerate the TOC abatement. From the by-products detected by GC/MS, a reaction sequence for DPH mineralization is proposed.

13.
Polymers (Basel) ; 16(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39274177

RESUMEN

The exploitation of high-performance membranes selective for propylene is important for developing energy-efficient propylene/propane (C3H6/C3H8) separation technologies. Although metal-organic frameworks with a molecular sieving property have been considered promising filler materials in mixed-matrix membranes (MMMs), their use in practical applications has been challenging due to a lack of interface compatibility. Herein, we adopted a surface coordination strategy that involved rationally utilizing carboxyl-functionalized PIM-1 (cPIM) and ZIF-8 to prepare a mixed-matrix membrane for efficient propylene/propane separation. The interfacial coordination between the polymer and the MOF improves their compatibility and eliminates the need for additional modification of the MOF, thereby maximizing the inherent screening performance of the MOF filler. Additionally, the utilization of porous PIM-1 guaranteed the high permeability of the MMMs. The obtained MMMs exhibited excellent separation performance. The 30 wt% ZIF-8/cPIM-1 membrane performed the best, exhibiting a high C3H6 permeability of 1023 Barrer with a moderate C3H6/C3H8 selectivity of 13.97 under 2 bars of pressure. This work presents a method that can feasibly be used for the preparation of defect-free MOF-based MMMs for specific gas separations.

14.
Molecules ; 29(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275034

RESUMEN

Morphological control of metal-organic frameworks (MOFs) at the micro/nanoscopic scale is critical for optimizing the electrochemical properties of them and their derivatives. In this study, manganese organic phosphate (Mn-MOP) with three distinct two-dimensional (2D) morphologies was synthesized by varying the molar ratio of Mn2+ to phenyl phosphonic acid, and one of the morphologies is a unique palm leaf shape. In addition, a series of 2D Mn-MOP derivatives were obtained by calcination in air at different temperatures. Electrochemical studies showed that 2D Mn-MOP derivative calcined at 550 °C and exhibited a superior specific capacitance of 230.9 F g-1 at 0.5 A g-1 in 3 M KOH electrolyte. The aqueous asymmetric supercapacitor and the constructed flexible solid-state device demonstrated excellent rate performance. This performance reveals the promising application of 2D Mn-MOP materials for energy storage.

15.
Biosens Bioelectron ; 266: 116717, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39232435

RESUMEN

Epithelial cell adhesion molecule (EpCAM), which is overexpressed in breast cancer cells and participates in cell signaling, migration, proliferation, and differentiation, has been utilized as a biomarker for cancer diagnosis and therapeutic prognosis. Here, a dual-signal readout nonenzymatic aptasensor is fabricated for the evaluation of EpCAM at the level of three breast cancer cell lines. The central principle of this enzyme-free aptasensor is the use of double hook-type aptamers (SYL3C and SJ3C2)-functionalized magnetic iron oxide (Fe3O4) as capture probes and quasi-CoFe prussian blue analogs (QCoFe PBAs) as nonenzymatic signal probes for colorimetric and electrochemical analysis. Following ligand detachment, the CoFe PBA was transformed to QCoFe PBA (calcined at 350 °C for 1 h), with its metal active sites exposed by controllable pyrolysis. We found that the enhanced sensitivity was attributed to the resonance effect of QCoFe PBA with the remarkable enzymatic properties. The dual-signal readout nonenzymatic aptasensor exhibited limits of detection for EpCAM as low as 0.89 pg mL-1 and 0.24 pg mL-1, within a wide linear range from 0.001 to 100 ng mL-1, respectively. We successfully employed this nonenzymatic aptasensor for monitoring EpCAM expression in three breast cancer cell lines, which provides an economical and robust alternative to costly and empirical flow cytometry. The dual-signal readout nonenzymatic aptasensor provides rapid, robust, and promising technological support for the accurate management of tumors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Neoplasias de la Mama , Colorimetría , Técnicas Electroquímicas , Molécula de Adhesión Celular Epitelial , Humanos , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Colorimetría/métodos , Técnicas Electroquímicas/métodos , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Límite de Detección , Femenino , Ferrocianuros/química
16.
Mikrochim Acta ; 191(10): 605, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287661

RESUMEN

An electrochemical sensor composed of conductive metal-organic framework [Ni3(HITP)2] and molecular imprinted polymers (MIP) is fabricated to detect dopamine. Ni3(HITP)2 promotes electrons transfer due to the structure of in-plane charge delocalization and layered expansion conjugation. The combination of MIP with Ni3(HITP)2 improves the selectivity and conductivity, exhibiting a wide detection range (0.06 ~ 200 µM) and a low detection limit (0.109 µM). The kinetic mechanism on the electrode surface is an adsorption controlled process, with the equal number of electrons and protons participating in oxidation in the electrocatalytic process of catechol converting to o-quinone.


Asunto(s)
Dopamina , Técnicas Electroquímicas , Electrodos , Límite de Detección , Polímeros Impresos Molecularmente , Níquel , Dopamina/química , Polímeros Impresos Molecularmente/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Níquel/química , Estructuras Metalorgánicas/química , Oxidación-Reducción , Catecoles/química
17.
Mikrochim Acta ; 191(10): 606, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287790

RESUMEN

A bilayer MOF reporter (ZIF-67@FAM-mRNA@ZIF-8) was synthesized, and the ZIF-67 was used as a carrier and fluorescent quencher to connect the FAM reporter through electrostatic adsorption and coordination effect. The ZIF-8 covering the outer layer can improve the stability of the probe and cell permeability, which helps the FAM reporter effectively release. After entering the cancer cells, the acidic environment in the cells induced the decomposition of ZIF-8. The excess ATP in the tumor cells competitively binds ZIF-67, causing the FAM reporter to shed and restore fluorescence. The shed FAM reporter was specifically bound to the overexpressed miRNA-21 in breast cancer cells to achieve fluorescence imaging and therapy of breast cancer. The results of specific imaging and apoptosis experiments of breast cancer cells indicate that bilayer MOF nanomachine provides an effective nanotherapy platform for accurate fluorescence imaging.


Asunto(s)
Neoplasias de la Mama , Colorantes Fluorescentes , Estructuras Metalorgánicas , MicroARNs , Imagen Óptica , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Estructuras Metalorgánicas/química , Femenino , Colorantes Fluorescentes/química , MicroARNs/análisis , Apoptosis/efectos de los fármacos , Células MCF-7 , Línea Celular Tumoral , Imidazoles
18.
Chemosphere ; 364: 143250, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251156

RESUMEN

Despite the keen interest in potentially using the metal-organic framework (MOF) in advanced oxidation processes (AOPs), their application for environmental abatement and the corresponding degradation mechanisms have remained largely elusive. This study explores the use of cobalt-based MOF (CoMOF) for peroxymonosulfate (PMS) activation to remove tetracycline (TC) from water resources. Under optimal conditions, the given catalytic system could achieve a TC removal of 83.3%. Radical quenching tests and EPR analysis revealed that SO4•-, HO•, •O2-, and 1O2 could participate in the catalytic degradation, but the discernible removal mechanism was mainly ascribed to the nonradical pathway induced by 1O2. At only 5 mg/L of CoMOF, the performance of the catalytic system was superior to that of PMS alone for different types of micropollutants. The CoMOF/PMS system could also reliably deal with typical anions in water, such as Cl-, SO42-, HCO3-, and PO43-. The MOF catalyst could last for four cycles with a minor decrease in reactivity of ∼30%. However, the removal performance decreased markedly when aromatic natural organic matter (NOM) were present in the water bodies, and the effectiveness was lower in alkaline or acidic environments. Our work offers insights into the catalytic degradation of CoMOF/PMS applied in contaminated water remediation and serves as a baseline for fabricating an efficient MOF with enhanced catalytic performance and stability.

19.
Biosens Bioelectron ; 267: 116784, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39288708

RESUMEN

Nanozymes are potential candidates for constructing sensors due to their adjustable activity, high stability, and high cost-effectiveness. However, due to the lack of reasonable means, designing and preparing efficient nanozymes remains challenging. Herein, inspired by the property of natural laccase, we applied the novel and facile low-temperature plasma (LTP) technology to fabricate a series of different base-ligand Cu metal organic framework (MOF) nanozymes (namely, A-Cu, G-Cu, C-Cu and T-Cu nanozymes) with laccase-like activity successfully. Owing to the different catalytic capacities of four types of base-Cu-MOF nanozymes in the response to five common effective bioactive substances, we constructed the nanozyme-encoded array sensor for the identification of different bioactive compounds. As a result, the four-channel colorimetric sensor array was constructed, in which four laccase-like nanozymes were utilized as the sensing units, achieving high-throughput, high-sensitivity and rapid detection/identification of five common bioactive compounds in the concentration range of 1.5-150 µg mL-1 through different color output patterns. It is worth noting that the as-prepared sensor array can successfully distinguish the natural bioactive compounds in a variety of real samples. Furthermore, with the assistance of smartphones, we also designed a portable smart sensing approach for detecting the bioactive compounds effectively in food. This study has therefore not only provided an effective way for preparation highly effectively nanozymes, but also established a new sensing platform for intelligent sensing of bioactive components in food.

20.
Angew Chem Int Ed Engl ; : e202414823, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291298

RESUMEN

The metal-organic frameworks (MOFs) attract interest as potential catalysts whose catalytic properties are driven by defects. Several methods have been proposed for the defects-inducing synthesis of MOFs. However, the active species formed on the defective sites remain elusive and uncharacterized, as the spectroscopic fingerprints of these species are hidden by the regular structure signals. In this work, we have performed the synthesis of ZIF-8 MOF with defect-inducing procedures using fully deuterated 2-methylimidazolate ligands to enhance the defective sites' visibility. By combining 1H and 31P MAS NMR spectroscopy and X-ray absorption spectroscopy, we have found evidence for the presence of different structural hydroxyl Zn-OH groups in the ZIF-8 materials. It is demonstrated that the ZIF-8 defect sites are represented by Zn-OH hydroxyl groups with the signals at 0.3 and -0.7 ppm in 1H MAS NMR spectrum. These species are of basic nature and may be responsible for the catalytic activity of the ZIF-8 material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA