Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 403: 134350, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174338

RESUMEN

Stilbenes, especially resveratrol and resveratrol dimers, can quench singlet oxygen (1O2) effectively. Studies found resorcinol, catechol, carbon-carbon double bonds in resveratrol dimers and resveratrol monomers all contributed to quenching 1O2. However, which structures play a key role in quenching of 1O2 by stilbenes had not yet been determined. To explore it, UHPLC-QQQ-MS2 and UHPLC-QTOF-MS2 were used to analyze and compare the 1O2 quenching activities of piceatannol, resveratrol, dihydroresveratrol, pterostilbene, trimethoxystilbene and oxyresveratrol in vitro. The results showed that all six compounds exhibited some capacity to quench 1O2. Catechol [i.e., C6H4(OH)2] had the strongest capacity to quench of 1O2 amongst the stilbenes tested followed by the presence of carbon-carbon double bonds. This offers insight a route for screening for stilbenes with higher activities that might have a role in development of novel food-related antioxidants and functional foods with potential health benefits.


Asunto(s)
Oxígeno Singlete , Estilbenos , Resveratrol , Oxígeno Singlete/química , Estilbenos/química , Carbono , Catecoles
2.
Front Microbiol ; 13: 1076511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36777030

RESUMEN

Recently, consumers are increasingly concerned about the contamination of food by molds and the addition of chemical preservatives. As natural and beneficial bacteria, probiotics are a prospective alternative in food conservation because of their antimycotic activities, although the mechanism has not been explained fully at the level of metabolites. This study aimed at investigating the antifungal activities and their mechanisms of five potential probiotic strains (Lacticaseibacillus rhamnosus C1, Lacticaseibacillus casei M8, Lactobacillus amylolyticus L6, Schleiferilactobacillus harbinensis M1, and Limosilactobacillus fermentum M4) against Penicillium roqueforti, the common type of mold growth on the bread. Results showed that C1 emerged the strongest effectiveness at blocking mycelium growth, damaging the morphology of hyphae and microconidia, decreasing DNA content and interfering in the synthesis of the fungal toxins patulin, roquefortine C and PR-toxin, as well as downregulating the expression of key genes associated with the toxin biosynthesis pathways. Further metabonomic investigation revealed that protocatechuic acid with the minimum inhibitory concentration of 0.40 mg/mL, may be most likely responsible for positively correlated with the antimycotic effects of C1. Thus, C1 is expected to be both a potentially greatly efficient and environmental antimycotic for controlling P. roqueforti contamination in foods.

3.
Biol Trace Elem Res ; 195(2): 679-695, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31432445

RESUMEN

The study aimed at evaluating the phytochemical composition, antioxidant potentials and the levels of trace elements in the fruit extract of Kigelia africana obtained by different extraction solvents in order to ascertain its numerous pharmacological activities and identify the different chemical compounds responsible for these activities. The crude extract in ethanol and four other solvent fractions (hexane, ethylacetate, butanol and aqueous) were obtained for phytochemical screening. Antioxidant potentials of K. africana fruit were investigated spectrophotometrically using hydroxyl ion scavenging (OH-) activity, metal ion chelating activity, anti-lipid peroxidation activity as well as total antioxidant capacity assays. Trace element (Mn, Zn, Cd, Ni, Cu, Pb, Cr, Co and Fe) levels were measured using a plasma-emission spectrometer that has an auto sampler AS 93-plus and coupled with Nebulizer CETAC U-6000AT+ after microwave acid digestion of the fruit extracts. Chemical identification was performed using ultra-high-pressure liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS2). Kigelia africana fruit extracts obtained showed a variety of bioactive phytochemical compounds including phenolic acids, flavonoids, saponins, tannins and glycosides. The total antioxidant capacity activities of the aqueous, butanol, ethanol, hexane and ethylacetate extracts are 15.04, 52.11, 44.95, 79.27 and 175.20 mg AAE/g. Metal ion chelating activity showed significant correlation with lipid peroxidation inhibition activity at p ≤ 0.01 and with OH- scavenging activity at p ≤ 0.05. PCA analysis revealed that all the extract/fractions have higher total antioxidant activities compared to aqueous extract with hexane extract exhibiting the highest radical scavenging potential. HCA showed similarities with three well-defined clusters and PLS regression was used to predict total antioxidant activity. High sensitivity by low values of limits of detection and quantification was observed ranging from 0.021 to 0.085 mg/ml and 0.063 to 0.258 mg/ml for Zn and Fe respectively. Ethylacetate extract had high concentration of Fe (0.5656 mg/kg). For the standardization of the K. africana fruit extract, 244 chemical compounds were identified by measuring m/z values with threshold override of 100,000 and analysing mass spectrometer fragmentation behaviour while 16 of these were confirmed. Kigelia africana fruit extract is a good source of antioxidant and possess maximum accepted concentration of trace elements according to European legislation (1881/2006/EC). The metabolites identified exhibited numerous pharmacological activities. The method and results suggest the applicability for commercial use of this K. africana fruit in the treatment of oxidative-related diseases. Graphical abstract The phytochemical, antioxidant and trace element composition of crude ethanol extract, hexane, butanol, aqueous and ethylacetate extracts of Kigelia africana fruit were determined. The fruit extracts were found to possess good antioxidant activity, maximum acceptable amount of essential trace elements as well as the presence of bioactive phytochemicals. K. africana fruit would be an ideal candidate in improving human health and thus the management of oxidative-related diseases such as diabetes, by involving in the antioxidant defense system against free radical generation.


Asunto(s)
Antioxidantes/análisis , Peroxidación de Lípido/efectos de los fármacos , Fitoquímicos/análisis , Extractos Vegetales/análisis , Oligoelementos/análisis , Antioxidantes/farmacología , Bignoniaceae/química , Cromatografía Líquida de Alta Presión , Frutas/química , Microondas , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , Oligoelementos/farmacología
4.
Biomolecules ; 9(7)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323995

RESUMEN

Stilbenes, particularly resveratrol and resveratrol dimers, could effectively quench singlet oxygen (1O2). It was reported that both resorcinol and carbon-carbon double bond quenching 1O2 can participate in the mechanism. However, it is still not clear which structure plays a dominant role in quenching 1O2. To investigate the characteristic structure in the mechanism of quenching 1O2, the resveratrol, pterostilbene and piceatannol quenching 1O2 abilities were compared by UHPLC-QTOF-MS2 and UHPLC-QQQ-MS2. Results showed that catechol, carbon-carbon double bond and resorcinol participated in the quenching of 1O2. Catechol ring plays a leading role in the mechanism, and the contribution of the structures in quenching 1O2 activity are as follows: catechol ring > carbon-carbon double bond > resorcinol ring, which is supported by the calculation of energy. Our findings will contribute to the future screening of stilbenes with higher activity, and those stilbenes may have great therapeutic potential in 1O2-mediated diseases.


Asunto(s)
Carbono/química , Resorcinoles/química , Resveratrol/química , Oxígeno Singlete/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Estructura Molecular , Resveratrol/análogos & derivados
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1093-1094: 174-182, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032017

RESUMEN

Resveratrol, as one of the stilbenoids, is present in abundance in wine grapes and has been shown to selectively quench 1O2. DNA is oxidized by 1O2 causing irreparable functional damage, and of the nucleic acids, guanine is the most susceptible. An agarose gel electrophoresis assay demonstrated that DNA was damaged by 1O2 with less than 5 min of UVA irradiation, and also that 5 mM resveratrol dissolved in MeOH could relieve the observed oxidation stress. Ultra-high performance liquid chromatography coupled with mass spectrometry was performed to reveal the mechanism. Four guanine oxidation products at m/z 140.0334 [M-H]-(1), DGh, 8-oxoG, Sp and two conjugates at m/z 377.1104 [M-H]- and 391.0907 [M-H]- were identified and quantified. Thus, we propose the mechanism that the phenol ring of resveratrol links with the free amino groups (NH) of guanine at the beginning of 1O2 attack to form m/z 377.1104 [M-H]-, however, as 1O2 is able to attack the amino groups continuously, resveratrol can efficiently react with 1O2 prior to damage, and form m/z 391.0907 [M-H]- thereby protecting guanine.


Asunto(s)
Antioxidantes/química , Guanina/química , Oxidación-Reducción/efectos de los fármacos , Estilbenos/química , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , ADN/efectos de los fármacos , Espectrometría de Masas/métodos , Modelos Moleculares , Plásmidos , Resveratrol , Estilbenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA