Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
Biotechnol Biofuels Bioprod ; 17(1): 103, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020434

RESUMEN

BACKGROUND: Itaconic acid is a promising bio-based building block for the synthesis of polymers, plastics, fibers and other materials. In recent years, Ustilago cynodontis has emerged as an additional itaconate producing non-conventional yeast, mainly due to its high acid tolerance, which significantly reduces saline waste coproduction during fermentation and downstream processing. As a result, this could likely improve the economic viability of the itaconic acid production process with Ustilaginaceae. RESULTS: In this study, we characterized a previously engineered itaconate hyper-producing Ustilago cynodontis strain in controlled fed-batch fermentations to determine the minimal and optimal pH for itaconate production. Under optimal fermentation conditions, the hyper-producing strain can achieve the theoretical maximal itaconate yield during the production phase in a fermentation at pH 3.6, but at the expense of considerable base addition. Base consumption is strongly reduced at the pH of 2.8, but at cost of production yield, titer, and rate. A techno-economic analysis based on the entire process demonstrated that savings due to an additional decrease in pH control reagents and saline waste costs cannot compensate the yield loss observed at the highly acidic pH value 2.8. CONCLUSIONS: Overall, this work provides novel data regarding the balancing of yield, titer, and rate in the context of pH, thereby contributing to a better understanding of the itaconic acid production process with Ustilago cynodontis, especially from an economic perspective.

3.
Nutrients ; 16(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39064654

RESUMEN

Lacticaseibacillus spp. are genetically close lactic acid bacteria species widely used in fermented products for their technological properties as well as their proven beneficial effects on human and animal health. This study, the first to include such a large collection of heterogeneous isolates (121) obtained from international collections belonging to Lacticaseibacillus paracasei, aimed to characterize the safety traits and technological properties of this important probiotic species, also making comparisons with other genetically related species, such as Lacticaseibacillus casei and Lacticaseibacillus zeae. These strains were isolated from a variety of heterogeneous sources, including dairy products, sourdoughs, wine, must, and human body excreta. After a preliminary molecular characterization using repetitive element palindromic PCR (Rep-PCR), Random Amplification of Polymorphic DNA (RAPD), and Sau-PCR, particular attention was paid to safety traits, evaluating antibiotic resistance profiles, biogenic amine (BA) production, the presence of genes related to the production of ethyl carbamate and diaminobenzidine (DAB), and multicopper oxidase activity (MCO). The technological characteristics of the strains, such as the capability to grow at different NaCl and ethanol concentrations and different pH values, were also investigated, as well as the production of bacteriocins. From the obtained results, it was observed that strains isolated from the same type of matrix often shared similar genetic characteristics. However, phenotypic traits were strain-specific. This underscored the vast potential of the different strains to be used for various purposes, from probiotics to bioprotective and starter cultures for food and feed production, highlighting the importance of conducting comprehensive evaluations to identify the most suitable strain for each purpose with the final aim of promoting human health.


Asunto(s)
Microbiología de Alimentos , Lacticaseibacillus paracasei , Probióticos , Lacticaseibacillus paracasei/genética , Lacticaseibacillus paracasei/metabolismo , Humanos , Aminas Biogénicas/metabolismo , Fermentación , Alimentos Fermentados/microbiología , Técnica del ADN Polimorfo Amplificado Aleatorio , Farmacorresistencia Bacteriana/genética
4.
Biofabrication ; 16(4)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996414

RESUMEN

Riboflavin overproduction byCorynebacterium glutamicumwas achieved by screening synthetic operons, enabling fine-tuned expression of the riboflavin biosynthetic genesribGCAH.The synthetic operons were designed by means of predicted translational initiation rates of each open reading frame, with the best-performing selection enabling riboflavin overproduction without negatively affecting cell growth. Overexpression of the fructose-1,6-bisphosphatase (fbp) and 5-phosphoribosyl 1-pyrophosphate aminotransferase (purF) encoding genes was then done to redirect the metabolic flux towards the riboflavin precursors. The resulting strain produced 8.3 g l-1of riboflavin in glucose-based fed-batch fermentations, which is the highest reported riboflavin titer withC. glutamicum. Further genetic engineering enabled both xylose and mannitol utilization byC. glutamicum, and we demonstrated riboflavin overproduction with the xylose-rich feedstocks rice husk hydrolysate and spent sulfite liquor, and the mannitol-rich feedstock brown seaweed hydrolysate. Remarkably, rice husk hydrolysate provided 30% higher riboflavin yields compared to glucose in the bioreactors.


Asunto(s)
Corynebacterium glutamicum , Ingeniería Metabólica , Riboflavina , Riboflavina/biosíntesis , Riboflavina/química , Riboflavina/metabolismo , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Xilosa/metabolismo , Fermentación , Glucosa/metabolismo , Operón , Manitol/metabolismo , Manitol/química , Reactores Biológicos , Ingeniería Genética
5.
Microorganisms ; 12(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38792693

RESUMEN

Environmental pollution caused by petroleum-derived plastics continues to increase annually. Consequently, current research is interested in the search for eco-friendly bacterial polymers. The importance of Bacillus bacteria as producers of polyhydroxyalkanoates (PHAs) has been recognized because of their physiological and genetic qualities. In this study, twenty strains of Bacillus genus PHA producers were isolated. Production was initially evaluated qualitatively to screen the strains, and subsequently, the strain B12 or Bacillus sp. 12GS, with the highest production, was selected through liquid fermentation. Biochemical and molecular identification revealed it as a novel isolate of Bacillus cereus. Production optimization was carried out using the Taguchi methodology, determining the optimal parameters as 30 °C, pH 8, 150 rpm, and 4% inoculum, resulting in 87% and 1.91 g/L of polyhydroxybutyrate (PHB). Kinetic studies demonstrated a higher production within 48 h. The produced biopolymer was analyzed using Fourier-transform infrared spectroscopy (FTIR), confirming the production of short-chain-length (scl) polyhydroxyalkanoate, named PHB, and differential scanning calorimetry (DSC) analysis revealed thermal properties, making it a promising material for various applications. The novel B. cereus isolate exhibited a high %PHB, emphasizing the importance of bioprospecting, study, and characterization for strains with biotechnological potential.

6.
Microbiome Res Rep ; 2(4): 26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045920

RESUMEN

Aim: Lactococcal skunaviruses are diverse and problematic in the industrial dairy environment. Host recognition involves the specific interaction of phage-encoded proteins with saccharidic host cell surface structures. Lactococcal plasmid pEPS6073 encodes genes required for the biosynthesis of a cell surface-associated exopolysaccharide (EPS), designated 6073-like. Here, the impact of this EPS on Skunavirus sensitivity was assessed. Methods: Conjugal transfer of pEPS6073 into two model strains followed by phage plaque assays and adsorption assays were performed to assess its effect on phage sensitivity. Phage distal tail proteins were analyzed bioinformatically using HHpred and modeling with AlphaFold. Construction of recombinant phages carrying evolved Dits was performed by supplying a plasmid-encoded template for homologous recombination. Results: pEPS6073 confers resistance against a subset of skunaviruses via adsorption inhibition. IFF collection skunaviruses that infect strains encoding the 6073-like eps gene cluster carry insertions in their distal tail protein-encoding (dit) genes that result in longer Dit proteins (so-called evolved Dits), which encode carbohydrate-binding domains. Three skunaviruses with classical Dits (no insertion) were unable to fully infect their hosts following the conjugal introduction of pEPS6073, showing reductions in both adsorption and efficiency of plaquing. Cloning the evolved Dit into these phages enabled full infectivity on their host strains, both wild type and transconjugant carrying pEPS6073, with recombinant phages adsorbing slightly better to the EPS+ host than wild type. Conclusion: The 6073-like EPS potentially occludes the phage receptor for skunaviruses that encode a classical Dit protein. Skunaviruses that infect strains encoding the 6073-like EPS harbor evolved Dits, which likely help promote phage adsorption rather than just allow the phage to circumvent the putative EPS barrier. This work furthers our knowledge of phage-host interactions in Lactococcus and proposes a role for insertions in the Dit proteins of a subset of skunaviruses.

7.
Food Res Int ; 170: 113005, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316074

RESUMEN

In this study we investigated the yeast population present on partially dehydrated Nebbiolo grapes destined for 'Sforzato di Valtellina', with the aim to select indigenous starters suitable for the production of this wine. Yeasts were enumerated, isolated, and identified by molecular methods (5.8S-ITS-RFLP and D1/D2 domain sequencing). A genetic, physiological (ethanol and sulphur dioxide tolerance, potentially useful enzymatic activities, hydrogen sulphide production, adhesive properties, and killer activity) and oenological (laboratory pure micro-fermentations) characterization was also carried out. Based on relevant physiological features, seven non-Saccharomyces strains were chosen for laboratory-scale fermentations, either in pure or in mixed-culture (simultaneous and sequential inoculum) with a commercial Saccharomyces cerevisiae strain. Finally, the best couples and inoculation strategy were further tested in mixed fermentations in winery. In both laboratory and winery, microbiological and chemical analyses were conducted during fermentation. The most abundant species on grapes were Hanseniaspora uvarum (27.4 % of the isolates), followed by Metschnikowia spp. (21.0 %) and Starmerella bacillaris (12.9 %). Technological characterization highlighted several inter- and intra-species differences. The best oenological aptitude was highlighted for species Starm. bacillaris, Metschnikowia spp., Pichia kluyveri and Zygosaccharomyces bailli. The best fermentation performances in laboratory-scale fermentations were found for Starm. bacillaris and P. kluyveri, due to their ability to reduce ethanol (-0.34 % v/v) and enhance glycerol production (+0.46 g/L). This behavior was further confirmed in winery. Results of this study contribute to the knowledge of yeast communities associated with a specific environment, like those of Valtellina wine region.


Asunto(s)
Metschnikowia , Vitis , Vino , Levadura Seca , Saccharomyces cerevisiae , Fermentación
8.
Microorganisms ; 11(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37317152

RESUMEN

Drinking wine is a processed beverage that offers high nutritional and health benefits. It is produced from grape must, which undergoes fermentation by yeasts (and sometimes lactic acid bacteria) to create a product that is highly appreciated by consumers worldwide. However, if only one type of yeast, specifically Saccharomyces cerevisiae, was used in the fermentation process, the resulting wine would lack aroma and flavor and may be rejected by consumers. To produce wine with a desirable taste and aroma, non-Saccharomyces yeasts are necessary. These yeasts contribute volatile aromatic compounds that significantly impact the wine's final taste. They promote the release of primary aromatic compounds through a sequential hydrolysis mechanism involving several glycosidases unique to these yeasts. This review will discuss the unique characteristics of these yeasts (Schizosaccharomyces pombe, Pichia kluyveri, Torulaspora delbrueckii, Wickerhamomyces anomalus, Metschnikowia pulcherrima, Hanseniaspora vineae, Lachancea thermotolerans, Candida stellata, and others) and their impact on wine fermentations and co-fermentations. Their existence and the metabolites they produce enhance the complexity of wine flavor, resulting in a more enjoyable drinking experience.

9.
Microorganisms ; 11(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37374910

RESUMEN

With the expansion of the green products market and the worldwide policies and strategies directed toward a green revolution and ecological transition, the demand for innovative approaches is always on the rise. Among the sustainable agricultural approaches, microbial-based products are emerging over time as effective and feasible alternatives to agrochemicals. However, the production, formulation, and commercialization of some products can be challenging. Among the main challenges are the industrial production processes that ensure the quality of the product and its cost on the market. In the context of a circular economy, solid-state fermentation (SSF) might represent a smart approach to obtaining valuable products from waste and by-products. SSF enables the growth of various microorganisms on solid surfaces in the absence or near absence of free-flowing water. It is a valuable and practical method and is used in the food, pharmaceutical, energy, and chemical industries. Nevertheless, the application of this technology in the production of formulations useful in agriculture is still limited. This review summarizes the literature dealing with SSF agricultural applications and the future perspective of its use in sustainable agriculture. The survey showed good potential for SSF to produce biostimulants and biopesticides useful in agriculture.

10.
J Biol Chem ; 299(8): 104967, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380079

RESUMEN

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the Na+-coupled major facilitator superfamily transporters, which are important for the cellular uptake of molecules including sugars and small drugs. Although the symport mechanisms have been well-studied, mechanisms of substrate binding and translocation remain enigmatic. We have previously determined the sugar-binding site of outward-facing MelBSt by crystallography. To obtain other key kinetic states, here we raised camelid single-domain nanobodies (Nbs) and carried out a screening against the WT MelBSt under 4 ligand conditions. We applied an in vivo cAMP-dependent two-hybrid assay to detect interactions of Nbs with MelBSt and melibiose transport assays to determine the effects on MelBSt functions. We found that all selected Nbs showed partial to complete inhibitions of MelBSt transport activities, confirming their intracellular interactions. A group of Nbs (714, 725, and 733) was purified, and isothermal titration calorimetry measurements showed that their binding affinities were significantly inhibited by the substrate melibiose. When titrating melibiose to the MelBSt/Nb complexes, Nb also inhibited the sugar-binding. However, the Nb733/MelBSt complex retained binding to the coupling cation Na+ and also to the regulatory enzyme EIIAGlc of the glucose-specific phosphoenolpyruvate/sugar phosphotransferase system. Further, EIIAGlc/MelBSt complex also retained binding to Nb733 and formed a stable supercomplex. All data indicated that MelBSt trapped by Nbs retained its physiological functions and the trapped conformation is similar to that bound by the physiological regulator EIIAGlc. Therefore, these conformational Nbs can be useful tools for further structural, functional, and conformational analyses.


Asunto(s)
Anticuerpos de Dominio Único , Simportadores , Anticuerpos de Dominio Único/metabolismo , Melibiosa/metabolismo , Simportadores/metabolismo , Transporte Iónico , Sodio/metabolismo
11.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37286882

RESUMEN

When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.


Asunto(s)
Biotecnología , Industria de Alimentos , Genotipo , Fenotipo
12.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37339909

RESUMEN

Bacteriophages (or phages) represent a persistent threat to the success and reliability of food fermentation processes. Recent reports of phages that infect Streptococcus thermophilus have highlighted the diversification of phages of this species. Phages of S. thermophilus typically exhibit a narrow range, a feature that is suggestive of diverse receptor moieties being presented on the cell surface of the host. Cell wall polysaccharides, including rhamnose-glucose polysaccharides and exopolysaccharides have been implicated as being involved in the initial interactions with several phages of this species. Following internalization of the phage genome, the host presents several defences, including CRISPR-Cas and restriction and modification systems to limit phage proliferation. This review provides a current and holistic view of the interactions of phages and their S. thermophilus host cells and how this has influenced the diversity and evolution of both entities.


Asunto(s)
Bacteriófagos , Fagos de Streptococcus , Bacteriófagos/genética , Streptococcus thermophilus , Reproducibilidad de los Resultados , Polisacáridos/metabolismo
13.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958847

RESUMEN

Yeasts are important microorganisms used in different fermentation processes. The cocoa beans must go through a correct fermentation process to obtain good-quality chocolate, which involves the action of yeasts and bacteria, and yeasts play a crucial role since they act in the first days of fermentation. In coffee, several studies have shown that the microbiota in the fruits is also a relevant factor. The fermentation process (regardless of the processing type) improves the beverage's quality. In this sense, studies using starter cultures in these two raw materials are important for better control of the process, and optimization of fermentation time, in addition to the improvement and diversification of volatile and non-volatile compounds produced by yeasts. Thus, this review discusses the importance and role of yeasts during fermentation, their metabolism, the produced compounds, and how yeast and the different chemical reactions help increase the quality of chocolate and coffee.


Asunto(s)
Cacao , Chocolate , Fermentación , Café/metabolismo , Café/microbiología , Levaduras/metabolismo , Cacao/química , Cacao/metabolismo , Cacao/microbiología , Saccharomyces cerevisiae/metabolismo
14.
Foods ; 12(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36766201

RESUMEN

Spontaneous fermentations that do not rely on backslopping or industrial starter cultures were especially important to the early development of society and are still practiced around the world today. While current literature on spontaneous fermentations is observational and descriptive, it is important to understand the underlying mechanism of microbial community assembly and how this correlates with changes observed in microbial succession, composition, interaction, and metabolite production. Spontaneous food and beverage fermentations are home to autochthonous bacteria and fungi that are naturally inoculated from raw materials, environment, and equipment. This review discusses the factors that play an important role in microbial community assembly, particularly focusing on commonly reported yeasts and bacteria isolated from spontaneously fermenting food and beverages, and how this affects the fermentation dynamics. A wide range of studies have been conducted in spontaneously fermented foods that highlight some of the mechanisms that are involved in microbial interactions, niche adaptation, and lifestyle of these microorganisms. Moreover, we will also highlight how controlled culture experiments provide greater insight into understanding microbial interactions, a modest attempt in decoding the complexity of spontaneous fermentations. Further research using specific in vitro microbial models to understand the role of core microbiota are needed to fill the knowledge gap that currently exists in understanding how the phenotypic and genotypic expression of these microorganisms aid in their successful adaptation and shape fermentation outcomes. Furthermore, there is still a vast opportunity to understand strain level implications on community assembly. Translating these findings will also help in improving other fermentation systems to help gain more control over the fermentation process and maintain consistent and superior product quality.

15.
Curr Res Food Sci ; 6: 100448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36713641

RESUMEN

Lactobacillaceae are among the major fermentation organisms in most food fermentations but the metabolic pathways for conversion of (poly)phenolic compounds by lactobacilli have been elucidated only in the past two decades. Hydroxycinnamic and hydroxybenzoic acids are metabolized by separate enzymes which include multiple esterases, decarboxylases and hydroxycinnamic acid reductases. Glycosides of phenolic compounds including flavonoids are metabolized by glycosidases, some of which are dedicated to glycosides of plant phytochemicals rather than oligosaccharides. Metabolism of phenolic compounds in food fermentations often differs from metabolism in vitro, likely reflecting the diversity of phenolic compounds and the unknown stimuli that induce expression of metabolic genes. Current knowledge will facilitate fermentation strategies to achieve improved food quality by targeted conversion of phenolic compounds.

16.
Appl Biochem Biotechnol ; 195(3): 1800-1822, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36399303

RESUMEN

The purpose of this study is to present an effective form of developing a sequential dark (DF) and photo (PF) fermentation using volatile fatty acids (VFAs) and nitrogen compounds as bonding components between both metabolic networks of microbial growing in each fermentation. A simultaneous (co-)culture of Syntrophomonas wolfei (with its ability to consume butyrate and produce acetate) and Rhodopseudomonas palustris (that can use the produced acetate as a carbon source) performed a syntrophic metabolism. The former bacteria consumed the acetate/butyrate mixture reducing the butyrate concentration below 2.0 g/L, permitting Rhodopseudomonas palustris to produce hydrogen. Considering that the inoculum composition (Syntrophomonas wolfei/Rhodopseudomonas palustris) and the nitrogen source (yeast extract) define the microbial biomass specific productivity and the butyrate consumption, a response surface methodology defined the best inoculum design and yeast extract (YE) yielding to the highest biomass concentration of 1.1 g/L after 380.00 h. A second culture process (without a nitrogen source) showed the biomass produced in the previous culture process yields to produce a total cumulated hydrogen concentration of 3.4 mmol. This value was not obtained previously with the pure strain Rhodopseudomonas palustris if the culture medium contained butyrate concentration above 2.0 g/L, representing a contribution to the sequential fermentation scheme based on DF and PF.


Asunto(s)
Butiratos , Rhodopseudomonas , Técnicas de Cocultivo , Acetatos , Nitrógeno/metabolismo , Hidrógeno/metabolismo
17.
Food Microbiol ; 110: 104189, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36462811

RESUMEN

Saccharomyces cerevisiae is a highly fermentative species able to complete the wine fermentation. However, the interaction with other non-Saccharomyces yeasts can determine the fermentation performance of S. cerevisiae. We have characterised three rare non-Saccharomyces yeasts (Cyberlindnera fabianii, Kazachstania unispora and Naganishia globosa), studying their impact on S. cerevisiae fitness and wine fermentation performance. Using a wide meta-taxonomic dataset of wine samples, analysed through ITS amplicon sequencing, we show that about a 65.07% of wine samples contains Naganishia spp., a 27.21% contains Kazachstania spp., and only a 4.41% contains Cyberlindnera spp; in all cases with average relative abundances lower than 1% of total fungal populations. Although the studied N. globosa strain showed a limited growth capacity in wine, both K. unispora and C. fabianii showed a similar growth phenotype to that of S. cerevisiae in different fermentation conditions, highlighting the outstanding growth rate values of K. unispora. In mixed fermentations with S. cerevisiae, the three yeast species affected co-culture growth parameters and wine chemical profile (volatile compounds, polysaccharides and proteins). K. unispora DN201 strain presents an outstanding capacity to compete with S. cerevisiae strains during the first stage of wine fermentation, causing stuck fermentations in both synthetic and natural grape musts.


Asunto(s)
Saccharomycetales , Vino , Saccharomyces cerevisiae/genética , Fermentación , Prevalencia , Saccharomycetales/genética , Fenotipo
18.
Annu Rev Food Sci Technol ; 14: 367-385, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36400015

RESUMEN

Bacteriophages (or phages) represent one of the most persistent threats to food fermentations, particularly large-scale commercial dairy fermentations. Phages infecting lactic acid bacteria (LAB) that are used as starter cultures in dairy fermentations are well studied, and in recent years there have been significant advances in defining the driving forces of LAB-phage coevolution. The means by which different starter bacterial species defend themselves against phage predation and the chromosomal or plasmid location of the genes encoding these defense mechanisms have dictated the technological approaches for the development of robust starter cultures. In this review, we highlight recent advances in defining phage-host interactions and how phage resistance occurs in different bacterial species. Furthermore, we discuss how these insights continue to transform the dairy fermentation industry and how they also are anticipated to guide food fermentations involving plant-based alternatives in the future.


Asunto(s)
Bacteriófagos , Lactobacillales , Bacteriófagos/genética , Industria Lechera , Fermentación
19.
Metabolites ; 12(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36557333

RESUMEN

This study investigated the detailed volatile aroma profile of young white wines of Marastina, Vitis Vinifera L., produced by spontaneous fermentation. The wines were produced from 10 vineyards located in two Dalmatian subregions (Northern Dalmatia and Central and Southern Dalmatia). Volatile compounds from the wine samples were isolated by solid-phase extraction (SPE) and analyzed by an untargeted approach using two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC/TOF-MS) and a targeted approach by gas chromatography-tandem mass spectrometry (GC-MS/MS). A comprehensive two-dimensional GC×GC analysis detailed the total volatile metabolites in the wines due to its excellent separation ability. More than 900 compounds were detected after untargeted profiling; 188 of them were identified or tentatively identified. A total of 56 volatile compounds were identified and quantified using GC-MS/MS analysis. The predominant classes in Marastina wines were acids, esters, and alcohols. The key odorants with odor activity values higher than one were ß-damascenone, ethyl caprylate, ethyl isovalerate, ethyl 2-methylbutyrate, ethyl caproate, isopentyl acetate, ethyl butyrate, and phenylacetaldehyde. The metabolomics approach can provide a large amount of information and can help to anticipate variation in wines or change winemaking procedures.

20.
Curr Res Food Sci ; 5: 1452-1464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119372

RESUMEN

Chocolate is a product of the fermentation of cacao beans. Performed on-farm or at local cooperatives, these are spontaneous cacao fermentations (SCFs). To better understand SCFs, this study sought to identify SCF microbes, their interrelationships, and other key parameters that influence fermentation. This is important because differences in fermentation can have an impact on final product quality. In this study, a systematic data extraction was performed, searching for literature that identified microbes from SCFs. Each unique microbe, whether by location or by fermentation material, was extracted from the articles, along with parameters associated with fermentation. Data were collected and analyzed for three interactions: microbe-to-geography, microbe-to-fermentation method, and microbe-to-microbe. The goal was to attribute microbes to geographical locations, fermentation materials, or to other microbes. Statistically significant relationships will reveal target areas for future research. Over 1700 microbes (440 unique species) were identified across 60 articles. The top three countries represented are Brazil (22 articles, n = 612 microbes), the Ivory Coast (14 articles, n = 237), and Ghana (10 articles, n = 257). Several countries were far less, or never represented, and should be considered for future research. No specific relationship was identified with microbes to either geographical location or fermentation method. Using a Presence-Absence chart, 127 microbe-to-microbe interactions were identified as statistically significant. Data extraction into SCF research has revealed major gaps of knowledge for the cacao microbiome. By better understanding the cacao microbiome, researchers will be able to identify key microbes and fermentation parameters to better influence the fermentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA