Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.090
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124956, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151398

RESUMEN

A new and rare Salamo-Co(II) complex probe L-Co2+ was designed and synthesised. The structure of the [Co3(L)2(µ-OAc)2(MeOH)2]⋅2H2O complex was obtained by X-ray diffraction experiments. Three Co(II) atoms are in a line in the complex, and all Co(II) atoms form a 6-coordinated octahedral configuration. The probe L-Co2+ selectively recognises tyrosine in DMF/H2O (8:2, v/v). Upon addition of tyrosine, the fluorescence intensity of L-Co2+ was enhanced in a short time. The probe showed high selectivity and sensitivity for tyrosine, detection limit is 4.27 × 10-8 M. The recognition mechanism of probe L-Co2+ for Tyr was inferred by FT-IR spectra, UV spectroscopy, ESI mass spectra and DFT calculations. Finally, due to the simplicity and specificity of the identification process, the probe was also subjected to a test paper experiment and a milk assay.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124959, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151401

RESUMEN

A series of x%Ho3+, 5 %Tm3+, y%Yb3+:Bi2WO6 (x = 0, 0.5, 1, 3, 5; y = 0.5, 1, 3) luminescent materials was prepared using a high-temperature solid-phase method. The microstructure, up-conversion luminescence, and temperature sensing properties of the synthesized powders were analyzed. X-ray diffraction patterns revealed that doping with Ho3+, Tm3+, and Yb3+ ions at certain concentrations did not affect the orthorhombic crystal structure of the Bi2WO6 host. Scanning electron microscopy revealed that the morphology of the sample consisted of lumpy particles with a particle size range of 1-5 µm and agglomeration. SEM mapping and energy-dispersive X-ray spectroscopy analyses revealed that each element was relatively uniformly distributed on the particle surface. Under 980 nm excitation (380 mW), the strongest luminescence of the sample was obtained when both Ho3+ and Yb3+ doping concentrations were 1 %. Compared with the luminescence of the 5 %Tm3+ and 1 %Yb3+:Bi2WO6 sample, with increasing Ho3+ concentrations, the luminescence intensity of Tm3+ was first enhanced and subsequently weakened, whereas the luminescence of Ho3+ was significantly weakened, which indicates the positive energy transfer from Ho3+ â†’ Tm3+. At 980 nm (80-380 mW), for the 1 %Ho3+, 5 %Tm3+, and 1 %Yb3+:Bi2WO6 sample, the 538 nm, 545 nm, 660 nm, and 804 nm emission peaks originated from the two-photon absorption. FIR660 nm/804 nm, FIR545 nm/804 nm, and FIR538 nm/804 nm were used to characterize the temperature and corresponded to temperature sensitivities Sr of 0.0046 K-1, 0.022 K-1 and 0.024 K-1 at 573 K, respectively. At 498 K, the minimum temperature resolution δT values were 0.03384 K, 0.03203 K and 0.04373 K. When the temperature increased from 298 K to 573 K, the powder sample luminescence gradually shifted from the yellow-green region to the red region. The results of environmental discoloration and thermochromic performance tests indicate that this sample has potential application in optical anti-counterfeiting. FIR804 nm /660 nm and FIR804 nm /538 nm were obtained for the 40 NTU turbidity suspension under identical excitation conditions. At 298 K, for the 40 NTU turbidity sample, the maximum Sr values were 0.0197 K-1 and 0.0405 K-1; at 340 K, the minimum temperature resolutions δT values were 0.54037 K and 0.66237 K. When the temperature decreased from 340 K to 298 K, the luminescence of the 40 NTU suspension samples gradually shifted from the yellow region to the green region.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124945, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163768

RESUMEN

Pd speciation induced by the combined effect of CO and water on Pd/SSZ-13 samples prepared by both impregnation and ion exchange was examined by FT-IR spectroscopy of CO adsorbed at room temperature and at liquid nitrogen temperature on anhydrous and hydrated samples. Starting from the literature findings related to the CO reducing effect on Pd cations, the present work gives precise spectroscopic evidences on how water is necessary in this process not only for compensating with H+ the zeolite exchange sites set free by Pd reduction, but also for mobilizing isolated Pd2+/Pd+ cations and making possible the reduction reactions. The aggregation of some Pd+ sites, just formed by the reduction and mobilized by the hydration, gives rise to the formation of Pd2O particles. Also, Pd0(100) sites are observed with CO on hydrated sample, formed by the aggregation and reduction of isolated Pd cations. Moreover, Pd0(111) sites are formed on the surface of PdOx particles during CO outgassing. The observation of the combined effect of water and CO allowed to define assignments of IR bands related to carbonyls of Pd in different oxidation states and coordination degrees.

4.
Biomaterials ; 312: 122733, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106819

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Resistencia a Antineoplásicos , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ligando Inductor de Apoptosis Relacionado con TNF , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/química , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Especies Reactivas de Oxígeno/metabolismo , Distribución Tisular , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
5.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095155

RESUMEN

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Dióxido de Carbono/química , Adsorción , Estructuras Metalorgánicas/química , Contaminantes Atmosféricos/química , Carbón Orgánico/química
6.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095186

RESUMEN

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Asunto(s)
Compuestos de Manganeso , Níquel , Óxidos , Ozono , Óxidos/química , Níquel/química , Compuestos de Manganeso/química , Ozono/química , Catálisis , Humedad , Cobalto/química , Modelos Químicos , Contaminantes Atmosféricos/química
7.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095190

RESUMEN

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Asunto(s)
Grafito , Oxidación-Reducción , Platino (Metal) , Dióxido de Azufre , Titanio , Titanio/química , Grafito/química , Dióxido de Azufre/química , Platino (Metal)/química , Catálisis , Monóxido de Carbono/química , Agua/química , Contaminantes Atmosféricos/química , Modelos Químicos
8.
J Environ Sci (China) ; 148: 650-664, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095197

RESUMEN

China is the most important steel producer in the world, and its steel industry is one of the most carbon-intensive industries in China. Consequently, research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals. We constructed a carbon dioxide (CO2) emission model for China's iron and steel industry from a life cycle perspective, conducted an empirical analysis based on data from 2019, and calculated the CO2 emissions of the industry throughout its life cycle. Key emission reduction factors were identified using sensitivity analysis. The results demonstrated that the CO2 emission intensity of the steel industry was 2.33 ton CO2/ton, and the production and manufacturing stages were the main sources of CO2 emissions, accounting for 89.84% of the total steel life-cycle emissions. Notably, fossil fuel combustion had the highest sensitivity to steel CO2 emissions, with a sensitivity coefficient of 0.68, reducing the amount of fossil fuel combustion by 20% and carbon emissions by 13.60%. The sensitivities of power structure optimization and scrap consumption were similar, while that of the transportation structure adjustment was the lowest, with a sensitivity coefficient of less than 0.1. Given the current strategic goals of peak carbon and carbon neutrality, it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies, increase the ratio of scrap steel to steelmaking, and build a new power system.


Asunto(s)
Dióxido de Carbono , Huella de Carbono , Acero , China , Dióxido de Carbono/análisis , Contaminantes Atmosféricos/análisis , Metalurgia , Monitoreo del Ambiente , Industrias , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/prevención & control
9.
Synth Syst Biotechnol ; 10(1): 10-22, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39206086

RESUMEN

The waste pollution problem caused by polyethylene terephthalate (PET) plastics poses a huge threat to the environment and human health. As plasticizers, Phthalate esters (PAEs) are widely used in PET production and become combined pollutants with PET. Synthetic biology make it possible to construct engineered cells for microbial degradation of combined pollutants of PET and PAEs. PET hydroxylase (PETase) and monohydroxyethyl terephthalate hydroxylase (MHETase) isolated from Ideonella sakaiensis 201-F6 exhibit the capability to depolymerize PET. However, PET cannot enter cells, thus enzymatic degradation or cell surface displaying technology of PET hydrolase are the potential strategies. In this study, Pseudomonas sp. JY-Q was selected as a chassis strain, which exhibits robust stress tolerance. First, a truncated endogenous outer membrane protein cOmpA and its variant Signal (OprF)-cOmpA were selected as anchor motifs for exogenous protein to display on the cell surface. These anchor motifs were fused at the N-terminal of PET hydrolase and MHETase and transformed into Pseudomonas sp. JY-Q, the mutant strains successfully display the enzymes on cell surface, after verification by green fluorescent protein labeling and indirect immunofluorescence assay. The resultant strains also showed the catalytic activity of co-displaying PETase and MHETase for PET biodegradation. Then, the cell surface displaying PET degradation module was introduced to a JY-Q strain which genome was integrated with PAEs degrading enzymes and exhibited PAEs degradation ability. The resultant strain JY-Q-R1-R4-SFM-TPH have the ability of degradation PET and PAEs simultaneously. This study provided a promising strain resource for PET and PAEs pollution control.

10.
Methods Mol Biol ; 2854: 93-106, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192122

RESUMEN

As an interferon-stimulating factor protein, STING plays a role in the response and downstream liaison in antiviral natural immunity. Upon viral invasion, the immediate response of STING protein leads to a series of changes in downstream proteins, which ultimately leads to an antiviral immune response in the form of proinflammatory cytokines and type I interferons, thus triggering an innate immune response, an adaptive immune response in vivo, and long-term protection of the host. In the field of antiviral natural immunity, it is particularly important to rigorously and sequentially probe the dynamic changes in the antiviral natural immunity connector protein STING caused by the entire anti-inflammatory and anti-pathway mechanism and the differences in upstream and downstream proteins. Traditionally, proteomics technology has been validated by detecting proteins in a 2D platform, for which it is difficult to sensitively identify changes in the nature and abundance of target proteins. With the development of mass spectrometry (MS) technology, MS-based proteomics has made important contributions to characterizing the dynamic changes in the natural immune proteome induced by viral infections. MS analytical techniques have several advantages, such as high throughput, rapidity, sensitivity, accuracy, and automation. The most common techniques for detecting complex proteomes are liquid chromatography (LC) and mass spectrometry (MS). LC-MS (Liquid Chromatography-Mass Spectrometry), which combines the physical separation capability of LC and the mass analysis capability of MS, is a powerful technique mainly used for analyzing the proteome of cells, tissues, and body fluids. To explore the combination of traditional proteomics techniques such as Western blotting, Co-IP (co-Immunoprecipitation), and the latest LC-MS methods to probe the anti-inflammatory pathway and the differential changes in upstream and downstream proteins induced by the antiviral natural immune junction protein STING.


Asunto(s)
Inmunidad Innata , Proteómica , Proteómica/métodos , Cromatografía Liquida/métodos , Humanos , Western Blotting/métodos , Espectrometría de Masas/métodos , Inmunoprecipitación/métodos , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Cromatografía Líquida con Espectrometría de Masas
11.
J Environ Sci (China) ; 149: 177-187, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181632

RESUMEN

In the context of peaking carbon dioxide emissions and carbon neutrality, development of feasible methods for converting CO2 into high value-added chemicals stands out as a hot subject. In this study, P[D+COO-][Br-][DBUH+], a series of novel heterogeneous dual-ionic poly(ionic liquid)s (PILs) were synthesized readily from 2-(dimethylamino) ethyl methacrylate (DMAEMA), bromo-substituted aliphatic acids, organic bases and divinylbenzene (DVB). The structures, compositions and morphologies were characterized or determined by nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), infrared spectroscopy (IR), scanning electron microscopes (SEM), and Brunauer-Emmett-Teller analysis (BET), etc. Application of the P[D+COO-][Br-][DBUH+] series as catalysts in converting CO2 into cyclic carbonates showed that P[D+COO-][Br-][DBUH+]-2/1/0.6 was able to catalyze epiclorohydrin-CO2 cycloaddition the most efficiently. This afforded chloropropylene carbonate (CPC) in 98.4% yield with ≥ 99% selectivity in 24 hr under solvent- and additive-free conditions at atmospheric pressure. Reusability experiments showed that recycling of the catalyst 6 times only resulted in a slight decline in the catalytic performance. In addition, it could be used for the synthesis of a variety of differently substituted cyclic carbonates in good to excellent yields. Finally, key catalytic active sites were probed, and a reasonable mechanism was proposed accordingly. In summary, this work poses an efficient strategy for heterogenization of dual-ionic PILs and provides a mild and environmentally benign approach to the fixation and utilization of carbon dioxide.


Asunto(s)
Dióxido de Carbono , Carbonatos , Líquidos Iónicos , Líquidos Iónicos/química , Dióxido de Carbono/química , Carbonatos/química , Catálisis , Modelos Químicos
12.
J Environ Sci (China) ; 149: 330-341, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181646

RESUMEN

The emission of heavy-duty vehicles has raised great concerns worldwide. The complex working and loading conditions, which may differ a lot from PEMS tests, raised new challenges to the supervision and control of emissions, especially during real-world applications. On-board diagnostics (OBD) technology with data exchange enabled and strengthened the monitoring of emissions from a large number of heavy-duty diesel vehicles. This paper presents an analysis of the OBD data collected from more than 800 city and highway heavy-duty vehicles in China using remote OBD data terminals. Real-world NOx and CO2 emissions of China-6 heavy-duty vehicles have been examined. The results showed that city heavy-duty vehicles had higher NOx emission levels, which was mostly due to longer time of low SCR temperatures below 180°C. The application of novel methods based on 3B-MAW also found that heavy-duty diesel vehicles tended to have high NOx emissions at idle. Also, little difference had been found in work-based CO2 emissions, and this may be due to no major difference were found in occupancies of hot running.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Carbono , Monitoreo del Ambiente , Óxidos de Nitrógeno , Emisiones de Vehículos , Emisiones de Vehículos/análisis , China , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente/métodos , Óxidos de Nitrógeno/análisis , Ciudades , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/análisis , Gasolina/análisis
13.
J Environ Sci (China) ; 149: 535-550, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181665

RESUMEN

Li6ZnO4 was chemically modified by nickel addition, in order to develop different compositions of the solid solution Li6Zn1-xNixO4. These materials were evaluated bifunctionally; analyzing their CO2 capture performances, as well as on their catalytic properties for H2 production via dry reforming of methane (DRM). The crystal structures of Li6Zn1-xNixO4 solid solution samples were determined through X-ray diffraction, which confirmed the integration of nickel ions up to a concentration around 20 mol%, meanwhile beyond this value, a secondary phase was detected. These results were supported by XPS and TEM analyses. Then, dynamic and isothermal thermogravimetric analyses of CO2 capture revealed that Li6Zn1-xNixO4 solid solution samples exhibited good CO2 chemisorption efficiencies, similarly to the pristine Li6ZnO4 chemisorption trends observed. Moreover, a kinetic analysis of CO2 isothermal chemisorptions, using the Avrami-Erofeev model, evidenced an increment of the constant rates as a function of the Ni content. Since Ni2+ ions incorporation did not reduce the CO2 capture efficiency and kinetics, the catalytic properties of these materials were evaluated in the DRM process. Results demonstrated that nickel ions favored hydrogen (H2) production over the pristine Li6ZnO4 phase, despite a second H2 production reaction was determined, methane decomposition. Thereby, Li6Zn1-xNixO4 ceramics can be employed as bifunctional materials.


Asunto(s)
Dióxido de Carbono , Hidrógeno , Metano , Hidrógeno/química , Metano/química , Dióxido de Carbono/química , Níquel/química , Catálisis , Modelos Químicos
14.
J Environ Sci (China) ; 149: 598-615, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181671

RESUMEN

Catalytic hydrogenation of CO2 to ethanol is a promising solution to address the greenhouse gas (GHG) emissions, but many current catalysts face efficiency and cost challenges. Cobalt based catalysts are frequently examined due to their abundance, cost-efficiency, and effectiveness in the reaction, where managing the Co0 to Coδ+ ratio is essential. In this study, we adjusted support nature (Al2O3, MgO-MgAl2O4, and MgO) and reduction conditions to optimize this balance of Co0 to Coδ+ sites on the catalyst surface, enhancing ethanol production. The selectivity of ethanol reached 17.9% in a continuous flow fixed bed micro-reactor over 20 mol% Co@MgO-MgAl2O4 (CoMgAl) catalyst at 270 °C and 3.0 MPa, when reduced at 400 °C for 8 h. Characterisation results coupled with activity analysis confirmed that mild reduction condition (400 °C, 10% H2 balance N2, 8 h) with intermediate metal support interaction favoured the generation of partially reduced Co sites (Coδ+ and Co0 sites in single atom) over MgO-MgAl2O4 surface, which promoted ethanol synthesis by coupling of dissociative (CHx*)/non-dissociative (CHxO*) intermediates, as confirmed by density functional theory analysis. Additionally, the CoMgAl, affordably prepared through the coprecipitation method, offers a potential alternative for CO2 hydrogenation to yield valuable chemicals.


Asunto(s)
Dióxido de Carbono , Cobalto , Etanol , Dióxido de Carbono/química , Etanol/química , Hidrogenación , Cobalto/química , Catálisis , Nanopartículas/química , Modelos Químicos
15.
Food Chem ; 462: 140913, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197241

RESUMEN

Grape processing generates large amounts of by-products, including seeds rich in hydrophilic and lipophilic antioxidants. This study demonstrates, for the first time, that subjecting grape seeds to a single ultrasound-assisted extraction (UAE) with aqueous ethanolic solutions yields both flavan-3-ols and tocochromanols in the final extract. Notably, the water content in ethanol significantly influences the extractability of tocochromanols more than flavan-3-ols. Solid-to-solvent ratios of 1:50 to 1:2 were tested for both analytical and industrial applications. A sustainable analytical approach for recovering flavan-3-ols and tocochromanols using 60% and 96.4% ethanol extractions was validated and employed to profile nineteen genotypes of lesser-studied interspecific grape crosses (Vitis spp.). Different genotypes showed a wide range of concentrations of tocopherols (1.6-6.3 mg/100 g), tocotrienols (1.0-17.4 mg/100 g), and flavan-3-ols (861-9994 mg/100 g). This indicated that the genetic background and maturity of the plant material are crucial factors from an industrial perspective due to the initial concentration of bioactive compounds. Finally, the study also discussed the fundamental aspects of hydrophobic antioxidant extractability from the lipid matrix with aqueous ethanol solutions and the limitations of the workflow, such as the non-extractable tocochromanols and their esters and the losses of these lipophilic antioxidants during extraction.


Asunto(s)
Flavonoides , Semillas , Vitis , Vitis/química , Semillas/química , Flavonoides/aislamiento & purificación , Flavonoides/química , Flavonoides/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Tocoferoles/aislamiento & purificación , Tocoferoles/química , Tocoferoles/análisis , Tocotrienoles/análisis , Tocotrienoles/aislamiento & purificación , Tocotrienoles/química
16.
Methods Mol Biol ; 2854: 35-40, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192116

RESUMEN

Co-immunoprecipitation is a technique widely utilized to isolate protein complexes and study protein-protein interactions. Ubiquitinated proteins could be identified by combining co-immunoprecipitation with SDS-PAGE followed by immunoblotting. In this chapter, we use Herpes Simplex Virus 1 immediate-early protein ICP0-mediated polyubiquitination of p50 as an example to describe the method to identify a ubiquitinated adaptor protein by a viral E3 ligase by co-immunoprecipitation.


Asunto(s)
Proteínas Inmediatas-Precoces , Inmunoprecipitación , Ubiquitina-Proteína Ligasas , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Inmunoprecipitación/métodos , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Unión Proteica , Proteínas Ubiquitinadas/metabolismo , Herpesvirus Humano 1/metabolismo , Electroforesis en Gel de Poliacrilamida/métodos , Proteínas Virales/metabolismo
17.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181639

RESUMEN

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Asunto(s)
Proteínas Fúngicas , Lipasa , Poliésteres , Lipasa/metabolismo , Lipasa/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Poliésteres/química , Poliésteres/metabolismo , Biodegradación Ambiental , Simulación de Dinámica Molecular , Hidrólisis , Modelos Químicos
18.
Biomaterials ; 312: 122760, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39163825

RESUMEN

Inflammation-resident cells within arthritic sites undergo a metabolic shift towards glycolysis, which greatly aggravates rheumatoid arthritis (RA). Reprogramming glucose metabolism can suppress abnormal proliferation and activation of inflammation-related cells without affecting normal cells, holding potential for RA therapy. Single 2-deoxy-d-glucose (2-DG, glycolysis inhibitor) treatment often cause elevated ROS, which is detrimental to RA remission. The rational combination of glycolysis inhibition with anti-inflammatory intervention might cooperatively achieve favorable RA therapy. To improve drug bioavailability and exert synergetic effect, stable co-encapsulation of drugs in long circulation and timely drug release in inflamed milieu is highly desirable. Herein, we designed a stimulus-responsive hyaluronic acid-triglycerol monostearate polymersomes (HTDD) co-delivering 2-DG and dexamethasone (Dex) to arthritic sites. After intravenous injection, HTDD polymersomes facilitated prolonged circulation and preferential distribution in inflamed sites, where overexpressed matrix metalloproteinases and acidic pH triggered drug release. Results indicated 2-DG can inhibit the excessive cell proliferation and activation, and improve Dex bioavailability by reducing Dex efflux. Dex can suppress inflammatory signaling and prevent 2-DG-induced oxidative stress. Thus, the combinational strategy ultimately mitigated RA by inhibiting glycolysis and hindering inflammatory signaling. Our study demonstrated the great potential in RA therapy by reprogramming glucose metabolism in arthritic sites.


Asunto(s)
Artritis Reumatoide , Desoxiglucosa , Dexametasona , Glucosa , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Animales , Glucosa/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico , Ratones , Desoxiglucosa/farmacología , Inflamación/tratamiento farmacológico , Glucólisis/efectos de los fármacos , Polímeros/química , Ácido Hialurónico/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Masculino , Humanos , Proliferación Celular/efectos de los fármacos
19.
J Ethnopharmacol ; 336: 118706, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186989

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum (G. lucidum) has been widely used as adjuvant of anti-tumor therapy for variety tumors. The bioactive ingredients of G. lucidum mainly include triterpenes, such as Ganoderic acid A, Ganoderic acid B, Ganoderenic acid A, Ganoderenic acid B, Ganoderenic acid D, and Ganoderic acid X. However, the effects and underlying mechanisms of G. lucidum are often challenging in hepatocellular carcinoma (HCC) treatment. AIM OF THE STUDY: To explore the potential role and mechanism of enhancer-associated lncRNAs (en-lncRNAs) in G. lucidum treated HCC through the in vivo and in vitro experiments. MATERIALS AND METHODS: Hepa1-6-bearing C57 BL/6 mice model were established to evaluate the therapeutic efficacy of G. lucidum treated HCC. Ki67 and TUNEL staining were used to detect the tumor cell proliferation and apoptosis in vivo. The Mouse lncRNA 4*180K array was implemented to identify the differentially expressed (DE) lncRNAs and mRNAs of G. lucidum treated tumor mice. The constructed lncRNA-mRNA co-expression network and bioinformatics analysis were used to selected core en-lncRNAs and its neighboring genes. The UPLC-MS method was used to identify the triterpenes of G. lucidum, and the in vitro experiments were used to verify which triterpene monomers regulated en-lncRNAs in tumor cells. Finally, a stable knockdown/overexpression cell lines were used to confirm the relationship between en-lncRNA and neighboring gene. RESULTS: Ki67 and TUNEL staining demonstrated G. lucidum significantly inhibited tumor growth, suppressed cell proliferation and induced apoptosis in vivo. Transcriptomic analysis revealed the existence of 126 DE lncRNAs high correlated with 454 co-expressed mRNAs in G. lucidum treated tumor mice. Based on lncRNA-mRNA network and qRT-PCR validation, 6 core lncRNAs were selected and considered high correlated with G. lucidum treatment. Bioinformatics analysis revealed FR036820 and FR121302 might act as enhancers, and qRT-PCR results suggested FR121302 might enhance Popdc2 mRNA level in HCC. Furthermore, 6 main triterpene monomers of G. lucidum were identified by UPLC-MS method, and in vitro experiments showed FR121302 and Popdc2 were significantly suppressed by Ganoderenic acid A and Ganoderenic acid B, respectively. The knock/overexpression results demonstrated that FR121302 activating and enhancing Popdc2 expression levels, and Ganoderenic acid A and Ganoderenic acid B dramatically suppressed FR121302 and decreased Popdc2 level in Hepa1-6 cells. CONCLUSIONS: Enhancer-associated lncRNA plays a crucial role as an enhancer during hepatocarcinogenesis, and triterpenes of G. lucidum significantly inhibited tumor cell proliferation and induced apoptosis by regulating en-lncRNAs. Our study demonstrated Ganoderenic acid A and Ganoderenic acid B suppressed en-lncRNA FR121302 may be one of the critical strategies of G. lucidum inhibit hepatocellular carcinoma growth.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Ratones Endogámicos C57BL , ARN Largo no Codificante , Reishi , Triterpenos , Animales , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Reishi/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones , Línea Celular Tumoral , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación
20.
J Environ Sci (China) ; 147: 230-243, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003043

RESUMEN

Enhancing soil organic matter characteristics, ameliorating physical structure, mitigating heavy metal toxicity, and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate. The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation. Despite this, there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation. The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate, under the combined effects of biomass co-smoldering pyrolysis and plant colonization. The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects, which enhance the physical and chemical properties of tailings, while simultaneously accelerating the rate of mineral weathering. Notable improvements include the amelioration of extreme pH levels, nutrient enrichment, the formation of aggregates, and an increase in enzyme activity, all of which collectively demonstrate the successful attainment of tailings substrate reconstruction. Evidence of the accelerated weathering was verified by phase and surface morphology analysis using X-ray diffraction and scanning electron microscopy. Discovered corrosion and fragmentation on the surface of minerals. The weathering resulted in corrosion and fragmentation of the surface of the treated mineral. This study confirms that co-smoldering pyrolysis of biomass, combined with plant colonization, can effectively promote the transformation of tailings into soil-like substrates. This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.


Asunto(s)
Biomasa , Minería , Contaminantes del Suelo , Suelo , Suelo/química , Pirólisis , Plantas , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA