Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Microbiol ; 15: 1392333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104589

RESUMEN

Introduction: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. Methods: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. Results: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). Conclusion: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.

2.
Front Plant Sci ; 15: 1410314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091311

RESUMEN

Introduction: Cape gooseberry (Physalis peruviana L.) is a wellconsumed crop in Ecuador, whose fruits are abundant in bioactive molecules. Its rapid post-harvest deterioration and safety limit its market potential. Methodology: To gather baseline data on the prevalence of bacterial taxa among groups, we employed 16S ribosomal RNA (16S rRNA) amplicon gene sequencing to detect changes in the bacterial community structure in cape gooseberry fruits harvested from an organic farm production system (# 270 samples x two ripeness stages), and fruits obtained from an open-air market (#270). Results: This is the first report of bacterial taxa inhabiting cape gooseberry fruits. Shannon's diversity index revealed that the fruits purchased from the market and the unripe stage had the highest level of bacterial diversity (average Shannon indices of 3.3 and 3.1) followed by those collected from the field at the mature ripe stage (2.07). Alpha diversity analysis indicated that there were no significant differences in the number of taxa or evenness within the sample, whereas there was a significant difference in beta diversity between the groups. Rhizobiaceae was the most abundant family in fruits originating from the field regardless of the ripe stage, while Acetobacteraceae, Pseudomonadaceae, Fusobacteriaceae, Bacteroidaceae, and Erwiniaceae were the most abundant families in the market group. At the genus level, Liberibacter was the most abundant phytopathogen in fruits originating from the field, while Gluconobacter was the most abundant in samples collected from the market. The phytopathogen Candidatus_Liberibacter was the most abundant in samples collected from the field, while the fruits purchased from the market stands contained opportunistic enteric pathogens such as Escherichia vulneris, Klebsiella pneumoniae, and K. variicola, their relative abundance varied with the sample. In addition, potential pathogens of animal origin such as Fusobacterium necrophorum, Porphyromonas levii, Helcococcus ovis, and Trueperella pyogenes were found in almost all samples at varying relative abundance. Conclusion: Our study provides basic information on the microbiome of cape gooseberries from agriculture fields to the table along with the detection of several pathogenic microorganisms with possible impact on food safety and public health therefore, strategies for reducing bacterial contamination in both farm and retail markets are compulsory.

3.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124880

RESUMEN

Vacuum-Assisted Sorbent Extraction (VASE) is a novel extraction technique that uses vacuum to facilitate the transfer of volatile compounds from the matrix to the sorbent. This technique was explored for extraction of volatiles from cape gooseberry fruit, for both qualitative and quantitative analyses. Selected extraction parameters were tested: sample size, extraction temperature and time, influence of tissue disintegration on release of volatiles, and also addition of Ag+1 ions in the form of AgNO3 to stop enzymatic formation of volatile compounds. For selected conditions (10 g sample, extraction for 30 min. at 40 °C of volatiles from blended fruit) quantitative aspects were explored. Twenty-two compounds of cape gooseberry were tested. The method was characterized with a very good linearity in a range of 10-5000 µg/kg and good reproducibility. The experiments proved the usefulness of VASE in both volatile profiling and quantitative analyses of cape gooseberry and in prospective other fruit.


Asunto(s)
Frutas , Physalis , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación , Compuestos Orgánicos Volátiles/química , Physalis/química , Frutas/química , Vacio , Reproducibilidad de los Resultados , Extractos Vegetales/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Extracción en Fase Sólida/métodos
4.
Colloids Surf B Biointerfaces ; 234: 113662, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128359

RESUMEN

The focus of this study was on the development, physicochemical characterisation and evaluation of the antioxidant activity of cape gooseberry calyx extract loaded into nanoliposomal systems. Various nanoliposomes were prepared and optimised using the ethanol injection method and characterised based on particle size, polydispersity and zeta potential measurements. Subsequently, the encapsulation efficiency and in vitro release profile of the natural antioxidant extract (NAE) were evaluated, and its antioxidant activity was assessed using the oxygen radical absorbance capacity assay. The results revealed that NAE-loaded nanoliposomes described desired quality features (e.g., particle size of < 200 nm, polydispersity index of < 0.3, zeta potential of > -40 mV and encapsulation efficiency of ∼70%). Furthermore, it was found that NAE release is controlled by various stages, and its antioxidant activity improves by around 30% when loaded into the nanoliposomes, suggesting that it could be a promising antioxidant functional raw material.


Asunto(s)
Antioxidantes , Ribes , Antioxidantes/farmacología , Liposomas , Lecitinas , Tamaño de la Partícula
5.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37348479

RESUMEN

The use of microbial consortia has become a promising alternative for the management of various diseases. In this study, 18 artificial consortia were designed, consisting of five bacteria, five fungi, and a mixture of five fungi and five bacteria; from a collection of microorganisms isolated from the rhizosphere of cape gooseberry plants grown in two soils potentially suppressive against Fusarium oxysporum. When evaluated under greenhouse conditions for their biocontrol activity on cape gooseberry plants, one consortium was selected for their high efficacy (over 90%) in the control of vascular wilt caused by F. oxysporum f. sp. physali. This was constituted by 10 microorganisms, the bacteria Paenibacillus peoriae, Bacillus subtilis, Lysinibacillus sp., B. simplex, and Pseudomonas chlororaphis; and the fungi Beauveria bassiana, Scopulariopsis brevicaulis, Trichoderma gamsii, T. ghanense, and T. lignicola. On the other hand, four of the consortia evaluated in the presence of the pathogen mitigated the deleterious effect produced by the pathogen on plant growth, expressing higher dry weights, both in the aerial and root parts. This work represents the first report on using these mixtures of microorganisms to control vascular wilt produced by F. oxysporum. However, further studies are needed to determine their activity in cape gooseberry fields.


Asunto(s)
Fusarium , Physalis , Ribes , Consorcios Microbianos , Physalis/microbiología , Bacillus subtilis , Hongos , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
6.
Ultrason Sonochem ; 96: 106425, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37141660

RESUMEN

In the present investigation, the cape gooseberry (Physalis peruviana L.) was preserved by the application of osmotic dehydration (sugar solution) with ultrasonication. The experiments were planned based on central composite circumscribed design with four independent variables and four dependent variables, which yielded 30 experimental runs. The four independent variables used were ultrasonication power (XP) with a range of 100-500 W, immersion time (XT) in the range of 30-55 min, solvent concentration (XC) of 45-65 % and solid to solvent ratio (XS) with range 1:6-1:14 w/w. The effect of these process parameters on the responses weight loss (YW), solid gain (YS), change in color (YC) and water activity (YA) of ultrasound assisted osmotic dehydration (UOD) cape gooseberry was studied by using response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). The second order polynomial equation successfully modeled the data with an average coefficient of determination (R2) was found to be 0.964 for RSM. While for the ANFIS modeling, Gaussian type membership function (MF) and linear type MF was used for the input and output, respectively. The ANFIS model formed after 500 epochs and trained by hybrid model was found to have average R2 value of 0.998. On comparing the R2 value the ANFIS model found to be superior over RSM in predicting the responses of the UOD cape gooseberry process. So, the ANFIS was integrated with a genetic algorithm (GA) for optimization with the aim of maximum YW and minimum YS, YC and YA. Depending on the higher fitness value of 3.4, the integrated ANFIS-GA picked the ideal combination of independent variables and was found to be XP of 282.434 W, XT of 50.280 min, XC of 55.836 % and XS of 9.250 w/w. The predicted and experimental values of response at optimum condition predicted by integrated ANN-GA were in close agreement, which was evident by the relative deviation less than 7%.

7.
Food Res Int ; 162(Pt A): 111949, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461284

RESUMEN

Golden berry (Physalis peruviana) is a tropical fruit rich in antioxidants that has been proposed to be able to control the lipid profile in hypercholesterolemic patients. Dyslipidemia is an independent risk factor for cardiometabolic diseases. The gut microbiota is strongly associated with cardiometabolic risk and is involved in redox balance, intestinal permeability, and inflammation. However, the impacts of golden berry on some of these factors, including the human gut microbiota, have never been tested, and there are no tools for compliance monitoring or dietary intake assessment regarding nutritional interventions with this fruit. In the pre-post quasi-experimental nutritional intervention presented here, 18 adult men (27-49 years old) consumed golden berries (Dorada variety) for three weeks. We evaluated putative biomarkers of exposure through an untargeted metabolomics approach (liquid chromatography-mass spectrometry LC-MS), quantified the biomarkers of oxidative stress, gut permeability, and inflammation in plasma, and assessed the effects of fruit intake on the gut microbiota through 16S rRNA gene sequencing of feces (Illumina MiSeq V2). First, syringic acid and kaempferol were identified as putative biomarkers of golden berry consumption. Intervention with this fruit promoted physiological changes in the participants after three weeks, reducing the level of the oxidative stress marker 8-isoprostane (-148 pg/ml; 36.1 %; p = 0.057) and slightly altering gut permeability by increasing the plasma levels of LBP (2.91 µg/ml; 54.6 %; p = 0.0005) and I-FABP (0.15, 14.7 %, p = 0.04) without inducing significant inflammation; i.e., the levels of IL-1ß, TNF-α and IL-8 changed by 0.7 (2.0 %), -4.0 (-9.6 %) and -0.4 (-1.8 %) pg/ml, respectively. Notably, the consumption of golden berries did not affect the gut microbiota of the individuals consistently but instead shifted it in a personalized manner. The compositions of the gut microbiota of a given individual at the end of intervention and one month after the end of intervention were statistically more similar to their own baseline than to a corresponding sample from a different individual. This intervention identified putative biomarkers of golden berry intake along with potential benefits of its consumption relevant to cardiometabolic disease risk reduction. Golden berries are likely to positively modulate redox balance, although this effect must be proven in a future controlled clinical trial.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Physalis , Adulto , Masculino , Humanos , Persona de Mediana Edad , Frutas , ARN Ribosómico 16S , Permeabilidad , Inflamación , Biomarcadores , Estrés Oxidativo
8.
Foods ; 10(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34828980

RESUMEN

Physalis peruviana L. belongs to the Solanaceae family and produces a spherical fruit used to treat various diseases. However, the chemical composition, nutritional characterization, and bioactive properties of the P. peruviana growing in the Andean region of the Atacama Desert have not been conducted so far. The results showed clear differences in the nutritional and bioactive characteristics of the fruits grown in arid environmental conditions, which were comparable to those from countries with a production tradition. The fruits studied showed a higher Ca, Cu, Mn, P, and Zn content and bioactive compounds such as flavonoids and tannins than those reported in the literature. UHPLC was performed to determine the main phenols. Gallic acid was identified as the predominant phenolic compound in this species (303.63 mg/100 g FW), of which to our knowledge no previous study has reported similar concentrations in this species. Moreover, Cape gooseberry extract has antioxidant and antimicrobial activity against Gram-positive and Gram-negative bacteria. Pseudomonas syringae (MIC 0.313 mg/mL and MBC 1.25 mg/mL) was the most susceptible bacterium. Meanwhile, Erwinia rhapontici was the most resistant bacterium (MIC and MIB 5.00 mg/mL). Furthermore, it was found to inhibit α-amylase activity with an IC50 value (39.28 µg/mL) similar to that of acarbose (35.74 µg/mL). These results expand the knowledge of the species cultivated in arid environmental conditions and suggest an alternative for the potential use of this fruit to manage chronic diseases such as diabetes.

9.
Molecules ; 26(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067096

RESUMEN

Colombia is the main producer of cape gooseberry (Physalis peruviana L.), a plant known for its various consumption practices and medicinal properties. This plant is generally grown in eroded soils and is considered moderately tolerant to unfavorable conditions, such as nutrient-poor soils or high salt concentrations. Most studies conducted on this plant focus on fruit production and composition because it is the target product, but a small number of studies have been conducted to describe the effect of abiotic stress, e.g., salt stress, on growth and biochemical responses. In order to better understand the mechanism of inherent tolerance of this plant facing salt stress, the present study was conducted to determine the metabolic and growth differences of P. peruviana plants at three different BBCH-based growth substages, varying salt conditions. Hence, plants were independently treated with two NaCl solutions, and growth parameters and LC-ESI-MS-derived semi-quantitative levels of metabolites were then measured and compared between salt treatments per growth substage. A 90 mM NaCl treatment caused the greatest effect on plants, provoking low growth and particular metabolite variations. The treatment discrimination-driving feature classification suggested that glycosylated flavonols increased under 30 mM NaCl at 209 substages, withanolides decreased under 90 mM NaCl at 603 and 703 substages, and up-regulation of a free flavonol at all selected stages can be considered a salt stress response. Findings locate such response into a metabolic context and afford some insights into the plant response associated with antioxidant compound up-regulation.


Asunto(s)
Metaboloma , Physalis/crecimiento & desarrollo , Physalis/metabolismo , Estrés Salino/fisiología , Análisis Discriminante , Germinación/fisiología , Análisis de los Mínimos Cuadrados , Salinidad
10.
Phytopathology ; 111(12): 2227-2237, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34032523

RESUMEN

Bacillus velezensis Bs006 has shown antagonistic activity on Fusarium oxysporum f. sp. physali and biocontrol activity against Fusarium wilt (FW) in golden berry (Physalis peruviana). We hypothesized that strain Bs006 has the ability to synthesize antimicrobial cyclic lipopeptides (CLPs) like other members of the same species. However, if so, the real effects of CLPs on F. oxysporum f. sp. physali and their potential as a biocontrol tool against Physalis-FW have not been elucidated. In this study the CLPs profile of Bs006 in liquid culture and antagonist-plant-pathogen interactions were characterized. Also, the potential effects of supernatant free of bacteria against F. oxysporum f. sp. physali and FW were explored and compared with the effects of pure CLPs. Ultraperformance liquid chromatography-electrospray ionization-mass spectrometry analysis revealed the capacity of Bs006 to synthesize homologous compounds of iturins, surfactins, and fengycins in liquid culture and on the inhibition zone against F. oxysporum f. sp. physali in dual confrontation tests. Bs006 supernatant reduced the germination and growth of F. oxysporum f. sp. physali and caused vacuolization, swelling, and lysis of F. oxysporum f. sp. physali cells in a concentration-dependent manner. Pure fengycins affected the development of F. oxysporum f. sp. physali from 11 mg/liter and iturins from 21 mg/liter. In a gnotobiotic system, Bs006 colonized the root surface of golden berry, inhibited the growth of F. oxysporum f. sp. physali, and produced CLPs. Individual application of Bs006 and supernatant protected the plants from F. oxysporum f. sp. physali infections by 37 to 53%, respectively. Meanwhile, fengycins reduced the disease progress by 39%. These results suggest further studies to select an optimum combination of Bs006 and supernatant or CLPs, which might be a good option as biofungicide against F. oxysporum f. sp. physali.


Asunto(s)
Fusarium , Physalis , Bacillus , Frutas , Lipopéptidos/farmacología , Enfermedades de las Plantas/prevención & control
11.
PeerJ ; 9: e11135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828924

RESUMEN

Vascular wilt, caused by the pathogen Fusarium oxysporum f. sp. physali (Foph), is a major disease of cape gooseberry (Physalis peruviana L.) in Andean countries. Despite the economic losses caused by this disease, there are few studies related to molecular mechanisms in the P. peruviana-Foph pathosystem as a useful tool for crop improvement. This study evaluates eight candidate genes associated with this pathosystem, using real-time quantitative PCR (RT-qPCR). The genes were identified and selected from 1,653 differentially expressed genes (DEGs) derived from RNA-Seq analysis and from a previous genome-wide association study (GWAS) of this plant-pathogen interaction. Based on the RT-qPCR analysis, the tubuline (TUB) reference gene was selected for its highly stable expression in cape gooseberry. The RT-qPCR validation of the candidate genes revealed the biological variation in their expression according to their known biological function. Three genes related to the first line of resistance/defense responses were highly expressed earlier during infection in a susceptible genotype, while three others were overexpressed later, mostly in the tolerant genotype. These genes are mainly involved in signaling pathways after pathogen recognition, mediated by hormones such as ethylene and salicylic acid. This study provided the first insight to uncover the molecular mechanism from the P. peruviana-Foph pathosystem. The genes validated here have important implications in the disease progress and allow a better understanding of the defense response in cape gooseberry at the molecular level. Derived molecular markers from these genes could facilitate the identification of tolerant/susceptible genotypes for use in breeding schemes.

12.
Ciênc. rural (Online) ; 51(9): e20200735, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1249566

RESUMEN

ABSTRACT: Increased production of the Cape gooseberry (Physalis peruviana L.) in Brazil has given rise to interest in identifying the phytophagous species that might damage this crop to inform preventive control and integrated pest management strategies. In this study, we report the occurrence and describe the damage that larvae and adults of Lema bilineata Germar (Coleoptera: Chrysomelidae) cause in P. peruviana. The number of L. bilineata individuals, both larvae and adults, significantly affected the total consumption of P. peruviana leaves. We also report, for the first time, three natural enemies, including a fungus, a fly, and an ant, which are associated with this pest in Brazil and may play a role in biological control strategies.


RESUMO: Fisális, Physalis peruviana L., é uma cultura em expansão no Brasil, dessa forma a identificação de espécies fitófagas que causam danos nesta cultura é importante para desenvolver controle preventivo e estratégias para o Manejo Integrado de Pragas. Neste estudo, relatamos a ocorrência de Lema bilineata Germar (Coleoptera: Chrysomelidae) no cultivo de P. peruviana e descrevemos os danos causados por suas larvas e adultos. Observou-se que o número de indivíduos de L. bilineata, tanto larvas como adultos, influenciaram significativamente o consumo total de folhas de P. peruviana. Além disso, relatamos pela primeira vez a presença de três inimigos naturais, incluindo um fungo, uma mosca e uma formiga, associados a esta praga no Brasil que poderiam ser utilizados como agentes de controle biológico.

13.
Turk J Biol ; 44(5): 295-303, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110367

RESUMEN

Physalis peruviana L. (Cape gooseberry) is a source for a variety of phytocompounds such as withanolides, withanone, withaferin A, and withanolide A. These withanolides are high-value drug candidates due to their various pharmacological properties. To meet the increasing demands for these compounds, plant cell technology offers a reliable alternative. Exogenous addition of elicitors is considered the most effective strategy for enhanced production of secondary metabolites. In this study, we investigated changes in withanolide accumulation and characterized the gene expression level changes of squalene synthase enzyme in P. peruviana shoot cultures exposed to mild nonlethal heat stress (45°C for 2 and 5 h) and UV-B radiation (313 nm for 15 min and 3 h). We demonstrated significant changes in withanolide content with 7.86- and 12.5-fold increases for 2- and 5-hmild high-temperature exposure times, respectively. Exposure to UV-B also changed the withanolide content by 7.22- and 7-fold increases for 15 min and 3 h exposure times, respectively. The relative expression level of squalene synthase gene showed consistent results with1.80- and 10.13-fold increases in withanolide for 2- and 5-h mild high-temperature exposure times, and 1.34- and 2.01-fold increases with 15 min and 3 h UV-B exposure times, respectively.

14.
J Food Sci Technol ; 57(9): 3267-3277, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32728275

RESUMEN

The aim of this research was to develop and characterize an innovative nectar formulation of Physalis peruviana fruits from the Argentinean Northern Andean region with optimized proportions of pulp and sucrose that maximizes the antioxidant activity and with good sensorial acceptance, using the response surface methodology as optimization strategy. Physicochemical characteristics (total soluble solids, titratable acidity and pH), antioxidant activity (measured as the free radical scavenging activity against DPPH·) and sensorial attributes (color, acidity, sweetness, texture, aroma and overall acceptance) were evaluated in a series of nectar formulations. A significant correlation between overall acceptance and antioxidant activity contributed to achieve the objective outlined. The mathematical modelling defined a nectar with 65% fruit juice and pulp and 8% sucrose; this nectar presented absence of indicator microorganisms (aerobic mesophilic microorganisms, molds and yeasts, Salmonella spp., total coliforms, and Staphylococcus aureus coagulase positive) despite having no added preservatives. ß-carotene and vitamin C contents (1.13 ± 0.02 and 16.56 ± 0.52 mg/100 mL respectively) and antioxidant activity towards DPPH· (EC50: 2.43 ± 0.07 mg/mL), ABTS·+ (3.48 ± 0.07 µmol Trolox/mL) and FRAP (10.16 ± 0.10 µmol Trolox/mL), make this nectar a functional food with potential for the food industry.

15.
Nutrients ; 12(3)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151028

RESUMEN

A chronic high-fat diet (HFD) produces obesity, leading to pathological consequences in the liver and skeletal muscle. The fat in the liver leads to accumulation of a large number of intrahepatic lipid droplets (LD), which are susceptible to oxidation. Obesity also affects skeletal muscle, increasing LD and producing insulin signaling impairment. Physalis peruviana L. (PP) (Solanaceae) is rich in peruvioses and has high antioxidant activity. We assessed the ability of PP to enhance insulin-dependent glucose uptake in skeletal muscle and the capacity to prevent both inflammation and lipoperoxidation in the liver of diet-induced obese mice. Male C57BL/6J mice were divided into groups and fed for eight weeks: control diet (C; 10% fat, 20% protein, 70% carbohydrates); C + PP (300 mg/kg/day); HFD (60% fat, 20% protein, 20% carbohydrates); and HFD + PP. Results suggest that PP reduces the intracellular lipoperoxidation level and the size of LD in both isolated hepatocytes and skeletal muscle fibers. PP also promotes insulin-dependent skeletal muscle glucose uptake. In conclusion, daily consumption of 300 mg/kg of fresh pulp of PP could be a novel strategy to prevent the hepatic lipoperoxidation and insulin resistance induced by obesity.


Asunto(s)
Hepatitis Animal/etiología , Hepatitis Animal/metabolismo , Resistencia a la Insulina , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/complicaciones , Physalis/química , Extractos Vegetales/farmacología , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Peso Corporal , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Frutas/química , Prueba de Tolerancia a la Glucosa , Hepatitis Animal/patología , Hepatitis Animal/prevención & control , Mediadores de Inflamación/metabolismo , Insulina/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Obesidad/etiología , Obesidad/metabolismo , Extractos Vegetales/química , Sustancias Protectoras/química , Sustancias Protectoras/farmacología
16.
Molecules ; 25(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936132

RESUMEN

The volatiles of cape gooseberry fruit (Physalis peruviana L.) were isolated by solvent-assisted flavor evaporation (SAFE), odor active compounds identified by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). Quantitation of compounds was performed by headspace-solid phase microextraction (HS-SPME) for all but one. Aroma extract dilution analysis (AEDA) revealed 18 odor active regions, with the highest flavor dilution values (FD = 512) noted for ethyl butanoate and 4-hydroxy-2,5-dimethylfuran-3-one (furaneol). Odor activity values were determined for all 18 compounds and the highest was noted for ethyl butanoate (OAV = 504), followed by linalool, (E)-non-2-enal, (2E,6Z)-nona-2,6-dienal, hexanal, ethyl octanoate, ethyl hexanoate, butane-2,3-dione, and 2-methylpropanal. The main groups of odor active compounds in Physalis peruviana L. were esters and aldehydes. A recombinant experiment confirmed the identification and quantitative results.


Asunto(s)
Aromatizantes/química , Frutas/química , Odorantes/análisis , Physalis/química , Compuestos Orgánicos Volátiles/química , Monoterpenos Acíclicos/análisis , Monoterpenos Acíclicos/química , Aldehídos/química , Ésteres/análisis , Aromatizantes/aislamiento & purificación , Furanos/análisis , Furanos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Olfatometría/métodos , Olfato/fisiología , Microextracción en Fase Sólida/métodos , Gusto/fisiología , Compuestos Orgánicos Volátiles/aislamiento & purificación
17.
Front Microbiol ; 11: 593915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537009

RESUMEN

The vascular wilt disease caused by the fungus Fusarium oxysporum f. sp. physali (Foph) is one of the most limiting factors for the production and export of cape gooseberry (Physalis peruviana) in Colombia. A transcriptomic analysis of a highly virulent strain of F. oxysporum in cape gooseberry plants, revealed the presence of secreted in the xylem (SIX) effector genes, known to be involved in the pathogenicity of other formae speciales (ff. spp.) of F. oxysporum. This pathogenic strain was classified as a new f. sp. named Foph, due to its specificity for cape gooseberry hosts. Here, we sequenced and assembled the genome of five strains of F. oxysporum from a fungal collection associated to the cape gooseberry crop (including Foph), focusing on the validation of the presence of SIX homologous and on the identification of putative effectors unique to Foph. By comparative and phylogenomic analyses based on single-copy orthologous, we found that Foph is closely related to F. oxysporum ff. spp., associated with solanaceous hosts. We confirmed the presence of highly identical homologous genomic regions between Foph and Fol that contain effector genes and identified six new putative effector genes, specific to Foph pathogenic strains. We also conducted a molecular characterization using this set of putative novel effectors in a panel of 36 additional stains of F. oxysporum including two of the four sequenced strains, from the fungal collection mentioned above. These results suggest the polyphyletic origin of Foph and the putative independent acquisition of new candidate effectors in different clades of related strains. The novel effector candidates identified in this genomic analysis, represent new sources involved in the interaction between Foph and cape gooseberry, that could be implemented to develop appropriate management strategies of the wilt disease caused by Foph in the cape gooseberry crop.

18.
Front Plant Sci ; 11: 621740, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537051

RESUMEN

Bacteria exhibiting beneficial traits like increasing the bioavailability of essential nutrients and modulating hormone levels in plants are known as plant growth promoting (PGP) bacteria. The occurrence of this specific group of bacteria in the endophytic environment may reflect the decisive role they play in a particular condition. This study aimed to determine the taxonomical diversity of the culturable bacterial endophytes, isolated in the vegetative stage of passionflower (Passiflora incarnata), and assess its potential to promote plant growth by phenotypic and genotypic approaches. The sequencing and phylogenetic analysis of the 16S rRNA gene allowed us to classify 58 bacterial endophytes into nine genera. Bacillus (70.7%) was the most dominant genus, followed by Pseudomonas (8.6%) and Pantoea (6.9%). A few isolates belonged to Rhodococcus and Paenibacillus, whereas the genera Lysinibacillus, Microvirga, Xanthomonas, and Leclercia were represented by only one isolate. The strains were tested for nitrogen fixation, phosphate solubilization, indole-acetic-acid synthesis, and siderophore production. Moreover, PGP related genes (nifH, ipdC, asb, and AcPho) were detected by PCR-based screening. Most of the isolates (94.8%) displayed a potential for at least one of the PGP traits tested by biochemical assays or PCR-based screening. Nine strains were selected based on results from both approaches and were evaluated for boosting the Cape gooseberry (Physalis peruviana) germination and growth. All tested isolates improved germination in vitro, and the majority (78%) increased growth parameters in vivo. The results suggested that most of culturable bacteria inhabiting P. incarnata in the vegetative stage could be used as probiotics for agricultural systems. Besides, their occurrence may be associated with specific physiological needs typical of this development stage.

19.
Carbohydr Res ; 461: 4-10, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29549750

RESUMEN

The fruit of Physalis peruviana is widely used in traditional Colombian medicine as an antidiabetic treatment. The aim of the study reported here was to identify the compounds responsible for the hypoglycemic activity using the α-amylase inhibition test. Bioguided fractionation of a dichloromethane extract of the sticky exudate that covers the fruit allowed the isolation and identification of three new sucrose esters, named as peruvioses C-E (1-3), along with the known peruvioses A (6), B (5) and F (4), the structures of which were elucidated by extensive NMR and MS experiments. These compounds proved to be responsible for the hypoglycemic activity observed in the extract. Peruviose D (2) showed the highest activity, with an inhibitory activity value of 84.8%. This is the first study to establish the potential of sucrose esters as α-amylase inhibitors and to explain the hypoglycemic effect that has traditionally been attributed to gooseberry fruit.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ésteres/química , Ésteres/farmacología , Frutas/química , Physalis/química , Exudados de Plantas/química , Exudados de Plantas/farmacología , Sacarosa/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas
20.
J Sep Sci ; 40(2): 532-541, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27862955

RESUMEN

An analytical procedure based on in-tube extraction followed by gas chromatography with mass spectrometry has been developed for the analysis of 24 of the main volatile components in cape gooseberry (Physalis peruviana L.) samples. According to their chemical structure, the compounds were organized into different groups: one hydrocarbon, one aldehyde, four alcohols, four esters, and 14 monoterpenes. By single-factor experiments, incubation temperature, incubation time, extraction volume, extraction strokes, extraction speed, desorption temperature, and desorption speed were determined as 60°C, 20 min, 1000 µL, 20, 50:50 µL/s, 280°C, 100 µL/s, respectively. Quantitative analysis using authentic standards and external calibration curves was performed. The limit of detection and limit of quantification for the analytical procedure were calculated. Results shown the benzaldehyde, ethyl butanoate, 2-methyl-1-butanol, 1-hexanol, 1-butanol, α-terpineol, and terpinen-4-ol were the most abundant volatile compounds in analyzed fruits (68.6-585 µg/kg). The obtained data may contribute to qualify cape gooseberry to the group of superfruits and, therefore, increase its popularity.


Asunto(s)
Análisis de los Alimentos/métodos , Physalis/química , Compuestos Orgánicos Volátiles/análisis , Límite de Detección , Temperatura , Compuestos Orgánicos Volátiles/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA