Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicol Rep ; 10: 206-215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825253

RESUMEN

Sulfur mustard (SM)-induced ocular injury is characterized by an acute inflammatory response that may become chronic or enter a latent phase with delayed pathology. This study aimed to evaluate the efficacy of ziv-aflibercept and aflibercept in preventing and ameliorating corneal neovascularization (NV), respectively, following chemical eye exposure to SM vapor in a rabbit model. Chemical SM ocular insult was induced in the right eye of rabbits. A single application of ziv-aflibercept was administered 2 h or 9 days post-exposure. A single subconjunctival aflibercept treatment in an ocular formulation was administered 4 weeks after SM vapor exposure and subsequent to an initial 1-week treatment with 0.1 % dexamethasone. Clinical monitoring was performed 5-12 weeks post-exposure, and digital corneal pictures were taken to assess the extent of NV. The rabbits were euthanized and the corneas were processed for histological assessment. Treatment with ziv-aflibercept 2 h and 9 days post-exposure moderately reduced insult severity and partially delayed or prevented corneal NV. Aflibercept application 4 weeks post-exposure significantly reduced the extent of NV for 8 weeks. The substantial decrease in existing corneal NV in this group was confirmed by histology. These results reveal the powerful anti-angiogenic efficacy of the VEGF-trap for ameliorating existing NV as opposed to preventing NV development, revealing the ability of this treatment to mitigate corneal NV.

2.
J Herb Med ; 38: 100635, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36718131

RESUMEN

Introduction: A worldwide pandemic infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a deadly disease called COVID-19. Interaction of the virus and the Angiotensin converting-enzyme 2 (ACE2) receptor leads to an inflammatory-induced tissue damage. Thymus vulgaris L. (TvL) is a plant with a long history in traditional medicine that has antimicrobial, antiseptic, and antiviral properties. Thymol and Carvacrol are two important biological components in Thyme that have anti-inflammatory, antioxidant, and immunomodulatory properties. This study is a molecular review on the potential effects of TvL and its active compounds on SARS-COV2 infection. Method: This is a narrative review in which using PubMed, Scopus, ISI, Cochrane, ScienceDirect, Google scholar, and Arxiv preprint databases, the molecular mechanisms of therapeutic and protective effects of TvL and its active compounds have been discussed regarding the molecular pathogenesis in COVID-19. Results: Thyme could suppress TNF-alpha, IL-6, and other inflammatory cytokines. It also enhances the anti-inflammatory cytokines like TGF-beta and IL-10. Thyme extract acts also as an inhibitor of cytokines IL-1-beta and IL-8, at both mRNA and protein levels. Thymol may also control the progression of neuro-inflammation toward neurological disease by reducing some factors. Thyme and its active ingredients, especially Thymol and Carvacrol, have also positive effects on the renin-angiotensin system (RAS) and intestinal microbiota. Conclusions: Accordingly, TvL and its bioactive components may prevent COVID-19 complications and has a potential protective role against the deleterious consequences of the disease.

3.
J Clin Exp Hepatol ; 13(1): 64-74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36647406

RESUMEN

Background: Sepsis is a severe global health problem, with high morbidity and mortality. In sepsis, one of the main affected organs is the liver. Hepatic alterations characterize a negative prognostic. Omega-3 fatty acids (ω3), eicosapentaenoic acid, and docosahexaenoic acid, are part of the main families of polyunsaturated fatty acids. ω3 has been used in studies as sepsis treatment and as a treatment for non-alcoholic liver disease. Aim: We aimed to evaluate the effects of treatment with fish oil (FO) rich in ω3 on liver changes and damage resulting from experimental sepsis. Methodology: A model of severe sepsis in Wistar rats was used. Oxidative stress in the liver tissue was evaluated by means of tests of thiobarbituric acid reactive substances, 2,7-dihydrodichlorofluorescein diacetate , catalase, and glutathione peroxidase, in the serum TBARS, DCF, thiols and, to assess liver dysfunction, alanine aminotransferase and aspartate aminotransferase. Hepatic tissue damage was evaluated using H&E histology. Results: In assessments of oxidative stress in liver tissue, a protective effect was observed in the tests of TBARS, DCF, CAT, and GPx, when compared the sepsis versus sepsis+ω3 groups. Regarding the oxidative stress in serum, a protective effect of treatment with ω3 was observed in the TBARS, DCF, and thiols assays, in the comparison between the sepsis and sepsis+ω3 groups. ω3 had also a beneficial effect on biochemical parameters in serum in the analysis of ALT, creatinine, urea, and lactate, observed in the comparison between the sepsis and sepsis+ω3 groups. Conclusion: The results suggest ω3 as a liver protector during sepsis with an antioxidant effect, alleviating injuries and dysfunctions.

4.
J Clin Exp Hepatol ; 12(6): 1428-1437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340302

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent conditions characterized by inflammation and fibrosis of the liver, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Conventional modalities are mainly symptomatic, with no definite solution. Beta-glucan-based biological response modifiers are a potential strategy in lieu of their beneficial metabolic effects. Aureobasidium pullulans strains AFO-202 and N-163 beta-glucans were evaluated for anti-fibrotic and anti-inflammatory hepatoprotective potentials in a NASH animal model in this study. Methods: In the STAM™ murine model of NASH, five groups were studied for 8 weeks: (1) vehicle (RO water), (2) AFO-202 beta-glucan; (3) N-163 beta-glucan, (4) AFO-202+N-163 beta-glucan, and (5) telmisartan (standard pharmacological intervention). Evaluation of biochemical parameters in plasma and hepatic histology including Sirius red staining and F4/80 immunostaining were performed. Results: AFO-202 beta-glucan significantly decreased inflammation-associated hepatic cell ballooning and steatosis. N-163 beta-glucan decreased fibrosis and inflammation significantly (P value < 0.05). The combination of AFO-202 with N-163 significantly decreased the NAFLD Activity Score (NAS) compared with other groups. Conclusion: This preclinical study supports the potential of N-163 and AFO-202 beta-glucans alone or in combination as potential preventive and therapeutic agent(s), for NASH.

5.
J Orthop Translat ; 37: 23-36, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36196149

RESUMEN

Background: Intervertebral disc (IVD) degeneration is suggested as a major cause of chronic low back pain (LBP). Intradiscal delivery of growth factors has been proposed as a promising strategy for IVD repair and regeneration. Previously, BMP-4 was shown to be more potent in promoting extracellular matrix (ECM) production than other BMPs and TGF-ß in human nucleus pulposus (NP) cells, suggesting its applicability for disc regeneration. Methods: The effects of BMP-4 on ECM deposition and cell proliferation were assessed in sheep NP and annulus fibrosus (AF) cells in a pellet culture model. Further, a nuclectomy induced sheep lumbar IVD degeneration model was used to evaluate the safety and effects of intradiscal BMP-4 injection on IVD regeneration. Outcomes were assessed by magnetic resonance imaging, micro-computed tomography, histological and biochemical measurements. Results: In vitro, BMP-4 significantly increased the production of proteoglycan and deposition of collagen type II and proliferation of NP and AF cells. Collagen type I deposition was not affected in NP cells, while in AF cells it was high at low BMP-4 concentrations, and decreased with increasing concentration of BMP-4. Intradiscal injection of BMP-4 induced extradiscal new bone formation and Schmorl's node-like changes in vivo. No regeneration in the NP nor AF was observed. Conclusion: Our study demonstrated that although BMP-4 showed promising regenerative effects in vitro, similar effects were not observed in a large IVD degeneration animal model. The Translational Potential of This Article: The contradictory results of using BMP-4 on IVD regeneration between in vitro and in vivo demonstrate that direct BMP-4 injection for disc degeneration-associated human chronic low back pain should not be undertaken. In addition, our results may also shed light on the mechanisms behind pathological endplate changes in human patients as a possible target for therapy.

6.
Biochem Biophys Rep ; 32: 101346, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36120491

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide, and the most common subtype of lung cancer is adenocarcinoma. RhoQ is a Rho family GTPase with primary sequence and structural similarities to Cdc42 and RhoJ. RhoQ is involved in neurite outgrowth via membrane trafficking and is essential for insulin-stimulated glucose uptake in mature adipocytes. However, the function of RhoQ in lung adenocarcinoma (LUAD) remains unclear. In this study, RhoQ siRNAs were introduced into A549 and PC-9 cells. Expression level of EMT-related genes and invasion ability were investigated using Western blot and transwell assay. To examine the relationship between RhoQ expression and prognosis of LUAD, Kaplan-Meier plotter was used. We discovered that suppressing RhoQ expression promoted TGF-ß-mediated EMT and invasion in LUAD cell lines. Furthermore, RhoQ knockdown increased Smad3 phosphorylation and Snail expression, indicating that RhoQ was involved in TGF/Smad signaling during the EMT process. Moreover, Kaplan-Meier plotter analysis revealed that low RhoQ levels were associated with poor overall survival in patients with LUAD. In conclusion, these findings shed light on RhoQ's role as a negative regulator of TGF-ß-mediated EMT in LUAD.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35992379

RESUMEN

The mammalian target of rapamycin (mTOR) plays an important role in the aggressiveness and therapeutic resistance of many cancers. Targeting mTOR continues to be under clinical investigation for cancer therapy. Despite the notable clinical success of mTOR inhibitors in extending the overall survival of patients with certain malignancies including metastatic renal cell carcinomas (RCCs), the overall impact of mTOR inhibitors on cancers has been generally disappointing and attributed to various compensatory responses. Here we provide the first report that expression of the Notch ligand Jagged-1 (JAG1), which is associated with aggressiveness of RCCs, is induced by several inhibitors of mTOR (rapamycin (Rap), BEZ235, KU-0063794) in human clear cell RCC (ccRCC) cells. Using both molecular and chemical inhibitors of PI3K, Akt, and TGF-ß signaling, we provide evidence that the induction of JAG1 expression by mTOR inhibitors in ccRCC cells depends on the activation of Akt and occurs through an ALK5 kinase/Smad4-dependent mechanism. Furthermore, we show that mTOR inhibitors activate Notch1 and induce the expression of drivers of epithelial-mesenchymal transition, notably Hic-5 and Slug. Silencing JAG1 with selective shRNAs blocked the ability of KU-0063794 and Rap to induce Hic-5 in ccRCC cells. Moreover, Rap enhanced TGF-ß-induced expression of Hic-5 and Slug, both of which were repressed in JAG1-silenced ccRCC cells. Silencing JAG1 selectively decreased the motility of ccRCC cells treated with Rap or TGF-ß1. Moreover, inhibition of Notch signaling with γ-secretase inhibitors enhanced or permitted mTOR inhibitors to suppress the motility of ccRCC cells. We suggest targeting JAG1 may enhance therapeutic responses to mTOR inhibitors in ccRCCs.

8.
Phytomedicine ; 98: 153919, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35104757

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatocyte injury, is an obesity-induced metabolic dysregulation with few available therapeutic options. Enhancement of the mitochondrial function was considered as an effective treatment for NALFD. Unsaturated fatty acids (UFAs) have been shown to have beneficial effects on metabolic syndrome disease such as hyperlipidemia, coronary artery disease and cardiovascular diseases. The seed oil of Rosa roxburghii Tratt (ORRT) was of high quality in terms of its high amount of unsaturated fatty acids. However, the effects of ORRT on NALFD have not been reported so far. PURPOSE: The study aimed to evaluate the protective effects and molecular mechanism of ORRT for the treatment of NAFLD in vivo and in vitro. METHODS: The beneficial effects, especially improving the mitochondrial function, and the potential mechanism of ORRT on NAFLD were studied both in vivo and in vitro. Lipid levels were determined by triglyceride (TG), total cholesterol (TC), and Oil Red O staining. Oxidative stress and inflammation were assessed by detecting antioxidant enzyme activity, MDA content, and ELISA assay. Blood TG, TC, HDL-c and LDL-c levels were measured in HFD mice. Western blot analyses were used to determine the levels of the protein involved in fatty acid oxidation, oxidative metabolism, and mitochondria biogenesis and function. The mitochondrial membrane potential level was measured by JC-1 staining to teste the effect of ORRT on mitochondrial function in vitro. GW6471 (inhibitor of PPARα) was used to confirm the relationship between PPARα and PGC-1α. RESULTS: ORRT significantly restrained NAFLD progression by attenuating lipid accumulation, oxidative stress and inflammatory response. Furthermore, ORRT upregulated thermogenesis-related gene expressions, such as uncoupling protein 1 (UCP1) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that the expression of key genes involved in fatty acid oxidation (e.g., CPT-1α, ACADL, PPARα) and in mitochondrial biogenesis and function (e.g., TFAM, NRF1, PGC-1α, and COX IV) was significantly increased. Together with the observed MMP improvement, these findings suggested that ORRT activated the mitochondrial oxidative pathway. Additionally, GW6471 inhibited the ORRT on promoting the expression of PGC-1α, CPT-1α, and ACADL. In conclusion, ORRT possessed the potential to prevent lipid accumulation via the PPARα/PGC-1α signaling pathway, which could be developed as a natural health-promoting oil against NAFLD.

9.
JHEP Rep ; 4(2): 100409, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35072021

RESUMEN

BACKGROUND & AIMS: Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages. METHODS: We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR. RESULTS: Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2-4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5-8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2-4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p. CONCLUSIONS: Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD. LAY SUMMARY: MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy.

10.
JHEP Rep ; 4(1): 100386, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34917911

RESUMEN

BACKGROUND & AIMS: Fibrosis, the primary cause of morbidity in chronic liver disease, is induced by pro-inflammatory cytokines, immune cell infiltrates, and tissue resident cells that drive excessive myofibroblast activation, collagen production, and tissue scarring. Rho-associated kinase 2 (ROCK2) regulates key pro-fibrotic pathways involved in both inflammatory reactions and altered extracellular matrix remodelling, implicating this pathway as a potential therapeutic target. METHODS: We used the thioacetamide-induced liver fibrosis model to examine the efficacy of administration of the selective ROCK2 inhibitor KD025 to prevent or treat liver fibrosis and its impact on immune composition and function. RESULTS: Prophylactic and therapeutic administration of KD025 effectively attenuated thioacetamide-induced liver fibrosis and promoted fibrotic regression. KD025 treatment inhibited liver macrophage tumour necrosis factor production and disrupted the macrophage niche within fibrotic septae. ROCK2 targeting in vitro directly regulated macrophage function through disruption of signal transducer and activator of transcription 3 (STAT3)/cofilin signalling pathways leading to the inhibition of pro-inflammatory cytokine production and macrophage migration. In vivo, KDO25 administration significantly reduced STAT3 phosphorylation and cofilin levels in the liver. Additionally, livers exhibited robust downregulation of immune cell infiltrates and diminished levels of retinoic acid receptor-related orphan receptor gamma (RORγt) and B-cell lymphoma 6 (Bcl6) transcription factors that correlated with a significant reduction in liver IL-17, splenic germinal centre numbers and serum IgG. CONCLUSIONS: As IL-17 and IgG-Fc binding promote pathogenic macrophage differentiation, together our data demonstrate that ROCK2 inhibition prevents and reverses liver fibrosis through direct and indirect effects on macrophage function and highlight the therapeutic potential of ROCK2 inhibition in liver fibrosis. LAY SUMMARY: By using a clinic-ready small-molecule inhibitor, we demonstrate that selective ROCK2 inhibition prevents and reverses hepatic fibrosis through its pleiotropic effects on pro-inflammatory immune cell function. We show that ROCK2 mediates increased IL-17 production, antibody production, and macrophage dysregulation, which together drive fibrogenesis in a model of chemical-induced liver fibrosis. Therefore, in this study, we not only highlight the therapeutic potential of ROCK2 targeting in chronic liver disease but also provide previously undocumented insights into our understanding of cellular and molecular pathways driving the liver fibrosis pathology.

11.
Saudi Dent J ; 33(8): 979-986, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34916766

RESUMEN

OBJECTIVE: Apical periodontitis (AP) is a chronic or acute inflammatory disease usually developed from endodontic infections, predominantly due to gram-negative anaerobic bacteria invading the dental pulp. This study aimed to evaluate lymphocyte markers to assess the involvement of adaptive immunity in insulin resistance (IR) in a rat model of AP.Design.Forty-five male Wistar albino rats were divided into 3 groups (control, 1AP and 4AP). AP was induced in the upper right first molar (1AP), and in the first and second upper and lower right molars (4AP). The spleen was collected to evaluate the expression of transcription factors involved in lymphocyte polarization, including T-bet (Th1), GATA3 (Th2), and FOXP3 (Treg). Blood samples were assessed for serum cytokine levels transcribed by the respective lymphocyte polarizations, INF-γ (Th1), IL-4 (Th2) and TGF-ß (Treg). In addition, glucose and insulin levels were measured to evaluate IR by the HOMA-IR method. RESULTS: The results showed higher T-bet expression on AP groups, along with lower GATA3 and FOXP3 expression in the 1AP, in addition to increased GATA3 and decreased FOXP3 expression in the 4AP group compared to the CN group. There was no difference in the INF-γ levels, while IL-4 was decreased in the AP groups. Taken together, these results suggest that the adaptive immune system, with a predominance of the Th1 polarization, may be involved in the development of IR in rats with AP. CONCLUSIONS: AP promotes increase in the expression of T-bet (4AP) and decrease of FOXP3 expressions and IL-4 levels (1AP and 4AP). However, depending on the number of lesions (1 or 4 lesions), the expression of GATA3 appears differently. Thus, innate immunity and adaptive immunity may contribute to the IR observed in rats with AP.

12.
Saudi J Biol Sci ; 28(8): 4399-4407, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34354424

RESUMEN

INTRODUCTION: Breastmilk contains proteins and cells which have stem cell properties. The human breastmilk stem cell mimick mesenchymal stem cells and expresses pluripotency genes. The protein level of breastmilk is high in colostrum and gradually subsides in the first year of lactation. The mesenchymal stem cells from breastmilk can be an alternative source of stem cells that can potentially affect cardiovascular therapy. This study aimed to identify the proteomic analysis of secretome mesenchymal stem-like cells under hypoxia compared to non-hypoxia from human breastmilk stem cells. MATERIAL AND METHODS: The human breastmilk was collected from six healthy breastfeeding women and transported to the laboratory under aseptic conditions. The breastmilk cells were isolated then cultured. After 72 h, the human breastmilk stem cells reached confluence then cleaned up and isolated in serum-free media (spheroid) to allow serial passaging every 48 h. The acquisition stem cell was made with flow cytometry. The cells were divided into hBSC secretomes under hypoxia (A) and non-hypoxia (B) and analyzed for LC-MS to identify the peptide structure. RESULTS: The human breastmilk cells contained several mesenchymal stem-like cells in density 2.4 × 106 cell/mL for hypoxia and 2 × 106 cell/mL for non-hypoxia conditions. The human breastmilk stem cell surface markers derived from the third cell passage process were 93.77% for CD44, 98.69% for CD73, 88.45% for CD90, and 96.30% for CD105. The protein level of secretome mesenchymal stem -like cells under hypoxia was measured at 5.56 µg/mL and 4.28 µg/mL for non-hypoxia. The liquid chromatography-mass spectrometry analysis identified 130 and 59 peptides from hypoxia and non-hypoxia of the human breastmilk stem cell secretome sequentially. Some important proteomics structures were found in the hypoxic human breastmilk stem cell secretome, such as transforming growth factor-ß, VE-cadherin, and caspase. CONCLUSION: The human breastmilk cells contain mesenchymal stem-like cells and a high concentration of CD44, CD73, CD90, and CD105 as surface markers at third passage culture. The hypoxic hBSC secretome produces a higher protein level compare to non-hypoxia. The transforming growth factor -ß was found in the hypoxic hBSC secretome as a modulator of VEGF-mediated angiogenesis.

13.
Saudi J Biol Sci ; 28(11): 6465-6470, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34305426

RESUMEN

The use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in coronavirus disease 2019 (COVID-19) patients has been claimed as associated with the risk of COVID-19 infection and its subsequent morbidities and mortalities. These claims were resulting from the possibility of upregulating the expression of angiotensin-converting enzyme 2 (ACE2), facilitation of SARS-CoV-2 entry, and increasing the susceptibility of infection in such treated cardiovascular patients. ACE2 and renin-angiotensin-aldosterone system (RAAS) products have a critical function in controlling the severity of lung injury, fibrosis, and failure following the initiation of the disease. This review is to clarify the mechanisms beyond the possible deleterious effects of angiotensin II (Ang II), and the potential protective role of angiotensin 1-7 (Ang 1-7) against pulmonary fibrosis, with a subsequent discussion of the latest updates on ACEIs/ARBs use and COVID-19 susceptibility in the light of these mechanisms and biochemical explanation.

14.
Regen Ther ; 18: 191-201, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34307797

RESUMEN

INTRODUCTION: The skin is comprised of various kinds of cells and has three layers, the epidermis, dermis and subcutaneous adipose tissue. Stem cells in each tissue duplicate themselves and differentiate to supply new cells that function in the tissue, and thereby maintain the tissue homeostasis. In contrast, senescent cells accumulate with age and secrete senescence-associated secretory phenotype (SASP) factors that impair surrounding cells and tissues, which lowers the capacity to maintain homeostasis in each tissue. Previously, we found Gremlin 2 (GREM2) as a novel SASP factor in the skin and reported that GREM2 suppressed the differentiation of adipose-derived stromal/stem cells. In the present study, we investigated the effects of GREM2 on stem cells in the epidermis and dermis. METHODS: To examine whether GREM2 expression and the differentiation levels in the epidermis and dermis are correlated, the expressions of GREM2, stem cell markers, an epidermal differentiation marker Keratin 10 (KRT10) and a dermal differentiation marker type 3 procollagen were examined in the skin samples (n = 14) randomly chosen from the elderly where GREM2 expression level is high and the individual differences of its expression are prominent. Next, to test whether GREM2 affects the differentiation of skin stem cells, cells from two established lines (an epidermal and a dermal stem/progenitor cell model) were cultured and induced to differentiate, and recombinant GREM2 protein was added. RESULTS: In the human skin, the expression levels of GREM2 varied among individuals both in the epidermis and dermis. The expression level of GREM2 was not correlated with the number of stem cells, but negatively correlated with those of both an epidermal and a dermal differentiation markers. The expression levels of epidermal differentiation markers were significantly suppressed by the addition of GREM2 in the three-dimensional (3D) epidermis generated with an epidermal stem/progenitor cell model. In addition, by differentiation induction, the expressions of dermal differentiation markers were induced in cells from a dermal stem/progenitor cell model, and the addition of GREM2 significantly suppressed the expressions of the dermal differentiation markers. CONCLUSIONS: GREM2 expression level did not affect the numbers of stem cells in the epidermis and dermis but affects the differentiation and maturation levels of the tissues, and GREM2 suppressed the differentiation of stem/progenitor cells in vitro. These findings suggest that GREM2 may contribute to the age-related reduction in the capacity to maintain skin homeostasis by suppressing the differentiation of epidermal and dermal stem/progenitor cells.

15.
Biochem Biophys Rep ; 27: 101068, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34307908

RESUMEN

Liver fibrosis induces intrahepatic microcirculation disorder and hypoxic stress. Hypoxic stress has the potential for an increase in the possibility of more liver fibrosis and carcinogenesis. Liver biopsy is a standard method that evaluates of intrahepatic hypoxia, however, is invasive and has a risk of bleeding as a complication. Here, we investigated the hypoxia reactive gene expressions in peripheral blood mononuclear cells (PBMC) from chronic liver disease patients to evaluate intrahepatic hypoxia in a non-invasive manner. The subjects enrolled for this study were composed of 20 healthy volunteers (HV) and 48 patients with chronic liver disease (CLD). CLD patients contained 24 patients with chronic hepatitis(CH)and 24 patients with liver cirrhosis (LC). PBMC were isolated from heparinized peripheral blood samples. We measured the transcriptional expression of hypoxia reactive genes and inflammatory cytokines by quantitative RT-PCR. mRNA expression of adrenomedullin (AM), vascular endothelial growth factor A (VEGFA) superoxide dismutase (SOD), glutathione peroxidase (GPx) (p < 0.05), Interleukin-6 (IL-6), transforming growth factor-beta (TGF-ß) and heme oxygenase-1 (HO-1) in CLD group were significantly higher than HV. AM mRNA expression is correlated with serum lactate dehydrogenase (LDH), serum albumin (Alb), IL6, and SOD mRNA expression. The hypoxia reactive gene expression in PBMCs from CLD patients was more upregulated than HV. Especially, angiogenic genes were notably upregulated and correlated with liver fibrosis. Here, we suggest that mRNA expression of AM in PBMCs could be the biomarker of intrahepatic hypoxia.

16.
J Tradit Complement Med ; 11(4): 328-335, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34195027

RESUMEN

BACKGROUND: Abdominal adhesions are common and often develop after abdominal surgery. There are currently no useful targeted pharmacotherapies for adhesive disease. Saffron and its active constituents, Crocin and Crocetin, are wildly used in traditional medicine for alleviating the severity of inflammatory or malignant disease. PURPOSE: The aim of this study was to investigate the therapeutic potential of the pharmacological active component of saffron in attenuating the formation of post-operative adhesion bands using different administration methods in a murine model. MATERIAL METHOD: saffron extract (100 mg/kg), Crocin (100 mg/kg), and Crocetin (100 mg/kg) were administered intraperitoneally and by gavage in various groups of male Wistar rat post-surgery. Also three groups were first treated intra-peritoneally by saffron extract, Crocin, and Crocetin (100 mg/kg) for 10 days and then had surgery. At the end of the experiments, animals sacrificed for biological assessment. RESULT: A hydro-alcoholic extract of saffron and crocin but not crocetin potently reduced the adhesion band frequency in treatment and pre-treatment groups in the mice given intra-peritoneal (i.p) injections. Following the saffron or crocin administration, histological evaluation and quantitative analysis represented less inflammatory cell infiltration and less collagen composition, compared to control group. Moreover, the oxidative stress was significantly reduced in treatment groups. CONCLUSION: These findings suggest that a hydro-alcoholic extract of saffron or its active compound, crocin, is a potentially novel therapeutic strategy for the prevention of adhesions formation and might be used as beneficial anti-inflammatory or anti-fibrosis agents in clinical trials. TAXONOMY: Abdominal surgeries/post-surgical adhesions.

18.
J Bone Oncol ; 26: 100337, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33240786

RESUMEN

Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.

19.
Int J Cardiol Hypertens ; 7: 100050, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33330845

RESUMEN

BACKGROUND: The band 9p21.3 contains an established genomic risk zone for cardiovascular disease (CVD). Since the initial 2007 Wellcome Trust Case Control Consortium study (WTCCC), the increased CVD risk associated with 9p21.3 has been confirmed by multiple studies in different continents. However, many years later there was still no confirmed report of a corresponding association of 9p21.3 with hypertension, a major CV risk factor, nor with blood pressure (BP). THEORY: In this contribution, we review the bipartite haplotype structure of the 9p21.3 risk locus: one block is devoid of protein-coding genes but contains the lead CVD risk SNPs, while the other block contains the first exon and regulatory DNA of the gene for the cell cycle inhibitor p15. We consider how findings from molecular biology offer possibilities of an involvement of p15 in hypertension etiology, with expression of the p15 gene modulated by genetic variation from within the 9p21.3 risk locus. RESULTS: We present original results from a Colombian study revealing moderate but persistent association signals for BP and hypertension within the classic 9p21.3 CVD risk locus. These SNPs are mostly confined to a 'hypertension island' that spans less than 60 kb and coincides with the p15 haplotype block. We find confirmation in data originating from much larger, recent European BP studies, albeit with opposite effect directions. CONCLUSION: Although more work will be needed to elucidate possible mechanisms, previous findings and new data prompt reconsidering the question of how variation in 9p21.3 might influence hypertension components of cardiovascular risk.

20.
Ann Med Surg (Lond) ; 58: 102-106, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32963775

RESUMEN

BACKGROUND: Laparoscopic procedures under certain pressure have the potential to cause intra-abdominal adhesions. However, the pathomechanism of this disorder is unknown. Release of mast cell mediators due to mast cell degranulation is thought to be the cause. MATERIALS AND METHODS: Thirty male Sprague-Dawley rats were grouped into five groups (n = 6 per group): one control group and four intervention groups to which 60 min insufflation was performed using carbon dioxide at 5, 8, 10 and 12 mmHg. Seven days after laparoscopy, we euthanized and evaluated the levels of histamine, tryptase, and chymase of peritoneal fluid, the thickness of ECM of peritoneal tissue, and intraabdominal adhesion scoring system. RESULTS: Histamine and tryptase levels in peritoneal fluid were significantly higher at the 10- and 12 mm Hg intervention compared to control (histamine: 0.50 ± 0.35 vs. 0.41 ± 0.41 vs. 0.04 ± 0.02 ng/mL, respectively; and tryptase: 0.69 ± 0.11 vs. 0.65 ± 0.05 vs. 0.48 ± 0.02 ng/ml respectively). The ECM was significantly thicker in the intervention groups at 10- and 12-mm Hg compared to control (71.3 [66.7-85.2] vs. 48.4 [34.5-50.3] vs. 10.25 [8.7-12.1] µm, respectively). Moreover, the intra-abdominal scoring was also significantly higher in the intervention groups at 10- and 12 mm Hg compared to control (4 [0-4] vs. 4.5 [4-5], vs. 0, respectively). CONCLUSIONS: Laparoscopic procedures increase the release of mast cell mediators in peritoneal fluid, the thickness of ECM and intraabdominal adhesion scoring in rats, implying that it might increase the possibility of intrabdominal adhesion in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA