Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(35): 11067-11074, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39162290

RESUMEN

The generation of ultrashort electron wavepackets is crucial for the development of ultrafast electron microscopes. Recent studies on Coulomb-correlated few-electron number states, photoemitted from sharp metallic tapers, have shown emission nonlinearities in the multiphoton photoemission regime which scale with the electron number. Here, we study few-electron photoemission from gold nanotapers triggered by few-cycle near-infrared pulses, demonstrating extreme 20th-order nonlinearities for electron triplets. We report interferometric autocorrelation traces of the electron yield that are quenched to a single emission peak with subfemtosecond duration due to these high nonlinearities. The modulation of the emission yield by the carrier-envelope phase suggests that electron emission predominantly occurs during a single half cycle of the driving laser field. When applying a bias voltage to the tip, recollisions in the electron trajectories are suppressed and coherent subcycle electron beams are generated with promising prospects for ultrafast electron microscopy with subcycle time resolution.

2.
Beilstein J Nanotechnol ; 14: 1178-1199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090731

RESUMEN

Motivated by the potential of focused-electron-beam-induced deposition (FEBID) in the fabrication of functional gold nanostructures for application in plasmonic and detector technology, we conducted a comprehensive study on [Au(CH3)2Cl]2 as a potential precursor for such depositions. Fundamental electron-induced dissociation processes were studied under single collision conditions, and the composition and morphology of FEBID deposits fabricated in an ultrahigh-vacuum (UHV) chamber were explored on different surfaces and at varied beam currents. In the gas phase, dissociative ionization was found to lead to significant carbon loss from this precursor, and about 50% of the chlorine was on average removed per dissociative ionization incident. On the other hand, in dissociative electron attachment, no chlorine was removed from the parent molecule. Contrary to these observations, FEBID in the UHV setup was found to yield a quantitative loss and desorption of the chlorine from the deposits, an effect that we attribute to electron-induced secondary and tertiary reactions in the deposition process. We find this precursor to be stable at ambient conditions and to have sufficient vapor pressure to be suitable for use in HV instruments. More importantly, in the UHV setup, FEBID with [Au(CH3)2Cl]2 yielded deposits with high gold content, ranging from 45 to 61 atom % depending on the beam current and on the cleanliness of the substrates surface.

3.
Nano Lett ; 23(12): 5528-5534, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37278447

RESUMEN

We report the first observation of the coupling of strong optical near fields to wavepackets of free, 100 eV electrons with <50 fs temporal resolution in an ultrafast point-projection microscope. Optical near fields are created by excitation of a thin, nanometer-sized Yagi-Uda antenna, with 20 fs near-infrared laser pulses. Phase matching between electrons and near fields is achieved due to strong spatial confinement of the antenna near field. Energy-resolved projection images of the antenna are recorded in an optical pump-electron probe scheme. We show that the phase modulation of the electron by transverse-field components results in a transient electron deflection while longitudinal near-field components broaden the kinetic energy distribution. This low-energy electron near-field coupling is used here to characterize the chirp of the ultrafast electron wavepackets, acquired upon propagation from the electron emitter to the sample. Our results bring direct mapping of different vectorial components of highly localized optical near fields into reach.

4.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902132

RESUMEN

Metal nanoparticles are considered as highly promising radiosensitizers in cancer radiotherapy. Understanding their radiosensitization mechanisms is critical for future clinical applications. This review is focused on the initial energy deposition by short-range Auger electrons; when high energy radiation is absorbed by gold nanoparticles (GNPs) located near vital biomolecules; such as DNA. Auger electrons and the subsequent production of secondary low energy electrons (LEEs) are responsible for most the ensuing chemical damage near such molecules. We highlight recent progress on DNA damage induced by the LEEs produced abundantly within about 100 nanometers from irradiated GNPs; and by those emitted by high energy electrons and X-rays incident on metal surfaces under differing atmospheric environments. LEEs strongly react within cells; mainly via bound breaking processes due to transient anion formation and dissociative electron attachment. The enhancement of damages induced in plasmid DNA by LEEs; with or without the binding of chemotherapeutic drugs; are explained by the fundamental mechanisms of LEE interactions with simple molecules and specific sites on nucleotides. We address the major challenge of metal nanoparticle and GNP radiosensitization; i.e., to deliver the maximum local dose of radiation to the most sensitive target of cancer cells (i.e., DNA). To achieve this goal the emitted electrons from the absorbed high energy radiation must be short range, and produce a large local density of LEEs, and the initial radiation must have the highest possible absorption coefficient compared to that of soft tissue (e.g., 20-80 keV X-rays).


Asunto(s)
Nanopartículas del Metal , Fármacos Sensibilizantes a Radiaciones , Nanopartículas del Metal/química , Electrones , Oro/química , Fármacos Sensibilizantes a Radiaciones/química , ADN/química
5.
Z Med Phys ; 33(4): 489-498, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35973908

RESUMEN

In radiotherapy, X-ray or heavy ion beams target tumors to cause damage to their cell DNA. This damage is mainly induced by secondary low energy electrons. In this paper, we report the DNA molecular breaks at the atomic level as a function of electron energy and types of electron interactions using of Monte Carlo simulation. The number of DNA single and double strand breaks are compared to those from experimental results based on electron energies. In recent years, DNA atomistic models were introduced but still the simulations consider energy deposition in volumes of DNA or water equivalent material. We simulated a model of atomistic B-DNA in vacuum, forming 1122 base pairs of 30 nm in length. Each atom has been represented by a sphere whose radius equals the radius of van der Waals. We repeatedly simulated 10 million electrons for each energy from 4 eV to 500 eV and counted each interaction type with its position x, y, z in the volume of DNA. Based on the number and types of interactions at the atomic level, the number of DNA single and double strand breaks were calculated. We found that the dissociative electron attachment has the dominant effect on DNA strand breaks at energies below 10 eV compared to excitation and ionization. In addition, it is straightforward with our simulation to discriminate the strand and base breaks as a function of radiation interaction type and energy. In conclusion, the knowledge of DNA damage at the atomic level helps design direct internal therapeutic agents of cancer treatment.


Asunto(s)
Daño del ADN , Electrones , Método de Montecarlo , ADN/efectos de la radiación , Simulación por Computador
6.
Nanomaterials (Basel) ; 12(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35957158

RESUMEN

Focused-electron-beam-induced deposition (FEBID) is a powerful nanopatterning technique where electrons trigger the local dissociation of precursor molecules, leaving a deposit of non-volatile dissociation products. The fabrication of high-purity gold deposits via FEBID has significant potential to expand the scope of this method. For this, gold precursors that are stable under ambient conditions but fragment selectively under electron exposure are essential. Here, we investigated the potential gold precursor (CH3)AuP(CH3)3 using FEBID under ultra-high vacuum (UHV) and spectroscopic characterization of the corresponding metal-containing deposits. For a detailed insight into electron-induced fragmentation, the deposit's composition was compared with the fragmentation pathways of this compound through dissociative ionization (DI) under single-collision conditions using quantum chemical calculations to aid the interpretation of these data. Further comparison was made with a previous high-vacuum (HV) FEBID study of this precursor. The average loss of about 2 carbon and 0.8 phosphor per incident was found in DI, which agreed well with the carbon content of the UHV FEBID deposits. However, the UHV deposits were found to be as good as free of phosphor, indicating that the trimethyl phosphate is a good leaving group. Differently, the HV FEBID experiments showed significant phosphor content in the deposits.

7.
Nanomaterials (Basel) ; 11(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34578470

RESUMEN

Maximum benefits of chemoradiation therapy with platinum-based compounds are expected if the radiation and the drug are localized simultaneously in cancer cells. To optimize this concomitant effect, we developed the novel chemoradiotherapeutic agent [64Cu]Cu-NOTA-C3-TP by conjugating, via a short flexible alkyl chain spacer (C3), a terpyridine platinum (TP) moiety to a NOTA chelator complexed with copper-64 (64Cu). The decay of 64Cu produces numerous low-energy electrons, enabling the 64Cu-conjugate to deliver radiation energy close to TP, which intercalates into G-quadruplex DNA. Accordingly, the in vitro internalization kinetic and the cytotoxic activity of [64Cu]Cu-NOTA-C3-TP and its derivatives were investigated with colorectal cancer (HCT116) and normal human fibroblast (GM05757) cells. Radiolabeling by 64Cu results in a >55,000-fold increase of cytotoxic potential relative to [NatCu]Cu-NOTA-C3-TP at 72 h post administration, indicating a large additive effect between 64Cu and the TP drug. The internalization and nucleus accumulation of [64Cu]Cu-NOTA-C3-TP in the HCT116 cells were, respectively, 3.1 and 6.0 times higher than that for GM05757 normal human fibroblasts, which is supportive of the higher efficiency of the [64Cu]Cu-NOTA-C3-TP for HCT116 cancer cells. This work presents the first proof-of-concept study showing the potential use of the [64Cu]Cu-NOTA-C3-TP conjugate as a targeted chemoradiotherapeutic agent to treat colorectal cancer.

8.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445690

RESUMEN

Platinum coordination complexes have found wide applications as chemotherapeutic anticancer drugs in synchronous combination with radiation (chemoradiation) as well as precursors in focused electron beam induced deposition (FEBID) for nano-scale fabrication. In both applications, low-energy electrons (LEE) play an important role with regard to the fragmentation pathways. In the former case, the high-energy radiation applied creates an abundance of reactive photo- and secondary electrons that determine the reaction paths of the respective radiation sensitizers. In the latter case, low-energy secondary electrons determine the deposition chemistry. In this contribution, we present a combined experimental and theoretical study on the role of LEE interactions in the fragmentation of the Pt(II) coordination compound cis-PtBr2(CO)2. We discuss our results in conjunction with the widely used cancer therapeutic Pt(II) coordination compound cis-Pt(NH3)2Cl2 (cisplatin) and the carbonyl analog Pt(CO)2Cl2, and we show that efficient CO loss through dissociative electron attachment dominates the reactivity of these carbonyl complexes with low-energy electrons, while halogen loss through DEA dominates the reactivity of cis-Pt(NH3)2Cl2.


Asunto(s)
Bromuros/química , Complejos de Coordinación/química , Compuestos de Platino/química , Antineoplásicos/química , Bromuros/farmacología , Cisplatino/farmacología , Electrones , Platino (Metal) , Compuestos de Platino/farmacología
9.
Phys Med Biol ; 66(17)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34384060

RESUMEN

Purpose.The purpose of this work is to investigate the feasibility of TOPAS-nBio for track structure simulations using tuple scoring and ROOT/Python-based post-processing.Materials and methods.There are several example applications implemented in GEANT4-DNA demonstrating track structure simulations. These examples are not implemented by default in TOPAS-nBio. In this study, the tuple scorer was used to re-simulate these examples. The simulations contained investigations of different physics lists, calculation of energy-dependent range, stopping power, mean free path andW-value. Additionally, further applications of the TOPAS-nBio tool were investigated, focusing on physical interactions and deposited energies of electrons with initial energies in the range of 10-60 eV, not covered in the recently published GEANT4-DNA simulations. Low-energetic electrons are currently of great interest in the radiobiology research community due to their high effectiveness towards the induction of biological damage.Results.The quantities calculated with TOPAS-nBio show a good agreement with the simulations of GEANT4-DNA with deviations of 5% at maximum. Thus, we have presented a feasible way to implement the example applications included in GEANT4-DNA in TOPAS-nBio. With the extended simulations, an insight could be given, which further tracking information can be gained with the track structure code and how cross sections and physics models influence a particle's fate.Conclusion.With our results, we could show the potentials of applying the tuple scorer in TOPAS-nBio Monte Carlo track structure simulations. Using this scorer, a large amount of information about the track structure can be accessed, which can be analyzed as preferred after the simulation.


Asunto(s)
Electrones , Radiobiología , ADN , Estudios de Factibilidad , Método de Montecarlo
10.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360644

RESUMEN

The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Asunto(s)
Daño del ADN , ADN/química , ADN/efectos de la radiación , Electrones/efectos adversos , Animales , Humanos
11.
Angew Chem Int Ed Engl ; 60(28): 15472-15481, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33964189

RESUMEN

Although reactive oxygen species (ROS)-mediated tumor treatments are predominant in clinical applications, ROS-induced protective autophagy promotes cell survival, especially in hypoxic tumors. Herein, X-ray triggered nitrite (NO2- ) is used for hypoxic prostate cancer therapy by inhibiting autophagy and inducing nitrosative stress based on an electrophilic zeolitic imidazole framework (ZIF-82-PVP). After internalization of pH-responsive ZIF-82-PVP nanoparticles, electrophilic ligands and Zn2+ are delivered into cancer cells. Electrophilic ligands can not only consume GSH under hypoxia but also capture low-energy electrons derived from X-rays to generate NO2- , which inhibits autophagy and further elevates lethal nitrosative stress levels. In addition, dissociated Zn2+ specifically limits the migration and invasion of prostate cancer cells through ion interference. In vitro and in vivo results indicate that ZIF-82-PVP nanoparticles under X-ray irradiation can effectively promote the apoptosis of hypoxic prostate cancer cells. Overall, this nitrosative stress-mediated tumor therapy strategy provides a novel approach targeting hypoxic tumors.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Imidazoles/farmacología , Estructuras Metalorgánicas/farmacología , Nanopartículas/química , Neoplasias de la Próstata/tratamiento farmacológico , Zeolitas/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/química , Masculino , Estructuras Metalorgánicas/química , Estrés Nitrosativo/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Rayos X , Zeolitas/química
12.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652878

RESUMEN

The incorporation of modified uracil derivatives into DNA leads to the formation of radical species that induce DNA damage. Molecules of this class have been suggested as radiosensitizers and are still under investigation. In this study, we present the results of dissociative electron attachment to uracil-5-yl O-(N,N-dimethylsulfamate) in the gas phase. We observed the formation of 10 fragment anions in the studied range of electron energies from 0-12 eV. Most of the anions were predominantly formed at the electron energy of about 0 eV. The fragmentation paths were analogous to those observed in uracil-5-yl O-sulfamate, i.e., the methylation did not affect certain bond cleavages (O-C, S-O and S-N), although relative intensities differed. The experimental results are supported by quantum chemical calculations performed at the M06-2X/aug-cc-pVTZ level of theory. Furthermore, a resonance stabilization method was used to theoretically predict the resonance positions of the fragment anions O- and CH3-.


Asunto(s)
Fármacos Sensibilizantes a Radiaciones/química , Algoritmos , Estabilidad de Medicamentos , Electrones , Gases/química , Metilación , Modelos Moleculares
13.
Ultramicroscopy ; 220: 113144, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33126106

RESUMEN

This paper aims to elucidate the effect of native air-formed oxide on the crystallographic contrast between differently oriented copper grains in scanning electron microscope images obtained at energies from 0 eV up to 1 keV. The contrast between the Cu grains is strongly affected by the presence of native oxide. The crystallographic orientation contrast between the grains without covering the native oxide layer is relatively weak at hundreds of eV, negligible at tens of eV, and dramatically increases at energies below 10 eV. At extremely low landing energies, say below ~ 1 eV, the surface potential differences caused by work function variations between the differently oriented Cu grains affect the primary electrons, which enables us to obtain the micrographs with high crystallographic contrast. This contrast becomes surprisingly visible even if the grains are covered by a several nm thick native oxide layer. The presence of the native air-formed oxide layer on the Cu surface is inconsiderable for the contrast formation at energies close to the mirror conditions (< 1 eV). The surface potential differences originating in the substrate can affect the incident electrons through the native oxide film situated on the Cu surface. Scanning low-energy electron microscopy is a powerful tool for mapping local work function differences with a spatial resolution slightly better than 30 nm due to high sensitivity to local electrical potentials.

14.
Phys Med ; 80: 363-372, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33285337

RESUMEN

The effects of low energy electrons in biological tissues have proved to lead to severe damages at the cellular and sub-cellular level. It is due to an increase in the relative biological effectiveness (RBE) of these electrons with a decrease in their penetration range. That is, lower the range higher will be its RBE.Therefore, accurate determination of low energy electron range becomes a key issue for radiation dosimetry. This work reports on in-water electron tracks evaluated at low kinetic energy (1-50 keV) using isotropic mono-energetic point source approach suitably implemented by different general-purpose Monte Carlo codes. For this aim, simulations were performed using PENELOPE, EGSnrc, MCNP6, FLUKA and Geant4-DNA Monte Carlo codes to obtain the particle range, R,R90,R50. Finally, evaluation of dose point kernel (DPK), as used for internal dosimetry, was carried out as an application example. Scaled dose point kernels (sDPK) were estimated for a range of mono-energetic low energy electron sources. The non-negligible differences among the calculated sDPK using different codes were obtained for energy electrons up to 5 keV. It was also observed that differences of in-water range for low-energy electrons, due to the different general-purpose Monte Carlo codes, affected the DPKs used for dosimetry by convolution approach. Finally, the 3D dosimetry was found to be almost not affected at macroscopic clinical scale, whereas non-negligible differences appeared at the microscopic level. Hence, a thorough validation of the used sDPKs have to be performed before they could be used in applications to derive any conclusions.


Asunto(s)
Electrones , Método de Montecarlo , Agua , Simulación por Computador , Radiometría , Efectividad Biológica Relativa
16.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659905

RESUMEN

A liposomal formulation of gold nanoparticles (GNPs) and carboplatin, named LipoGold, was produced with the staggered herringbone microfluidic method. The radiosensitizing potential of LipoGold and similar concentrations of non-liposomal GNPs, carboplatin and oxaliplatin was evaluated in vitro with the human colorectal cancer cell line HCT116 in a clonogenic assay. Progression of HCT116 tumor implanted subcutaneously in NU/NU mice was monitored after an irradiation of 10 Gy combined with either LipoGold, GNPs or carboplatin injected directly into the tumor by convection-enhanced delivery. Radiosensitization by GNPs alone or carboplatin alone was observed only at high concentrations of these compounds. Furthermore, low doses of carboplatin alone or a combination of carboplatin and GNPs did not engender radiosensitization. However, the same low doses of carboplatin and GNPs administered simultaneously by encapsulation in liposomal nanocarriers (LipoGold) led to radiosensitization and efficient control of cell proliferation. Our study shows that the radiosensitizing effect of a combination of carboplatin and GNPs is remarkably more efficient when both compounds are simultaneously delivered to the tumor cells using a liposomal carrier.


Asunto(s)
Neoplasias Colorrectales/terapia , Oro/administración & dosificación , Liposomas/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Compuestos Organoplatinos/farmacología , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Animales , Carboplatino/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioradioterapia/métodos , Portadores de Fármacos/administración & dosificación , Células HCT116 , Humanos , Masculino , Ratones , Ratones Desnudos , Oxaliplatino/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
17.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31877939

RESUMEN

The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A4), d(A8), d(A12), d(A16), and d(A20)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A4) to d(A16), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A20), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA20 sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy.


Asunto(s)
Daño del ADN , ADN/química , Electrones , Modelos Químicos , Nanoestructuras/química , Oligonucleótidos/química , Poli A/química
18.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370253

RESUMEN

Low-energy electrons (LEEs) of energies ≤30 eV are generated in large quantities by ionizing radiation. These electrons can damage DNA; particularly, they can induce the more detrimental clustered lesions in cells. This type of lesions, which are responsible for a large portion of the genotoxic stress generated by ionizing radiation, is described in the Introduction. The reactions initiated by the collisions of 0.5-30 eV electrons with oligonucleotides, duplex DNA, and DNA bound to chemotherapeutic platinum drugs are explained and reviewed in the subsequent sections. The experimental methods of LEE irradiation and DNA damage analysis are described with an emphasis on the detection of cluster lesions, which are considerably enhanced in DNA-Pt-drug complexes. Based on the energy dependence of damage yields and cross-sections, a mechanism responsible for the clustered lesions can be attributed to the capture of a single electron by the electron affinity of an excited state of a base, leading to the formation of transient anions at 6 and 10 eV. The initial capture is followed by electronic excitation of the base and dissociative attachment-at other DNA sites-of the electron reemitted from the temporary base anion. The mechanism is expected to be universal in the cellular environment and plays an important role in the formation of clustered lesions.


Asunto(s)
Antineoplásicos/química , ADN/efectos de la radiación , Electrones , Fármacos Sensibilizantes a Radiaciones/química , Bromouracilo/química , Carboplatino/química , Cisplatino/química , ADN/química , Roturas del ADN de Doble Cadena/efectos de la radiación , Células Eucariotas/química , Células Eucariotas/efectos de la radiación , Humanos , Oligonucleótidos/química , Oligonucleótidos/efectos de la radiación , Oxaliplatino/química , Plásmidos/química , Plásmidos/efectos de la radiación , Radiación Ionizante
19.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426385

RESUMEN

This review article provides a concise overview of electron involvement in DNA radiation damage. The review begins with the various states of radiation-produced electrons: Secondary electrons (SE), low energy electrons (LEE), electrons at near zero kinetic energy in water (quasi-free electrons, (e-qf)) electrons in the process of solvation in water (presolvated electrons, e-pre), and fully solvated electrons (e-aq). A current summary of the structure of e-aq, and its reactions with DNA-model systems is presented. Theoretical works on reduction potentials of DNA-bases were found to be in agreement with experiments. This review points out the proposed role of LEE-induced frank DNA-strand breaks in ion-beam irradiated DNA. The final section presents radiation-produced electron-mediated site-specific formation of oxidative neutral aminyl radicals from azidonucleosides and the evidence of radiosensitization provided by these aminyl radicals in azidonucleoside-incorporated breast cancer cells.


Asunto(s)
Daño del ADN/efectos de la radiación , ADN/genética , Electrones/efectos adversos , Animales , ADN/química , Humanos , Modelos Químicos , Modelos Moleculares , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/genética , Radiación Ionizante
20.
Chemphyschem ; 20(6): 823-830, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30719805

RESUMEN

DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3×10-16  cm2 . The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.


Asunto(s)
Roturas del ADN/efectos de la radiación , ADN/genética , ADN/efectos de la radiación , Electrones , Rayos Ultravioleta , Secuencia de Bases , ADN/química , Fotones , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA