Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microorganisms ; 12(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38674668

RESUMEN

Bacillus and related genera are among the most important contaminants in the pharmaceutical production environment, and the identification of these microorganisms at the species level assists in the investigation of sources of contamination and in preventive and corrective decision making. The aim of this study was to evaluate three methodologies for the characterization of endospore-forming aerobic bacterial strains isolated from a pharmaceutical unit in Rio de Janeiro, Brazil. MALDI-TOF MS was performed using MALDI Biotyper® and VITEK® MS RUO systems, and complete 16S rRNA gene sequencing was performed using the Sanger methodology. The results showed the prevalence of the genera Bacillus (n = 9; 36.0%), Priestia (n = 5; 20.0%), and Paenibacillus (n = 4; 16.0%). Three (20.0%) strains showed <98.7% of DNA sequencing similarity on the EzBioCloud Database, indicating possible new species. In addition, the reclassification of Bacillus pseudoflexus to the genus Priestia as Priestia pseudoflexus sp. nov. is proposed. In conclusion, 16S rRNA and MALDI TOF/MS were not sufficient to identify all strains at the species level, and complementary analyses were necessary.

2.
Environ Technol ; : 1-7, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647352

RESUMEN

The genus Fictibacillus contains twelve species significant in the synthesis of cellulose-degrading enzymes and phenylalanine dehydrogenase, isolated mainly from marine sedimentary environments. Here, we report a new biosurfactant-producing strain, Fictibacillus nanhaiensis ME46, isolated from Daqing oil field in China. The biosurfactant extracted from Strain ME46 was determined as surfactin, one of the representative families of lipopeptide biosurfactants. The yield of the surfactin produced by strain ME46 was 0.62 g·L-1 as determined by high-performance liquid chromatography, and the critical micelle concentration (CMC) of the surfactin was estimated to be about 68 mg·L-1 and the surface tension at CMC was 35.1 mN·m-1. This study extended our knowledge about the role of the species Fictibacillus nanhaiensis in the ecosystem of natural environments such as the oil field.

3.
J Dairy Sci ; 103(10): 8782-8790, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32828509

RESUMEN

The objective of this work was to determine the effect of milk bactofugation on the counts and microbial diversity of mesophilic (MT), psychrotrophic (PT), and thermophilic (TT) thermoduric bacteria and its potential as a technological method to remove spoilage microorganisms resistant to pasteurization. Different batches of raw milk from 69 dairy farms divided into sets in 3 bulk tanks (A, B, C) were evaluated at different times during the technological process. As the raw milk was preheated (∼55°C) immediately before bactofugation (10,000 × g), the effect of bactofugation was estimated by comparing the counts in raw, preheated, and bactofuged milk. This centrifugation was sufficient to reduce the isolation of 88% of the MT in preheated milk. For PT, it was possible to verify a reduction of 72.5% in batch C. The TT were not recovered at higher detection limits (<5 cfu/mL). For diversity, 310 isolates were identified using a molecular approach; 15 species of contaminating thermoduric bacteria were identified from raw and preheated milk, and only 6 species were recovered in bactofuged milk. Only MT were recovered from the bactofuged milk, mainly the species Lysinibacillus fusiformis (61.7%) and Bacillus licheniformis (12.3%). Both species are known to be endospore-forming psychrotrophs and have proteolytic or lipolytic activity. The bactofugation of raw milk reduced the number of isolates of B. licheniformis, Bacillus toyonensis, Micrococcus aloeverae, and Aestuariimicrobium kwangyangense by 33, 43, 86, and 92%, respectively, and reduced the isolates of Macrococcus caseolyticus, Lysinibacillus varians, Carnobacterium divergens, Microbacterium hominis, Kocuria indica, Micrococcus yunnanensis, Gordonia paraffinivorans, Bacillus invictae, and Kocuria kristinae to undetectable levels. The results of this study indicate that bactofugation can be applied by the dairy industry to reduce pasteurization-resistant microorganisms in combination with prophylactic measures to prevent the contamination of raw milk by spores and vegetative forms of bacteria.


Asunto(s)
Bacterias Termodúricas/aislamiento & purificación , Centrifugación/métodos , Leche/microbiología , Actinobacteria/aislamiento & purificación , Animales , Bacillaceae/aislamiento & purificación , Bacillus/aislamiento & purificación , Bacterias Termodúricas/clasificación , Carnobacterium/aislamiento & purificación , Micrococcaceae/aislamiento & purificación , Micrococcus/aislamiento & purificación , Propionibacteriaceae/aislamiento & purificación , Staphylococcaceae/aislamiento & purificación
4.
Chemosphere ; 186: 202-208, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28779595

RESUMEN

A pilot-scale investigation of membrane-based aerobic digestion system dominated by endospore-forming bacteria was evaluated as one of the potential sludge treatment processes (STP). Most of the organic matter in the sludge was removed (90.1%) by the particular bacteria in the STP, which consisted of mixed liquor suspended solid (MLSS) contact reactor (MCR), MLSS oxidation reactor (MOR), and membrane bioreactor (MBR). The sludge was accumulated in the MBR without wasting, and then the effluent in STP was fed into the first step in water resource recovery facility (WRRF). According to the analysis of microbial communities in all reactors, various Bacillus species were present in the STP, mainly due to their intrinsic resistance to the extreme conditions. As the surviving Bacillus species might consume degraded microorganisms for their growth, these endospore-forming bacteria-based STP could be suitable for the sludge reduction when they operated for a long time.


Asunto(s)
Reactores Biológicos/microbiología , Bacterias Formadoras de Endosporas/fisiología , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aerobiosis , Proyectos Piloto
5.
Front Microbiol ; 6: 400, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25999930

RESUMEN

The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 µs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.

6.
Int J Food Microbiol ; 199: 15-22, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25621716

RESUMEN

We studied the changes of resident microbiota in surimi-minced fish meat-during heat-treatment and subsequent cold-storage via the sequencing of partial 16S rRNA gene. Raw surimi made from Alaska pollock, pike conger, and white croaker was contaminated with 10(4) to 10(6)CFU/g of various non-endospore-forming bacteria. Immediately after heat-treatment, the bacterial counts were significantly reduced to less than 1CFU/g, and only endospore-forming bacteria, identified as Bacillus species were retrieved. Subsequently, the bacterial counts increased up to 10 to 10(5)CFU/g in the heated surimi after refrigerated storage at 5 °C for 2 weeks or at 10 °C for 1 week. Most of the isolates from the refrigerated surimi were identified as Sporosarcina species. The Sporosarcina isolates have an increased ability to grow at 10 °C than the isolates related to the other endospore-forming bacteria, such as Bacillus, Lysinibacillus, and Paenibacillus species. Endospores of the Sporosarcina isolates were able to germinate and proliferate in a fish-paste product model system stored at 10 °C within 8 days. In order to study the cold-adaptation mechanism of Sporosarcina species, the fatty acid composition of the isolates was analyzed. At the growth temperature of 10 °C, the proportions of unsaturated to saturated fatty acids and anteiso to iso fatty acids were higher than those at 28 °C. The alteration of the fatty acid composition suggests that Sporosarcina species adapt to cold by maintaining the fluidity of the cell membrane because unsaturated and anteiso fatty acids have lower melting points than saturated and iso fatty acids, respectively. We concluded that the endospores of Sporosarcina species are widely distributed in surimi, and that they can survive heat-treatment and proliferate during cold-storage in fish-paste products. Controlling Sporosarcina species would contribute to improving the quality of surimi product.


Asunto(s)
Productos Pesqueros/microbiología , Microbiología de Alimentos , Sporosarcina/genética , Sporosarcina/aislamiento & purificación , Temperatura , Animales , Carga Bacteriana , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Manipulación de Alimentos , ARN Ribosómico 16S/genética , Esporas Bacterianas/crecimiento & desarrollo , Sporosarcina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA