Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.139
Filtrar
1.
J Genet Genomics ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244085

RESUMEN

Nicotine is widely recognized as the primary contributor to tobacco dependence. Previous studies have indicated that molecular and behavioral responses to nicotine are primarily mediated by ventral tegmental area (VTA) neurons, and accumulating evidence suggests that glia play prominent roles in nicotine addiction. However, VTA neurons and glia have yet to be characterized at the transcriptional level during the progression of nicotine self-administration. Here, a male mouse model of nicotine self-administration was established and the timing of three critical phases (pre-addiction, addicting, and post-addiction phase) was characterized. Single-nucleus RNA sequencing (snRNA-seq) in the VTA at each phase was performed to comprehensively classify specific cell subtypes. Adaptive changes occurred during the addicting and post-addiction phases, with the addicting phase displaying highly dynamic neuroplasticity that profoundly impacted the transcription in each cell subtype. Furthermore, significant transcriptional changes in energy metabolism-related genes were observed, accompanied by notable structural alterations in neuronal mitochondria during the progression of nicotine self-administration. The results provide insights into mechanisms underlying the progression of nicotine addiction, serving as important resource for identifying potential molecular targets for nicotine cessation.

2.
Neurobiol Stress ; 32: 100667, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233784

RESUMEN

The lateral preoptic area (LPO) is a component of the hypothalamus involved in various physiological functions including sleep-wakefulness transition, thermoregulation, and water-salt balance. In this study, we discovered that distinct LPO excitatory neurons project separately to the aversive processing center lateral habenula (LHb) and the reward processing hub ventral tegmental area (VTA). Following chronic restraint stress (CRS), the LHb-projecting and VTA-projecting LPO neurons exhibited increased and decreased neuronal activities, respectively. Optogenetic activation of LHb-projecting LPO excitatory neurons and LPO excitatory neuronal terminals within LHb evoked aversion and avoidance behaviors, while activation of VTA-projecting LPO excitatory neurons and LPO excitatory neuronal terminals within VTA produced preference and exploratory behaviors in mice. Furthermore, either optogenetic inhibition of LHb-projecting LPO excitatory neurons or activation of VTA-projecting LPO excitatory neurons during CRS effectively prevented the development of depressive-like behaviors. Our study unveils, for the first-time, divergent pathways originating from LPO that regulate opposite affective states in mice and implicates that an imbalance of their activities could lead to depressive-like behaviors. These circuitries represent promising therapeutic targets to relieve emotional dysfunctions in neuropsychiatric disorders.

3.
Front Nutr ; 11: 1437526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234295

RESUMEN

Obesity is a health malady that affects mental, physical, and social health. Pathology includes chronic imbalance between energy intake and expenditure, likely facilitated by dysregulation of the mesolimbic dopamine (DA) pathway. We explored the role of pituitary adenylate cyclase-activating polypeptide (PACAP) neurons in the hypothalamic ventromedial nucleus (VMN) and the PACAP-selective (PAC1) receptor in regulating hedonic feeding. We hypothesized that VMN PACAP neurons would inhibit reward-encoding mesolimbic (A10) dopamine neurons via PAC1 receptor activation and thereby suppress impulsive consumption brought on by intermittent exposure to highly palatable food. Visualized whole-cell patch clamp recordings coupled with in vivo behavioral experiments were utilized in wildtype, PACAP-cre, TH-cre, and TH-cre/PAC1 receptor-floxed mice. We found that bath application of PACAP directly inhibited preidentified A10 dopamine neurons in the ventral tegmental area (VTA) from TH-cre mice. This inhibitory action was abrogated by the selective knockdown of the PAC1 receptor in A10 dopamine neurons. PACAP delivered directly into the VTA decreases binge feeding accompanied by reduced meal size and duration in TH-cre mice. These effects are negated by PAC1 receptor knockdown in A10 dopamine neurons. Additionally, apoptotic ablation of VMN PACAP neurons increased binge consumption in both lean and obese, male and female PACAP-cre mice relative to wildtype controls. These findings demonstrate that VMN PACAP neurons blunt impulsive, binge feeding behavior by activating PAC1 receptors to inhibit A10 dopamine neurons. As such, they impart impactful insight into potential treatment strategies for conditions such as obesity and food addiction.

4.
Cell Rep ; 43(9): 114717, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39264811

RESUMEN

Hyperfunction of the dopamine system has been implicated in manic episodes in bipolar disorders. How dopaminergic neuronal function is regulated in the pathogenesis of mania remains unclear. Histaminergic neurons project dense efferents into the midbrain dopaminergic nuclei. Here, we present mice lacking dopaminergic histamine H2 receptor (H2R) in the ventral tegmental area (VTA) that exhibit a behavioral phenotype mirroring some of the symptoms of mania, including increased locomotor activity and reduced anxiety- and depression-like behavior. These behavioral deficits can be reversed by the mood stabilizers lithium and valproate. H2R deletion in dopaminergic neurons significantly enhances neuronal activity, concurrent with a decrease in the γ-aminobutyric acid (GABA) type A receptor (GABAAR) membrane presence and inhibitory transmission. Conversely, either overexpression of H2R in VTA dopaminergic neurons or treatment of H2R agonist amthamine within the VTA counteracts amphetamine-induced hyperactivity. Together, our results demonstrate the engagement of H2R in reducing VTA dopaminergic activity, shedding light on the role of H2R as a potential target for mania therapy.

5.
Neuropharmacology ; : 110160, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293506

RESUMEN

Dopamine signaling in the amygdala is known to play a role in associative learning and memory, including the process of learning to associate environmental cues with the reinforcing properties of drugs like cocaine. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection specifically to the basolateral amygdala (BLA) participates in establishing cocaine-cue associations that can promote later craving- and relapse-like responses to the cue alone. In order to further investigate the specific role of VTA-BLA projections in cocaine-reinforced learning, we used chemogenetics to manipulate VTA DA inputs to the BLA during cocaine self-administration, cue- and cocaine-primed reinstatement, and conditioned place preference. We found inhibiting DA input to the BLA during cocaine self-administration inhibited acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking, while acutely inhibiting the pathway on the day of cue-induced reinstatement testing had no effect. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the BLA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the BLA may be useful for developing therapeutic interventions for substance use disorders.

6.
Neurogastroenterol Motil ; : e14900, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164871

RESUMEN

BACKGROUND: Rikkunshito (RKT), a traditional Japanese medicine, can relieve epigastric discomfort and anorexia in patients with functional dyspepsia. RKT enhances the orexigenic hormone, ghrelin. Ghrelin regulates food motivation by stimulating the appetite control center in the hypothalamus and the brain mesolimbic dopaminergic pathway (MDPW). However, the effect of RKT on MDPW remains unclear. Here, we aimed to investigate the central neural mechanisms underlying the orexigenic effects of RKT, focusing on the MDPW. METHODS: We examined the effects of RKT on food intake and neuronal c-Fos expression in restraint stress- and cholecystokinin octapeptide-induced anorexia in male rats. KEY RESULTS: RKT treatment significantly restored stress- and cholecystokinin octapeptide-induced decreased food intake. RKT increased c-Fos expression in the ventral tegmental area (VTA), especially in tyrosine hydroxylase-immunoreactive neurons, and nucleus accumbens (NAc). The effects of RKT were suppressed by the ghrelin receptor antagonist [D-Lys3]-GHRP-6. RKT increased the number of c-Fos/orexin-double-positive neurons in the lateral hypothalamus (LH), which project to the VTA. The orexin receptor antagonist, SB334867, suppressed RKT-induced increase in food intake and c-Fos expression in the LH, VTA, and NAc. RKT increased c-Fos expression in the arcuate nucleus and nucleus of the solitary tract of the medulla, which was inhibited by [D-Lys3]-GHRP-6. CONCLUSIONS & INFERENCES: RKT may restore appetite in subjects with anorexia through ghrelin- and orexin-dependent activation of neurons regulating the brain appetite control network, including the hypothalamus and MDPW.

7.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091886

RESUMEN

The mesolimbic dopamine (DA) system (MDS) is the canonical "reward" pathway that has been studied extensively in the context of the rewarding properties of sex, food, and drugs of abuse. In contrast, very little is known about the role of the MDS in the processing of the rewarding and aversive properties of social stimuli. Social interactions can be characterized by their salience (i.e., importance) and their rewarding or aversive properties (i.e., valence). Here, we test the novel hypothesis that projections from the medial ventral tegmental area (VTA) to the nucleus accumbens (NAc) core codes for the salience of social stimuli through the phasic release of DA in response to both rewarding and aversive social stimuli. In contrast, we hypothesize that projections from the lateral VTA to the NAc shell codes for the rewarding properties of social stimuli by increasing the tonic release of DA and the aversive properties of social stimuli by reducing the tonic release of DA. Using DA amperometry, which monitors DA signaling with a high degree of temporal and anatomical resolution, we measured DA signaling in the NAc core or shell while rewarding and aversive social interactions were taking place. These findings, as well as additional anatomical and functional studies, provide strong support for the proposed neural circuitry underlying the response of the MDS to social stimuli. Together, these data provide a novel conceptualization of how the functional and anatomical heterogeneity within the MDS detect and distinguish between social salience, social reward, and social aversion. Significance Statement: Social interactions of both positive and negative valence are highly salient stimuli that profoundly impact social behavior and social relationships. Although DA projections from the VTA to the NAc are involved in reward and aversion little is known about their role in the saliency and valence of social stimuli. Here, we report that DA projections from the mVTA to the NAc core signal the salience of social stimuli, whereas projections from the lVTA to the NAc shell signal valence of social stimuli. This work extends our current understanding of the role of DA in the MDS by characterizing its subcircuit connectivity and associated function in the processing of rewarding and aversive social stimuli.

8.
Neurochem Res ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190121

RESUMEN

Emotional stress is a significant environmental risk factor for various mental health disabilities, such as anxiety. Electroacupuncture (EA) has been demonstrated to have pronounced anxiolytic effects. However, the neural mechanisms underlying these effects and their contribution to behavioral deficits remain poorly understood. Here, we addressed these issues using a classical mouse anxiety model induced by chronic restraint stress (CRS).Anxiety-like behaviors were evaluated with the open field test and elevated plus maze. Neuronal activation in various brain regions was marked using c-Fos, followed by calculations of interregional correlation to characterize a network that became functionally active following EA at the HT7 acupoint (EA-HT7). We selected the hub regions and further investigated their functions and connections in regulating anxiety-like behaviors by using a combination of chemogenetic manipulations and behavioral testing. CRS exposure induced anxiety-like behaviors. Interestingly, EA-HT7 mitigated these behavioral abnormalities. The c-Fos expression in 30 brain areas revealed a vital brain network for acupuncture responsiveness in naïve mice. Neural activity in the NAcSh (nucleus accumbens shell), BNST (bed nucleus of the stria terminalis), VMH (Ventromedial Hypothalamus), ARC (arcuate nucleus), dDG (dorsal dentate gyrus), and VTA (ventral tegmental area) was significantly altered following acupuncture. Notably, both c-Fos immunostaining and brain functional connectivity analysis revealed the significant activation of VTA following EA-HT7. Interestingly, blocking the VTA eliminated the anxiolytic effects of EA-HT7, whereas chemogenetic activation of the VTA replicated the therapeutic effects of EA-HT7. EA-HT7 has demonstrated benefits in treating anxiety and enhances brain functional connectivity. The VTA is functionally associated with the anxiolytic effects of EA-HT7.

9.
Front Neurosci ; 18: 1430447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108311

RESUMEN

Introduction: The mesolimbic reward system is associated with the promotion and rewarding benefits of social relationships. In the socially monogamous prairie vole (Microtus ochrogaster), the establishment of a pair bond can be displayed by a robust preference for a breeding partner and aggressive rejection of unfamiliar conspecifics. Mesolimbic dopamine signaling influences bond-related behaviors within the vole through dopamine transmission and receptor activity in the nucleus accumbens. However, only one experiment has examined how the ventral tegmental area (VTA), a region that produces much of the fore- and mid-brain dopamine, regulates these social behaviors. Specifically, inhibition of either glutamate or GABA neurons in the VTA during a brief courtship promoted a partner preference formation in male prairie voles. The VTA is a heterogeneous structure that contains dopamine, GABA, and glutamate neurons as well as receives a variety of projections including corticotropin-releasing factor (CRF) suggested to modulate dopamine release. Methods: We used pharmacological manipulation to examine how GABA and CRF signaling in the VTA modulate partner preference formation in male and female prairie voles. Specifically, we used a 3 h partner preference test, a social choice test, to assess the formation of a partner preference following an infused bicuculline and CRF during a 1 h cohabitation and muscimol and CP154526, a CRFR1 antagonist, during a 24 h cohabitation with an opposite-sex conspecific. Results: Our study demonstrated that bicuculline, a GABA A receptor antagonist, and CRF in the VTA promoted a partner preference, whereas low-dose muscimol, a GABA A receptor agonist, and CP154526, a CRFR1 antagonist, inhibited a partner preference in both male and female prairie voles. Conclusion: This study demonstrated that GABA and CRF inputs into the VTA is necessary for the formation of a partner preference in male and female prairie voles.

10.
Mol Neurobiol ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180695

RESUMEN

Alcohol Use Disorder (AUD), characterized by repeated alcohol consumption and withdrawal symptoms, poses a significant public health issue. Alcohol-induced impairment of the intestinal barrier results in alterations in intestinal permeability and the composition of the intestinal microbiota. Such alterations lead to a reduced relative abundance of intestinal lactic acid bacteria. However, the role of gut microbiota in alcohol consumption is not yet fully understood. In this study, we explore the mechanism by which gut microbiota regulates alcohol consumption, specifically using extracellular vesicles derived from Lactobacillus plantarum (L-EVs). L-EVs were administered to Sprague-Dawley rats either through intraperitoneal injection or microinjection into the ventral tegmental area (VTA), resulting in a significant reduction in alcohol consumption 72 hours after withdrawal. The observed reduction was akin to the effect of an intra-VTA microinjection of Brain-Derived Neurotrophic Factor (BDNF). Intriguingly, the microinjection of K252a (a Trk B antagonist) into the VTA blocked the reducing effect of L-EVs on alcohol consumption. The intraperitoneal injection of L-EVs restored the diminished BDNF expression in the VTA of alcohol-dependent rats. Furthermore, L-EVs rescued the low BDNF expression in alcohol-incubated PC12 cells. In conclusion, our study demonstrates that L-EVs attenuated alcohol consumption by enhancing BDNF expression in alcohol-dependent rats, thus suggesting the significant therapeutic potential of L-EVs in preventing excessive alcohol consumption.

11.
J Psychiatr Res ; 178: 59-65, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39121708

RESUMEN

Ventral tegmental area (VTA) dopamine (DA) neurons have been found to substantially associate with post-traumatic stress disorder (PTSD) pathology, however, whether and how these DA neurons affect fear memory management in PTSD individuals remains largely unknown. In this study, we utilized auditory conditioned foot-shock to evaluate the fear memory retrieval and retention characteristics in a single prolonged stress-induced PTSD rat model. We employed chemogenetic technology to specifically activate VTA DA neurons to examine the freezing behaviors responding to the conditioned stimuli. In vivo extracellular electrophysiological analyses were used to identify VTA DA neuronal firing alterations due to the chemogenetic activation. The results demonstrated that PTSD model rats showed comparable fear memory retrieval (Day 2 after the conditioned foot-shock), but significant enhancements in fear memory retention (Day 8 after the conditioned foot-shock), compared to normal control rats. Chemogenetic activation of VTA DA neurons markedly diminished the retention of fear memory in PTSD model rats, which appeared concomitantly with increases in the firing activities of the DA neurons. These findings revealed that PTSD induced the persistence of fear memory, which could be attenuated by activation of VTA DA neurons. It is presumed that VTA dopaminergic signals may serve as a prospective option for PTSD treatment.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Miedo , Ratas Sprague-Dawley , Trastornos por Estrés Postraumático , Área Tegmental Ventral , Animales , Área Tegmental Ventral/fisiopatología , Trastornos por Estrés Postraumático/fisiopatología , Miedo/fisiología , Neuronas Dopaminérgicas/fisiología , Masculino , Ratas , Retención en Psicología/fisiología , Potenciales de Acción/fisiología , Electrochoque/efectos adversos , Memoria/fisiología , Condicionamiento Clásico/fisiología
12.
Artículo en Inglés | MEDLINE | ID: mdl-39190156

RESUMEN

RATIONALE: Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. OBJECTIVE: We determined how 14 daily THC injections (5 mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. METHODS: In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impact probabilistic discounting. RESULTS: AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. CONCLUSIONS: These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine neurons or their projections to mPFC.

13.
Neuron ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39153478

RESUMEN

The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPePV) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTADA) cells projecting to the dorsomedial striatum (DMS). Interestingly, GPePV cell activity in cocaine-naive mice is correlated with behavioral responses following cocaine, effectively predicting cocaine sensitivity. Expression of the voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability following cocaine was downregulated, contributing to the elevation in GPePV cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPePV cell excitability and impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its therapeutic potential to counteract psychostimulant use disorder.

14.
J Neurosci ; 44(34)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39019613

RESUMEN

Although anesthesia provides favorable conditions for surgical procedures, recent studies have revealed that the brain remains active in processing noxious signals even during anesthesia. However, whether and how these responses affect the anesthesia effect remains unclear. The ventrolateral periaqueductal gray (vlPAG), a crucial hub for pain regulation, also plays an essential role in controlling general anesthesia. Hence, it was hypothesized that the vlPAG may be involved in the regulation of general anesthesia by noxious stimuli. Here, we found that acute noxious stimuli, including capsaicin-induced inflammatory pain, acetic acid-induced visceral pain, and incision-induced surgical pain, significantly delayed recovery from sevoflurane anesthesia in male mice, whereas this effect was absent in the spared nerve injury-induced chronic pain. Pretreatment with peripheral analgesics could prevent the delayed recovery induced by acute nociception. Furthermore, we found that acute noxious stimuli, induced by the injection of capsaicin under sevoflurane anesthesia, increased c-Fos expression and activity in the GABAergic neurons of the ventrolateral periaqueductal gray. Specific reactivation of capsaicin-activated vlPAGGABA neurons mimicked the effect of capsaicin and its chemogenetic inhibition prevented the delayed recovery from anesthesia induced by capsaicin. Finally, we revealed that the vlPAGGABA neurons regulated the recovery from anesthesia through the inhibition of ventral tegmental area dopaminergic neuronal activity, thus decreasing dopamine (DA) release and activation of DA D1-like receptors in the brain. These findings reveal a novel, cell- and circuit-based mechanism for regulating anesthesia recovery by nociception, and it is important to provide new insights for guiding the management of the anesthesia recovery period.


Asunto(s)
Anestésicos por Inhalación , Ratones Endogámicos C57BL , Nocicepción , Sustancia Gris Periacueductal , Sevoflurano , Sevoflurano/farmacología , Animales , Masculino , Ratones , Anestésicos por Inhalación/farmacología , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Sustancia Gris Periacueductal/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Mesencéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Periodo de Recuperación de la Anestesia , Capsaicina/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología
15.
Brain Sci ; 14(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061463

RESUMEN

Major depressive disorder (MDD) is prevalent with a high subjective and socio-economic burden. Despite the effectiveness of classical treatment methods, 20-30% of patients stay treatment-resistant. Deep Brain Stimulation of the superolateral branch of the medial forebrain bundle is emerging as a clinical treatment. The stimulation region (ventral tegmental area, VTA), supported by experimental data, points to the role of dopaminergic (DA) transmission in disease pathology. This work sets out to develop a workflow that will allow the performance of analyses on midbrain DA-ergic neurons and projections in subjects who have committed suicide. Human midbrains were retrieved during autopsy, formalin-fixed, and scanned in a Bruker MRI scanner (7T). Sections were sliced, stained for tyrosine hydroxylase (TH), digitized, and integrated into the Montreal Neurological Institute (MNI) brain space together with a high-resolution fiber tract atlas. Subnuclei of the VTA region were identified. TH-positive neurons and fibers were semi-quantitatively evaluated. The study established a rigorous protocol allowing for parallel histological assessments and fiber tractographic analysis in a common space. Semi-quantitative readings are feasible and allow the detection of cell loss in VTA subnuclei. This work describes the intricate workflow and first results of an investigation of DA anatomy in VTA subnuclei in a growing naturalistic database.

16.
Biomedicines ; 12(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39062166

RESUMEN

Exercise has increasingly been recognized as an adjunctive therapy for alcohol-use disorder (AUD), yet our understanding of its underlying neurological mechanisms remains limited. This knowledge gap impedes the development of evidence-based exercise guidelines for AUD treatment. Chronic ethanol (EtOH) exposure has been shown to upregulate and sensitize kappa opioid receptors (KORs) in the nucleus accumbens (NAc), which is innervated by dopamine (DA) neurons in the midbrain ventral tegmental area (VTA), which may contribute to AUD-related behaviors. In this study, we investigated the impact of voluntary exercise in EtOH-dependent mice on EtOH consumption, KOR and delta opioid receptor (DOR) expression in the NAc and VTA, and functional effects on EtOH-induced alterations in DA release in the NAc. Our findings reveal that voluntary exercise reduces EtOH consumption, reduces KOR and enhances DOR expression in the NAc, and modifies EtOH-induced adaptations in DA release, suggesting a competitive interaction between exercise-induced and EtOH-induced alterations in KOR expression. We also found changes to DOR expression in the NAc and VTA with voluntary exercise but no significant changes to DA release. These findings elucidate the complex interplay of AUD-related neurobiological processes, highlighting the potential for exercise as a therapeutic intervention for AUD.

17.
Neuropharmacology ; 258: 110095, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084597

RESUMEN

Stress is a major risk factor for several neuropsychiatric disorders in women, including postpartum depression. During the postpartum period, diminished ovarian hormone secretion increases susceptibility to developing depressive symptoms. Pleiotropic peptide hormones, like prolactin, are markedly released during lactation and suppress hypothalamic-pituitary-adrenal axis responses in women and acute stress-induced behavioral responses in female rodents. However, the effects of prolactin on chronic stress-induced maladaptive behaviors remain unclear. Here, we used chronic variable stress to induce maladaptive physiology in ovariectomized female rats and concurrently administered prolactin to assess its effects on several depression-relevant behavioral, endocrine, and neural characteristics. We found that chronic stress increased sucrose anhedonia and passive coping in saline-treated, but not prolactin-treated rats. Prolactin treatment did not alter stress-induced thigmotaxis, corticosterone (CORT) concentrations, hippocampal cell activation or survival. However, prolactin treatment reduced basal CORT concentrations and increased dopaminergic cells in the ventral tegmental area. Further, prolactin-treated rats had reduced microglial activation in the ventral hippocampus following chronic stress exposure. Together, these data suggest prolactin mitigates chronic stress-induced maladaptive behaviors and physiology in hypogonadal females. Moreover, these findings imply neuroendocrine-immune mechanisms by which peptide hormones confer stress resilience during periods of low ovarian hormone secretion.


Asunto(s)
Corticosterona , Ovariectomía , Prolactina , Estrés Psicológico , Animales , Femenino , Prolactina/farmacología , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Corticosterona/sangre , Ratas , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Ratas Sprague-Dawley , Adaptación Psicológica/efectos de los fármacos , Adaptación Psicológica/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Conducta Animal/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
18.
Neuroscience ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977069

RESUMEN

Epidemiological data show that males are more often and/or more severely affected by symptoms of prefrontal cortical dysfunction in schizophrenia, Parkinson's disease and other disorders in which dopamine circuits associated with the prefrontal cortex are dysregulated. This review focuses on research showing that these dopamine circuits are powerfully regulated by androgens. It begins with a brief overview of the sex differences that distinguish prefrontal function in health and prefrontal dysfunction or decline in aging and/or neuropsychiatric disease. This review article then spotlights data from human subjects and animal models that specifically identify androgens as potent modulators of prefrontal cortical operations and of closely related, functionally critical measures of prefrontal dopamine level or tone. Candidate mechanisms by which androgens dynamically control mesoprefrontal dopamine systems and impact prefrontal states of hypo- and hyper-dopaminergia in aging and disease are then considered. This is followed by discussion of a working model that identifies a key locus for androgen modulation of mesoprefrontal dopamine systems as residing within the prefrontal cortex itself. The last sections of this review critically consider the ways in which the organization and regulation of mesoprefrontal dopamine circuits differ in the adult male and female brain, and highlights gaps where more research is needed.

19.
Front Neuroanat ; 18: 1426042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026519

RESUMEN

Gestational exposure to valproic acid (VPA) is a valid rodent model of human autism spectrum disorder (ASD). VPA treatment is known to bring about specific behavioral deficits of sociability, matching similar alterations in human autism. Previous quantitative morphometric studies from our laboratory showed a marked reduction and defasciculation of the mesotelencephalic dopaminergic pathway of VPA treated mice, along with a decrease in tissue dopamine in the nucleus accumbens (NAc), but not in the caudatoputamen (CPu). In the present study, the correlative distribution of tyrosine hydroxylase positive (TH+) putative axon terminals, presynaptic to the target neurons containing calretinin (CR) or calbindin (CB), was assessed using double fluorescent immunocytochemistry and confocal laser microscopy in two dopamine recipient forebrain regions, NAc and olfactory tubercle (OT) of neonatal mice (mothers injected with VPA on ED13.5, pups investigated on PD7). Representative image stacks were volumetrically analyzed for spatial proximity and abundance of presynaptic (TH+) and postsynaptic (CR+, CB+) structures with the help of an Imaris (Bitplane) software. In VPA mice, TH/CR juxtapositions were reduced in the NAc, whereas the TH/CB juxtapositions were impoverished in OT. Volume ratios of CR+ and CB+ elements remained unchanged in NAc, whereas that of CB+ was markedly reduced in OT; here the abundance of TH+ axons was also diminished. CR and CB were found to partially colocalize with TH in the VTA and SN. In VPA exposed mice, the abundance of CR+ (but not CB+) perikarya increased both in VTA and SN, however, this upregulation was not mirrored by an increase of the number of CR+/TH+ double labeled cells. The observed reduction of total CB (but not of CB+ perikarya) in the OT of VPA exposed animals signifies a diminished probability of synaptic contacts with afferent TH+ axons, presumably by reducing the available synaptic surface. Altered dopaminergic input to ventrobasal forebrain targets during late embryonic development will likely perturb the development and consolidation of neural and synaptic architecture, resulting in lasting changes of the neuronal patterning (detected here as reduced synaptic input to dopaminoceptive interneurons) in ventrobasal forebrain regions specifically involved in motivation and reward.

20.
Quant Imaging Med Surg ; 14(7): 4735-4748, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022244

RESUMEN

Background: Apathy, characterized by diminished goal-directed behaviors, frequently occurs in patients with Parkinson's disease (PD). The dopamine-releasing neurons of the ventral tegmental area (VTA) have been closely related to this behavioral disruption and project widely to the corticolimbic areas, yet their functional and structural connectivity in regard to other brain regions remain unknown in patients with PD and pure apathy (PD-PA). This study thus aimed to characterize the alterations of functional connectivity (FC) of the VTA and white matter structural connectivity in PD-PA. Methods: In this study, 29 patients with PD-PA, 37 with PD but not pure apathy (PD-NPA), and 28 matched healthy controls (HCs) underwent T1-weighted, resting state functional magnetic resonance imaging, and diffusion tensor imaging scans. Patients of this cross-sectional retrospective study were consecutively recruited from The First Affiliated Hospital of Nanjing Medical University between April 2017 and October 2021. Meanwhile, HCs were consecutively recruited from the local community and the Health Examination Center of our hospital. An analysis of covariance and a general linear model were respectively conducted to investigate the functional and structural connectivity among three groups. The tract-based spatial statistics (TBSS) approach was used to investigate the white matter structural connectivity. Results: Patients with PD-PA showed reduced FC of the VTA with the left medial superior frontal gyrus (SFGmed) when compared to the patients with PD-NPA [t=-3.67; voxel-level P<0.001; cluster-level family-wise error-corrected P (PFWE)<0.05]. Relative to the HCs, patients with PD-PA demonstrated reduced FC of the VTA with the left SFGmed (t=-4.98; voxel-level P<0.001; cluster-level PFWE<0.05), right orbital superior frontal gyrus (SFGorb) (t=-5.08; voxel-level P<0.001; cluster-level PFWE<0.05), and right middle frontal gyrus (MFG) (t=-5.08; voxel-level P<0.001; cluster-level PFWE<0.05). Moreover, the reductions in VTA FC with the left SFGmed were associated with severe apathy symptoms in patients with PD-PA (r=-0.600; P=0.003). However, a TBSS approach did not reveal any significant differences in fiber tracts between the three groups. Conclusions: This study identified reduced FC within the mesocortical network (VTA-SFGmed) of patients with PD-PA. These findings may provide valuable information for administering neuromodulation therapies in the alleviation of apathy symptoms in those with PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA