Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 22: 101283, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524777

RESUMEN

In this work, the polysaccharide profile of different grapes and red wines in China was studied and the influences of two common winemaking techniques on the components of wine were analyzed. The soluble polysaccharide content in the skins of native grape species in China (non-Vitis vinifera grapes) was significantly higher than that of Vitis vinifera species, while the terroir effect on V. vinifera varieties was limited. The combination of the enzyme preparation and the addition of mannoproteins (MPs) at the beginning of alcoholic fermentation (MP1 + E) could increase the contents of MPs and acid polysaccharides (APS) compared to the control wines. Meanwhile, better color characteristics and higher level of anthocyanin derivatives were observed. However, MP1 + E treatment reduced the content of polysaccharides rich in arabinose and galactose (PRAGs) due to enzymatic hydrolysis. The study will provide useful information for winemakers to regulate the wine polysaccharide profile.

2.
Poult Sci ; 102(12): 103124, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922857

RESUMEN

This experiment was conducted to explore the interactions between enzyme preparations and trace element sources on growth performance and intestinal health of broilers chicks. A total of 480 one-day-old healthy male yellow-feather broilers with similar weight were randomly arranged in a 2  ×  2 factorial design with 2 kinds of compound trace element sources (inorganic [I] and organic [O] trace element supplemented with 80, 8, 60, 40, 0.15 mg/kg of Fe, Cu, Mn, Zn, and Se, respectively) and 2 levels of enzyme preparations (0 and 200 mg/kg). The 4 groups named I, O, IE, and OE with 6 replicates and 20 birds per replicate. The trail lasted for 28 days. Results showed that the average weight (ABW), average daily gain (ADG) of broilers in IE and OE groups significantly increased while the F/G significantly decreased as compared with group I and O (P < 0.05). Enzyme preparation supplementation, regardless of the trace element sources, significantly increased the duodenal and jejunal endogenous enzyme (e.g., Try and AACT) activity, and improved the morphology and jejunal barrier function evidenced by the increased villus height and MUC-2 mRNA expression (P < 0.05). Sequencing data manifested that enzyme preparations favorably modulated the cecal microflora by increasing bacterial diversity and abundance of short-chain fatty acid (SCFA)-producing bacteria (e.g., Anaerostipes, Anaerofusis, and Pygmaioactor), while decreasing the abundance of harmful bacteria (e.g., Desulfovibrio). Factorial analysis indicated that there were no interactions between enzyme preparation and trace element sources on growth performance and intestinal health of broiler chicks. In conclusion, dietary supplementation with enzyme preparations, regardless of the trace element sources, could enhance endogenous enzyme activity, improve intestinal morphology and barrier functions, and favorably modulate the cecal microflora, thereby improving the intestinal health and growth performance of broiler chicks.


Asunto(s)
Oligoelementos , Animales , Masculino , Oligoelementos/metabolismo , Pollos , Suplementos Dietéticos/análisis , Intestinos/anatomía & histología , Mucosa Intestinal/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis
3.
Enzyme Microb Technol ; 171: 110319, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37672961

RESUMEN

Rice husk is an abundant agricultural waste generated from rice production, but its application is limited. Considering its complex components, the rice husk was hydrolyzed by different enzymes to enhance its saccharification. In this study, saccharification of the rice husk by cellulase, xylosidase, and xylanase was first investigated. The synergistic effect of LPMO on the above hydrolases and different enzyme combinations in the saccharification process was then explored. Thereafter, the formulation of the enzyme cocktail and the degradation conditions were optimized to obtain the highest saccharification efficiency. The results showed that the optimum enzyme cocktail consists of Celluclast 1.5 L (83.3 mg/g substrate), the key enzymes in the saccharification process, worked with BpXyl (20 mg/g substrate), BpXyn11 (24 mg/g substrate), and R17L/N25G (4 mg/g substrate). The highest reducing sugar concentration (1.19 mg/mL) was obtained at pH 6.0 and 60 â„ƒ for 24 h. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the structural changes in the rice husk after degradation. The results showed that the key chemical bonds in cellulose and hemicellulose were broken. This study illuminated the concept of saccharifying lignocellulose from rice husk using LPMO synergistically assisted combined-hydrolase including cellulase, xylosidase, and xylanase, and provided a theoretical basis for lignocellulose biodegradation.


Asunto(s)
Celulasa , Oryza , Xilosidasas , Oxigenasas de Función Mixta/metabolismo , Oryza/metabolismo , Polisacáridos/metabolismo , Celulasa/metabolismo , Xilosidasas/metabolismo
4.
Front Microbiol ; 14: 1211936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440887

RESUMEN

Starch is an essential factor affecting the quality of flue-cured tobacco, and high starch content can affect the sensory quality and safety. Recently, the degradation of macromolecules in tobacco raw materials by using additional microorganisms to improve their intrinsic quality and safety has become a new research hotspot in the tobacco industry. However, the technical maturity and application scale are limited. Our study analyzed the correlation between microbial community composition and volatile components on the surface of tobacco leaves from 14 different grades in Fujian tobacco-producing areas. The PICRUSt software was utilized to predict the function of the microbial community present in tobacco leaves. Furthermore, dominant strains that produced amylase were screened out, and an enzyme solution was prepared to enhance the flue-cured tobacco flavor. Changes in the content of macromolecules and volatile components were determined, and sensory evaluations were conducted to assess the overall quality of the tobacco leaves. The results showed that the dominant bacterial genera on the surface of Fujian tobacco leaves were Variovorax, Sphingomonas, Bacillus, etc. Bacillus was positively correlated with various volatile components, which contributed to the sweet and aromatic flavors of Fujian flue-cured tobacco. The main genetic functions of Fujian flue-cured tobacco surface bacteria were carbohydrate metabolism and amino acid metabolism. After treating flue-cured tobacco with an enzyme preparation prepared by the fermentation of Paenibacillus amylolyticus A17 #, the content of starch, pectin, and cellulose in flue-cured tobacco decreased significantly compared with the control group. Meanwhile, the content of total soluble sugar and reducing sugar was significantly increased, and the volatile aroma components, such as 3-hydroxy--damascone, 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H-Pyran-4-one, ethyl palmitate, ethyl linolenic acid, etc., were significantly increased. The aroma quality and quantity of flue-cured tobacco were enhanced, while impurities were reduced. The smoke characteristics were improved, with increased fineness, concentration, and moderate strength. The taste characteristics were also improved, with reduced irritation and a better aftertaste. In conclusion, Bacillus, as the dominant genus in the abundance of bacterial communities on tobacco surfaces in Fujian, had an essential impact on the flavor of tobacco leaves by participating in carbohydrate metabolism and finally forming the unique flavor style of flue-cured tobacco in Fujian tobacco-producing areas. Paenibacillus amylolyticus A17 #, a target strain with amylase-producing ability, was screened from the surface of Fujian flue-cured tobacco. The enzyme preparation, produced by the fermentation of Paenibacillus amylolyticus A17 #, was utilized to reduce the content of macromolecules, increase the content of water-soluble total sugar and reducing sugar, and produce a variety of crucial volatile aroma components, which had a significant improvement on the quality of tobacco leaves.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37235786

RESUMEN

Enzymes are mainly extracted from the culture broth of microorganisms. Various commercially available enzyme preparations (EPs) are derived from different microorganisms, and the source of the EP should be the same as that mentioned in the manufacture's information. The development of analytical methods that can determine the origin of the final products is important for ensuring that the EPs are nontoxic, especially when used as food additives. In this study, various EPs were subjected to SDS-PAGE, and the main protein bands were excised. After in-gel digestion, the generated peptides were analysed using MALDI-TOF MS, and protein identification was performed by searching the set of peptide masses against protein databases. In total, 36 EPs including amylase, ß-galactosidase, cellulase, hemicellulase and protease were analysed, and the information about the enzyme sources was obtained for 30 EPs. Among these, the biological sources determined for 25 EPs were consistent with the manufacturer's information; for the remaining five, enzymes produced by closely-related species were shown as matching proteins due to high sequence similarity. Six enzymes derived from four microorganisms could not be identified because their protein sequences were not registered in the database. As these databases are expanded, this approach of using SDS-PAGE and peptide mass fingerprinting (PMF) can determine the biological origin of enzymes rapidly and contribute to ensuring the safety of EPs.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Mapeo Peptídico/métodos , Electroforesis en Gel de Poliacrilamida
6.
Materials (Basel) ; 16(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36984180

RESUMEN

Due to their variety, specific activity, and mild reaction conditions, enzymes have a wide application in beam house processes such as soaking, dehairing, bating, and de-greasing. Recently, due to improvements in biotechnology, re-bating after chroming has received increased attention. The aim of this work was to investigate the application of enzyme preparation in the re-bating process and its effect on the semifinished and finished product, as well as its influence on post-tanning operations. The enzymatic treatment of chromed semifinished leather (wet blue) led to a higher shrinkage temperature (1-6 °C), greater water vapour absorption (0.3-5.5%), better chromium compounds exhaustion during re-chroming (4-21%), and better dye penetration. Moreover, collagen was affected during the enzymatic process; the results showed a greater concentration influence in the operation compared to the process time. On the other hand, no effect on the physical and mechanical properties and fat-liquoring process was observed. Overall, these results indicate that some properties and processes are improved; however, before use for re-bating, every enzyme should be carefully investigated.

7.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235151

RESUMEN

Panax notoginseng flowers have the highest content of saponins compared to the other parts of Panax notoginseng, but minor ginsenosides have higher pharmacological activity than the main natural ginsenosides. Therefore, this study focused on the transformation of the main ginsenosides in Panax notoginseng flowers to minor ginsenosides using the fungus of Cladosporium xylophilum isolated from soil. The main ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenoside Fa in Panax notoginseng flowers were transformed into the ginsenosides F2 and Rd2, the notoginsenosides Fd and Fe, and the ginsenoside R7; the conversion rates were 100, 100, 100, 88.5, and 100%, respectively. The transformation products were studied by TLC, HPLC, and MS analyses, and the biotransformation pathways of the major ginsenosides were proposed. In addition, the purified enzyme of the fungus was prepared with the molecular weight of 66.4 kDa. The transformation of the monomer ginsenosides by the crude enzyme is consistent with that by the fungus. Additionally, three saponins were isolated from the transformation products and identified as the ginsenoside Rd2 and the notoginsenosides Fe and Fd by NMR and MS analyses. This study provided a unique and powerful microbial strain for efficiently transformating major ginsenosides in P. notoginseng flowers to minor ginsenosides, which will help raise the functional and economic value of the P. notoginseng flower.


Asunto(s)
Ginsenósidos , Panax notoginseng , Panax , Saponinas , Cromatografía Líquida de Alta Presión , Cladosporium , Flores/química , Ginsenósidos/análisis , Panax/química , Panax notoginseng/química , Saponinas/análisis , Suelo
8.
Vopr Pitan ; 91(3): 42-52, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35852977

RESUMEN

The requirements for the safety of food products obtained by microbial synthesis are including as obligation for to conduct toxicological studies - the study of various biochemical and immunological markers of toxic effects. The necessity of these studies is explained by a possible change in the structure of food ingredients produced by a microbial cell and, consequently, a change in their biological properties, as well as the possible presence of living forms and/or DNA of producer strains or of their toxic metabolites in these ingredients. At the same time, it is well known that the nutrient composition of foods has a significant impact on the composition and properties of microorganisms that make up the gut microbiome, which, in turn, determines the immune status. The purpose of the research was to justify the analyses of gut microbiocenosis composition for inclusion in the protocol of safety investigation of foods obtained by microbial synthesis [on the example of an enzyme preparation (EP) - a complex of glucoamylase and xylanase from a genetically modified strain of Aspergillus awamori Xyl T-15]. Material and methods. In experimental studies carried out for 80 days, Wistar rats (males and females) were used. The study of the effect of EP (a complex of glucoamylase and xylanase from a genetically modified Aspergillus awamori Xyl T-15 strain) in dozes 10, 100 and 1000 mg/kg body mass on the cecum microbiome and the immune status (content of cytokines and chemokines: IL-1a, IL-4, IL-6, IL-10, IL-17A, INF-γ, TNF-α, MCP-1, MIP-1a and Regulated on Activation Normal T-cell Expressed and Secreted - RANTES) was carried out. Results. It has been shown that EP - a complex of glucoamylase and xylanase from A. awamori Xyl T-15 at doses of 100 mg/kg or more causes mild disturbances in the composition of gut microbiocenosis. At the same time, these disorders have a significant immunomodulat ory and immunotoxic effect on the body, which manifests itself in a dose-dependent change in the profile of pro-inflammatory cytokines and chemokines in blood and spleen. The adverse effect of EP on the body is probably due to the formation of metabolites that are not formed during usual digestive processes in the gastrointestinal tract. The minimum effective dose (LOAEL) of EP was 100 mg/kg body weight In accordance with established requirements, the activity of the EP should not appear in ready-to-use food. Subject to this requirement, amount of EP entering the body cannot exceed the established LOAEL level. Therefore, a complex of glucoamylase and xylanase can be used in food industry, subject to the establishment of regulations «for technological purposes¼ for A. awamori Xyl T-15 strain. Conclusion. The data obtained on the relationship between the state of the microbiome and the immune status upon the introduction of EP indicate the need to include indicators of the state of gut microbiocenosis in the test protocol of safety.


Asunto(s)
Aspergillus , Glucano 1,4-alfa-Glucosidasa , Animales , Aspergillus/genética , Aspergillus/metabolismo , Citocinas/metabolismo , Glucano 1,4-alfa-Glucosidasa/química , Glucano 1,4-alfa-Glucosidasa/genética , Glucano 1,4-alfa-Glucosidasa/metabolismo , Masculino , Ratas , Ratas Wistar
9.
J Ind Microbiol Biotechnol ; 49(3)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34878143

RESUMEN

Cell-bound ß-glycosidases of basidiomycetous yeasts show promise as biocatalysts in galactooligosaccharide (GOS) production. Using degenerated primers designed from Hamamotoa singularis (Hs) bglA gene, we newly identified three genes that encode cell-bound ß-glycosidase from Sirobasidium magnum (Sm), Rhodotorula minuta (Rm), and Sterigmatomyces elviae (Se). These three genes, also named bglA, encoded family 1 glycosyl hydrolases with molecular masses of 67‒77 kDa. The BglA enzymes were approximately 44% identical to the Hs-BglA enzyme and possessed a unique domain at the N-terminus comprising 110 or 210 amino acids. The Sm-, Rm-, and Se-BglA enzymes as well as the Hs-BglA enzyme were successfully produced by recombinant Aspergillus oryzae, and all enzymes were entirely secreted to the supernatants. Furthermore, addition of some nonionic detergents (e.g. 0.4% [v/v] Triton-X) increased the production, especially of the Hs- or Se-BglA enzyme. Out of the BglA enzymes, the Se-BglA enzyme showed remarkable thermostability (∼70°C). Additionally, the Sm- and Se-BglA enzymes had better GOS yields, so there was less residual lactose than in others. Accordingly, the basidiomycetous BglA enzymes produced by recombinant A. oryzae would be applicable to GOS production, and the Se-BglA enzyme appeared to be the most promising enzyme for industrial uses.


Asunto(s)
Aspergillus oryzae , Glicósido Hidrolasas , Aspergillus oryzae/metabolismo , Lactosa/metabolismo , Oligosacáridos , beta-Glucosidasa/metabolismo
10.
Molecules ; 26(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34443407

RESUMEN

Minor ginsenosides, such as compounds (C)-K and C-Y, possess relatively better bioactivity than those of naturally occurring major ginsenosides. Therefore, this study focused on the biotransformation of major ginsenosides into minor ginsenosides using crude ß-glucosidase preparation isolated from submerged liquid culture of Fomitella fraxinea (FFEP). FFEP was prepared by ammonium sulfate (30-80%) precipitation from submerged culture of F. fraxinea. FFEP was used to prepare minor ginsenosides from protopanaxadiol (PPD)-type ginsenoside (PPDG-F) or total ginsenoside fraction (TG-F). In addition, biotransformation of major ginsenosides into minor ginsenosides as affected by reaction time and pH were investigated by TLC and HPLC analyses, and the metabolites were also identified by UPLC/negative-ESI-Q-TOF-MS analysis. FFEP biotransformed ginsenosides Rb1 and Rc into C-K via the following pathways: Rd → F2 → C-K for Rb1 and both Rd → F2→ C-K and C-Mc1 → C-Mc → C-K for Rc, respectively, while C-Y is formed from Rb2 via C-O. FFEP can be applied to produce minor ginsenosides C-K and C-Y from PPDG-F or TG-F. To the best of our knowledge, this study is the first to report the production of C-K and C-Y from major ginsenosides by basidiomycete F. fraxinea.


Asunto(s)
Ginsenósidos/aislamiento & purificación , Polyporaceae/enzimología , Sapogeninas/química , beta-Glucosidasa/química , Biotransformación , Técnicas de Cultivo de Célula , Cromatografía Líquida de Alta Presión , Ginsenósidos/química , Hidrólisis , beta-Glucosidasa/farmacología
11.
Mar Drugs ; 19(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34436311

RESUMEN

The Atlantic cod (Gadus morhua) and red king crab (Paralithodes camtschaticus) processing wastes are massive and unutilized in the Murmansk region of Russia. The samples of skin-containing waste of Atlantic cod fillets production were hydrolyzed using enzyme preparations derived from red king crab hepatopancreases, porcine pancreases, and Bacillus subtilis bacteria. The activity of enzymes from crab hepatopancreases was significantly higher than the activity of enzymes derived from other sources. The optimal conditions of the hydrolysis process have been figured out. The samples of cod processing waste hydrolysate were analyzed for amino acid composition and molecular weight distribution. The samples of hydrolysate were used as core components for bacterial culture medium samples. The efficiency of the medium samples was tested for Escherichia coli growth rate; the most efficient sample had an efficiency of 95.3% of that of a commercially available medium based on fish meal. Substitution of medium components with those derived from industrial by-products is one of the ways to decrease a cost of a culture medium in biopharmaceutical drug production.


Asunto(s)
Colágeno/química , Medios de Cultivo/química , Gadus morhua , Animales , Organismos Acuáticos , Quitinasas/química , Crustáceos/enzimología , Hidrólisis , Federación de Rusia
12.
Acta Sci Pol Technol Aliment ; 20(3): 359-367, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34304553

RESUMEN

BACKGROUND: Saffron tepals are a by-product from the processing of Crocus sativus flowers, whose dried stigmas (saffron spice) are widely used both in the food and health sectors. Saffron tepals are rich in polyphenols, particularly flavonol glycosides and anthocyanins, which are considered to be potent antioxidants. Enzyme-assisted extraction of polyphenols offers several advantages in comparison to conventional methods. The present study evaluated the efficiency of enzyme-assisted extraction as a green technology for recovery of polyphenols from saffron tepals. METHODS: The by-product was obtained from a saffron producer in the region of Kozani, Greece. A simplex-centroid design was applied to select the enzyme preparations mixture required for aqueous extraction of polyphenolic antioxidants from dried saffron tepals. In addition, the parameters of enzymatic hydrolysis, enzyme dose and incubation time were optimised using response surface methodology. RESULTS: The binary combination, comprising cellulolytic and hemicellulolytic preparations (1:1), led to the highest yield of total polyphenols (30.9 g GAE/kg saffron tepals) and total anthocyanins (2.0 g CGE/kg saffron tepals), reaching 45% and 38% higher values, respectively, as compared to the control sample (without enzymatic treatment). The experimental data regarding optimisation of the extraction conditions were fitted to second-degree regression models (R2 = 0.85-0.98). CONCLUSIONS: The newly developed process may be applied as an environmentally friendly alternative to conventional organic solvent extraction, thus supporting valorisation of the saffron industry by-product. The polyphenols recovered could be used as biologically active substances or as natural food ingredients, replacing synthetic additives.


Asunto(s)
Antioxidantes/análisis , Crocus/química , Enzimas , Flores/química , Extractos Vegetales/química , Polifenoles/análisis , Tecnología Farmacéutica/métodos , Antocianinas/análisis , Carotenoides/análisis , Flavonoides/análisis
13.
Vopr Pitan ; 90(3): 28-39, 2021.
Artículo en Ruso | MEDLINE | ID: mdl-34264554

RESUMEN

The introduction of methods for food production using microbial synthesis, including those obtained with the help of genetically modified (GM) microorganisms, at the present stage, allows to increase production volumes and reduce the cost of food. At the same time, such products in accordance with TR CU 021/2011 "On food safety" are classified as a "novel food"¼ and can be placed on the market only after its risk estimation for health. The emergence of new data and research methods in the last years has made it necessary to improve the risk assessment system for this category of food. The aim of the research is to develope risk assessment approaches of food obtained by microbial synthesis on the example of the GM strain Aspergillus awamori Xyl T-15 and the enzyme preparation (EP) (a complex of glucoamylase and xylanase) produced by it. Material and methods. Outbred ICR mice (CD-1) and Wistar rats (males and females) were used in the experimental studies. Investigations of GM strain A. awamori Xyl T-15 virulence and its ability to disseminate internal organs have been carried out. Acute and subacute (during 80 days) toxicity of EP (a complex of glucoamylase and xylanase) have been studied. Results. The presented experimental data allow us to make a conclusion about the avirulence of the A. awamori Xyl T-15 strain, the lack of ability to disseminate internal organs (invasiveness). At the same time, the strain is characterized by the ability to produce mycotoxins (ochratoxin, fumonisin B2, T-2 and HT-2 toxins). The EP, a complex of glucoamylase and xylanase from A. awamori Xyl T-15, has a low oral acute toxicity for rats (LD50>5000 mg/kg). I ntragastric EP administration at doses of 10, 100 and 1000 mg/kg of body weight during 80 days had not revealed adversely affect on the rate of weight gain in animals, indicators of anxiety and cognitive function, and some studied biochemical indicators. At a dose of 100 mg/kg b.w. or more, there were changes in the relative mass of organs (lungs, kidneys, adrenal glands), small shifts in the parameters of erythropoiesis and leukocyte formula, at a dose of 1000 mg/kg b.w. - an increase in oxidative DNA destruction. T he most pronounced and dose-dependent was the effect of the EP on hepatocyte apoptosis. According to this indicator, the not observed adverse effect level (NOAEL) for EP is not more than 100 mg/kg b.w. in terms of protein. The main target organ for the toxic effect of EP is the liver. Conclusion. The data obtained demonstrate the necessity to conduct an additional analysis of the risks of possible negative effects of EP, namely, to study its impact on the gut microbiocenosis and the immune status of experimental animals, to analyze the presence of determinants of pathogenicity and antibiotic resistance, DNA of selective marker genes of A. awamori Xyl T-15 strain by PCR analysis and DNA sequencing methods.


Asunto(s)
Glucano 1,4-alfa-Glucosidasa , Animales , Aspergillus , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Ratas , Ratas Wistar , Medición de Riesgo
14.
Acta Sci Pol Technol Aliment ; 19(3): 359-368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32978917

RESUMEN

BACKGROUND: Fermented cream is a common and widely used dairy product throughout the world. The structure of sour cream with a low (10 to 15%) fat content is determined by the acid gel of milk proteins, while that of sour cream with a high (≥30%) fat content is determined by the gel formed by fat globules coated with protein. Sour cream with a fat content of about 20% has an intermediate gel structure, which is not characterized with high viscosity. To increase the viscosity of the product, as well as to prevent the separation of whey during storage, thickeners and stabilizers (gelatin, various types of starch, etc.) are added. As these decrease the sensorial characteristics of products, new thickeners (elamin, citrus pectin, flax seed flour, banana puree, and fromase milk-clotting enzyme preparation) are used instead. METHODS: Sour cream was made by separating whole cow's milk, normalization, homogenization, pasteurization and fermenting by mesophilic lactic acid bacteria. Then thickeners were introduced to the clot: elamin, dry banana, flax seed flour in mass fractions of 0.01%, 0.03% and 0.05%, as well as fromase preparation in the same amount. A control batch of sour cream was made without the use of additives. The ripening process lasted from 8 to 9 hours to obtain a dense consistency. The viscosity of the samples was determined using a rotational viscometer, consisting of two coaxial brass cylinders, between which the test liquid was located. The effective viscosity and its dependence on the shear rate γ in research samples as non-Newtonian fluids were determined. RESULTS: Sour cream is characterized by the presence of a structure quickly destroyed by external forces at shear rates greater than 10 s-1, so exceeding the given value in the production of sour cream is not rational. The dependences of the rheological parameters of sour cream on the content of the additives elamin, flour from flax seeds and dry banana puree, used as thickeners, showed that the greatest strength of intermolecular bonds and the stability of the studied mixtures can be expected with a share of additives ranging from 0.01 to 0.03% (by mass). At the same time, when the said share exceeds 0.05%, the structure of sour cream is weakened - this is especially characteristic in the case of adding dry banana. CONCLUSIONS: The research showed that natural thickeners can be chosen to improve the rheological parameters of low fat sour cream without deteriorating its sensorial characteristics. This leads to the conclusion that the studied thickeners can improve the viscosity of sour cream with a low fat content - and dry banana is the best of those studied. Correspondingly, viscous properties are among the principal ones which define customers' perceptions of the product, its low fat content being a possible spoiler of sensorial traits.


Asunto(s)
Productos Lácteos Cultivados/análisis , Grasas de la Dieta/administración & dosificación , Lino , Manipulación de Alimentos/métodos , Frutas , Musa , Reología , Semillas , Comportamiento del Consumidor , Dieta con Restricción de Grasas , Proteínas en la Dieta , Humanos , Odorantes , Gusto , Viscosidad
15.
Angew Chem Int Ed Engl ; 59(38): 16764-16769, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32521109

RESUMEN

An enzyme formulation using customized enzyme activators (metal ions) to directly construct metal-organic frameworks (MOFs) as enzyme protective carriers is presented. These MOF carriers can also serve as the disintegrating agents to simultaneously release enzymes and their activators during biocatalysis with boosted activities. This highly efficient enzyme preparation combines enzyme immobilization (enhanced stability, easy operation) and homogeneous biocatalysis (fast diffusion, high activity). The MOF serves as an ion pump that continuously provides metal ion activators that greatly promote the enzymatic activities (up to 251 %). This MOF-enzyme composite demonstrated an excellent protective effect against various perturbation environments. A mechanistic investigation revealed that the spontaneous activator/enzyme release and ion pumping enable enzymes to sufficiently interact with their activators owing to the proximity effects, leading to a boost in biocatalytic performance.


Asunto(s)
Enzimas/metabolismo , Estructuras Metalorgánicas/metabolismo , Biocatálisis , Enzimas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/química , Tamaño de la Partícula , Propiedades de Superficie
16.
Pharmaceuticals (Basel) ; 13(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283743

RESUMEN

The treatment of classical phenylketonuria is currently represented by many new methods of disease management. A promising method is the use of the enzyme L-phenylalanine ammonia-lyase (PAL) in various forms. The widespread use of enzyme preparations in therapy is limited by a lack of understanding of the mechanisms and systems of the targeted transport of PAL into certain organs and tissues as a result of the incorporation of a drug into the carrier. To ensure the stability of enzymes during the delivery process, encapsulation is preferable, which, as a rule, ensures the preservation of the qualitative characteristics of the enzymes orally applied to the environmental effects of the gastrointestinal tract (acidity, temperature, oxidation, etc.). Capsule preparations showed sufficient stability in the model gastric fluids and sustained release of the drug in the simulated intestinal fluid. Currently, there is a wide range of polymers used for encapsulation. The use of natural sources in the production technology of capsule systems improves bioavailability, controls the release, and prolongs the half-life of active substances. The advantage of this method is that the used enzyme is completely protected by the cell membranes of the capsules, which preserve its stability in the aggressive environment of the gastrointestinal tract. Capsules were obtained on the basis of compositions of hydrocolloids of plant origin. The potential of the developed capsules for targeted delivery of the enzyme preparation was studied. The degradation of the encapsulated form of the PAL enzyme preparation was studied in vitro in model bio-relevant media simulating the gastric and intestinal environment. The dynamics of the breakdown of the capsule shell allow us to expect that the release of L-phenylalanine ammonia-lyase from capsules based on plant hydrocolloids will occur no earlier than reaching the upper intestines, where the interaction with the protein components of the consumed food products to neutralize phenylalanine should occur.

17.
Heliyon ; 6(1): e03096, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31909265

RESUMEN

The effect of three types of polysaccharides (agar-agar, carrageenan, hydroxypropyl methylcellulose) on the activity and stability during storage at given temperature conditions of the enzyme preparation L-phenylalanine ammonia-lyase was studied. It was found that the most suitable storage temperature for encapsulated L-phenylalanine-ammonia-lyase is room temperature up to 25 °C for all samples of capsules from plant polysaccharides. Samples of capsules with agar-agar and hydroxypropyl methylcellulose under different temperature conditions inhibited the decrease in enzyme activity, which in other samples of capsules reached 90% in 6 months of storage. In samples of capsules with carrageenan at temperatures of 4 °C and 30 °C, there was a significant decrease in the activity of the enzyme preparation. Selection of capsule samples from plant polysaccharides suitable for L-phenylalanine-ammonia-lyase replacement therapy is done after studying the mechanisms of capsule destruction under conditions close to the conditions of the gastrointestinal tract, to which the next stage of our research will be devoted.

18.
Enzyme Microb Technol ; 102: 67-73, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28465063

RESUMEN

The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product.


Asunto(s)
Celulosa/aislamiento & purificación , Papel , Álcalis , Biotecnología , Celulasa/metabolismo , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Madera/química
19.
Molecules ; 21(5)2016 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-27196878

RESUMEN

Various microorganisms have been widely applied in nutraceutical industries for the processing of phytochemical conversion. Specifically, in the Asian food industry and academia, notable attention is paid to the biocatalytic process of ginsenosides (ginseng saponins) using probiotic bacteria that produce high levels of glycosyl-hydrolases. Multiple groups have conducted experiments in order to determine the best conditions to produce more active and stable enzymes, which can be applicable to produce diverse types of ginsenosides for commercial applications. In this sense, there are various reviews that cover the biofunctional effects of multiple types of ginsenosides and the pathways of ginsenoside deglycosylation. However, little work has been published on the production methods of probiotic enzymes, which is a critical component of ginsenoside processing. This review aims to investigate current preparation methods, results on the discovery of new glycosylases, the application potential of probiotic enzymes and their use for biocatalysis of ginsenosides in the nutraceutical industry.


Asunto(s)
Biocatálisis , Ginsenósidos/química , Glicósido Hidrolasas/química , Panax/enzimología , Industria de Alimentos , Ginsenósidos/metabolismo , Glicósido Hidrolasas/metabolismo , Panax/química , Probióticos/química , Saponinas/química
20.
Asian-Australas J Anim Sci ; 27(12): 1749-54, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25358369

RESUMEN

The current experiment was designed to evaluate the efficacy of adding the multi-enzyme mixture (Natuzyme) into layers' diets with different levels of energy and available phosphorus in relation to laying performance, egg qualities, blood cholesterol level, microflora and intestinal viscosity. Two hundred and fifty 43-wk-old Hy-Line commercial layers were divided into five groups with five replicates per group (10 birds per replicate) and fed one of five experimental diets. A corn and soybean meal-based control diet was formulated and used as a control diet. Two experimental control diets were formulated to reduce energy and crude protein contents (rE) or energy, crude protein and phosphorus contents (rEP). In addition, Natuzyme was added into either rE (rE-Natu500) or rEP (rEP-Natu500) diet to reach a concentration of 500 mg per kg of diet. The experiment lasted 8 weeks. There were no significant differences in feed intake, egg production, egg weight, egg qualities such as eggshell color or Haugh unit, total cholesterol, relative organ weights and cecal microflora profiles between any dietary treatments. Natu500 supplementation into the rE diet, but not rEP diet significantly increased egg mass and eggshell qualities such as strength and thickness, but it decreased cecal ammonia concentration and intestinal viscosity in laying hens. In conclusion, the present study shows that adding multiple enzyme preparation could improve performance of laying hens fed energy and protein restricted diets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA