Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Vet Microbiol ; 298: 110241, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39226763

RESUMEN

Porcine rotavirus (PoRV), a member of the Reoviridae family, constitutes a principal etiological agent of acute diarrhea in piglets younger than eight weeks of age, and it is associated with considerable morbidity and mortality within the swine industry. The G5 genotype rotavirus strain currently predominates in circulation. To develop a safe and effective porcine rotavirus vaccine, we generated an insect cell-baculovirus expression system, and successfully expressed these three viral proteins and assembled them into virus-like particles (VLPs) co-displaying VP2, VP6, and VP7. Transmission electron microscopy (TEM) analysis revealed that the VP2-VP6-VP7 VLPs exhibited a "wheeled" morphology resembling that of native rotavirus particles, with an estimated diameter of approximately 65 nm. To evaluate the immunogenicity and protective efficacy of these VP2-VP6-VP7 VLPs, we immunized BALB/C mice with four escalating doses of the VLPs, ranging from 5 to 40 µg of VLP protein per dose. ELISA-based assessments of PoRV-specific antibodies and T cell cytokines, including IL-4, IL-2, and IFN-γ, demonstrate that immunization with VP2-VP6-VP7 VLPs can effectively elicit both humoral and cellular immune responses in mice, resulting in a notable induction of neutralizing antibodies. On days 4, 6, 8, and 10 post-infection (dpi), the VLP-vaccinated group exhibited significantly reduced levels of PoRV RNA copy numbers when compared to the PBS controls. Histological examination of the duodenum, ileum, and kidneys revealed that VP2-VP6-VP7 VLPs provided effective protection against PoRV induced intestinal injury. Collectively, these findings indicate that the VLPs generated in this study possess strong immunogenicity and suggest the considerable promise of the VLP-based vaccine candidate in the prevention and containment of Porcine Rotavirus infections.

2.
Cell Rep Med ; 5(9): 101734, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39293400

RESUMEN

Staphylococcus aureus is a major human pathogen, yet the immune factors that protect against infection remain elusive. High titers of opsonic IgG antibodies, achieved in preclinical animal immunization studies, have consistently failed to provide protection in humans. Here, we investigate antibody responses to the conserved S. aureus surface glycan wall teichoic acid (WTA) and detect the presence of WTA-specific IgM and IgG antibodies in the plasma of healthy individuals. Functionally, WTA-specific IgM outperforms IgG in opsonophagocytic killing of S. aureus and protects against disseminated S. aureus bacteremia through passive immunization. In a clinical setting, patients with S. aureus bacteremia have significantly lower WTA-specific IgM but similar IgG levels compared to healthy controls. Importantly, low WTA-IgM levels correlate with disease mortality and impaired bacterial opsonization. Our findings may guide risk stratification of hospitalized patients and inform future design of antibody-based therapies and vaccines against serious S. aureus infection.


Asunto(s)
Anticuerpos Antibacterianos , Inmunoglobulina G , Inmunoglobulina M , Polisacáridos , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/inmunología , Inmunoglobulina M/inmunología , Inmunoglobulina M/sangre , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Polisacáridos/inmunología , Ácidos Teicoicos/inmunología , Animales , Femenino , Masculino , Fagocitosis/inmunología , Bacteriemia/inmunología , Bacteriemia/microbiología , Ratones , Adulto , Persona de Mediana Edad , Opsonización/inmunología
3.
Emerg Microbes Infect ; 13(1): 2377606, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38979723

RESUMEN

The lack of success in clinical trials for HIV vaccines highlights the need to explore novel strategies for vaccine development. Research on highly exposed seronegative (HESN) HIV-resistant Kenyan female sex workers revealed naturally protective immunity is correlated with a focused immune response mediated by virus-specific CD8 T cells. Further studies indicated that the immune response is unconventionally focused on highly conserved sequences around HIV viral protease cleavage sites (VPCS). Thus, taking an unconventional approach to HIV vaccine development, we designed lipid nanoparticles loaded with mRNA that encodes multi-epitopes of VPCS (MEVPCS-mRNA LNP), a strategic design to boost antigen presentation by dendritic cells, promoting effective cellular immunity. Furthermore, we developed a novel cold-chain compatible mRNA LNP formulation, ensuring long-term stability and compatibility with cold-chain storage/transport, widening accessibility of mRNA LNP vaccine in low-income countries. The in-vivo mouse study demonstrated that the vaccinated group generated VPCS-specific CD8 memory T cells, both systemically and at mucosal sites of viral entry. The MEVPCS-mRNA LNP vaccine-induced CD8 T cell immunity closely resembled that of the HESN group and displayed a polyfunctional profile. Notably, it induced minimal to no activation of CD4 T cells. This proof-of-concept study underscores the potential of the MEVPCS-mRNA LNP vaccine in eliciting CD8 T cell memory specific to the highly conserved multiple VPCS, consequently having a broad coverage in human populations and limiting viral escape mutation. The MEVPCS-mRNA LNP vaccine holds promise as a candidate for an effective prophylactic HIV vaccine.


Asunto(s)
Vacunas contra el SIDA , Linfocitos T CD8-positivos , Infecciones por VIH , Vacunas de ARNm , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Animales , Ratones , Linfocitos T CD8-positivos/inmunología , Femenino , Infecciones por VIH/prevención & control , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , VIH-1/inmunología , VIH-1/genética , Nanopartículas/química , Proteasa del VIH/genética , Proteasa del VIH/inmunología , Kenia , Trabajadores Sexuales , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Epítopos/inmunología , Epítopos/genética , ARN Mensajero/genética , ARN Mensajero/inmunología , Liposomas
4.
Virology ; 597: 110150, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917690

RESUMEN

Coronaviruses (CoVs) comprise a group of important human and animal pathogens that threaten public health because of their interspecies transmission potential to humans. However, virus-like particles (VLPs) constitute versatile tools in CoVs vaccine development due to their favorable immunological characteristics. Here, we engineered the VLPs composed of the spike (S), membrane (M), and envelope (E) structural proteins of the Porcine deltacoronavirus (PDCoV) and examined their immune responses in mice. Neutralization assays and flow Cytometry demonstrated that PDCoV VLPs induced highly robust neutralizing antibodies (NAbs) and elicited cellular immunity. To assess the protective efficacy of VLPs in newborn piglets, pregnant sows received vaccinations with either a PDCoV-inactivated vaccine or VLPs at 40 and 20 days before delivery. Five days post-farrowing, piglets were orally challenged with the PDCoV strain. Severe diarrhea, high viral RNA copies, and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. However, piglets from sows immunized with VLPs exhibited high NAbs titers and markedly reduced microscopic damage to the intestinal tissues, with no piglet showing diarrhea. Hence, the results indicate that the VLPs are a potential clinical candidate for PDCoV vaccination, while the strategy may serve as a platform for developing other coronavirus vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Porcinos , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Femenino , Deltacoronavirus/inmunología , Ratones , Embarazo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Animales Recién Nacidos
5.
Am J Vet Res ; 85(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901460

RESUMEN

OBJECTIVE: Salmonella Typhimurium is a significant zoonotic concern for human food poisoning and a substantial economic burden in the swine industry. We previously reported that nasally delivered chitosan-coated poly(lactide-co-glycolide) (PLGA) encapsulating honeybee venom (CP-HBV) could enhance CD4+ T helper 1 (Th1)-related immune responses in healthy pigs. Building upon these findings, the current study aimed to investigate the protective immune enhancement by nasally delivered CP-HBV in pigs challenged with S Typhimurium. ANIMALS: 36 healthy, 4-week-old, female, Landrace X Yorkshire X Duroc pigs. METHODS: 36 pigs were allocated into 3 groups: CP-HBV (n = 16), control (n = 16), and healthy baseline control (n = 4). CP-HBV and control groups were challenged with S Typhimurium 7 days post-treatment. Pigs from the healthy control group were sacrificed at 0 days postinfection (DPI), and 4 pigs from each of the control and CP-HBV groups were sacrificed at 1, 2, 4, and 7 DPI. Salmonella shedding, immune cell frequencies, cytokines, and transcriptional factor expression levels were measured. RESULTS: The CP-HBV group exhibited lower bacterial shedding and an enhanced Th1-related immune response characterized by an upregulation of CD4+ T cells and CD4+ Interferon-γ+ T cells, accompanied by increased expression of Th1-related cytokines and reduced expression of regulatory T cells and immunosuppressive cytokines compared to the control group. CLINICAL RELEVANCE: CP-HBV is a promising strategy for controlling Salmonella infections in pigs and improving public health.


Asunto(s)
Venenos de Abeja , Quitosano , Salmonelosis Animal , Salmonella typhimurium , Enfermedades de los Porcinos , Animales , Quitosano/administración & dosificación , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Salmonelosis Animal/prevención & control , Salmonelosis Animal/inmunología , Porcinos , Femenino , Venenos de Abeja/administración & dosificación , Venenos de Abeja/inmunología , Administración Intranasal/veterinaria , Células TH1/inmunología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Citocinas/metabolismo
6.
Front Immunol ; 15: 1361323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835763

RESUMEN

Introduction: Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods: Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results: Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion: Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.


Asunto(s)
Anticuerpos Antivirales , Ferritinas , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Ratones Endogámicos BALB C , Nanopartículas , Infecciones por Orthomyxoviridae , Animales , Subtipo H1N1 del Virus de la Influenza A/inmunología , Ferritinas/inmunología , Vacunas contra la Influenza/inmunología , Porcinos , Ratones , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Femenino , Nanovacunas
7.
Vet Immunol Immunopathol ; 272: 110772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704989

RESUMEN

A live, infectious vaccine candidate for epizootic bovine abortion, designated EBAA Vaccine, USDA-APHIS Product code #1544.00, has been reported to be both safe and effective. Previous studies established that a single dose of EBAA vaccine administered to cows at potencies of either 2000 or 500 live P. abortibovis-infected murine spleen cells (P.a.-LIC) induced protective immunity for a minimum of 5 months. The current study employed 19 pregnant cows that were challenged with P. abortibovis in their 2nd trimester of gestation; 9 were vaccinated 17.2-months earlier as 1-year-olds with 2000 P.a.-LIC and 10 served as negative controls. Eighty-nine percent of the vaccinates gave birth to healthy calves as compared to 10% of challenge controls. Vaccine efficacy was significant when analyzed by prevented fractions (87.7%; 95% CI=0.4945-0.9781). Serologic data supports previous findings that pregnant cows with detectable P. abortibovis antibodies are immune to P. abortibovis challenge as demonstrated by the birth of healthy calves.


Asunto(s)
Aborto Veterinario , Animales , Bovinos , Femenino , Embarazo , Aborto Veterinario/inmunología , Aborto Veterinario/prevención & control , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/prevención & control , Estaciones del Año , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación
8.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696217

RESUMEN

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Asunto(s)
Nanopartículas , Virus de la Diarrea Epidémica Porcina , Vacunas Virales , Virus de la Diarrea Epidémica Porcina/inmunología , Animales , Nanopartículas/química , Porcinos , Ratones , Vacunas Virales/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Ratones Endogámicos BALB C , Antígenos Virales/inmunología , Antígenos Virales/química , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Dominios Proteicos/inmunología , Femenino , Nanovacunas
9.
Pathog Dis ; 822024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38684476

RESUMEN

We have demonstrated previously that TNF-α-producing CD8+ T cells mediate chlamydial pathogenesis, likely in an antigen (Ag)-specific fashion. Here we hypothesize that inhibition of Ag-specific CD8+ T cell response after immunization and/or challenge would correlate with protection against oviduct pathology induced by a protective vaccine regimen. Intranasal (i.n.) live chlamydial elementary body (EB), intramuscular (i.m.) live EB, or i.n. irrelevant antigen, bovine serum albumin (BSA), immunized animals induced near-total protection, 50% protection, or no protection, respectively against oviduct pathology following i.vag. C. muridarum challenge. In these models, we evaluated Ag-specific CD8+ T cell cytokine response at various time-periods after immunization or challenge. The results show protective efficacy of vaccine regimens correlated with reduction of Ag-specific CD8+ T cell TNF-α responses following i.vag. chlamydial challenge, not after immunization. Depletion of CD4+ T cells abrogated, whereas adoptive transfer of Ag-specific CD4+ T cells induced the significant reduction of Ag-specific CD8+ T cell TNF-α response after chlamydial challenge. In conclusion, protective anti-chlamydial vaccine regimens induce Ag-specific CD4+ T cell response that mediate early inhibition of pathogenic CD8+ T cell response following challenge and may serve as a predictive biomarker of protection against Chlamydia -induced chronic pathologies.


Asunto(s)
Vacunas Bacterianas , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Infecciones por Chlamydia , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/prevención & control , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Femenino , Ratones , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Chlamydia muridarum/inmunología
10.
Vaccine ; 42(6): 1283-1291, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310019

RESUMEN

Smallpox, caused by the variola virus belonging to the genus Orthopoxvirus, is an acute contagious disease that killed 300 million people in the 20th century. Since it was declared to be eradicated and the national immunization program against it was stopped, the variola virus has become a prospective bio-weapon. It is necessary to develop a safe vaccine that protects people from terrorism using this biological weapon and that can be administered to immunocompromised people. Our previous study reported on the development of an attenuated smallpox vaccine (KVAC103). This study evaluated cellular and humoral immune responses to various doses, frequencies, and routes of administration of the KVAC103 strain, compared to CJ-50300 vaccine, and its protective ability against the wild-type vaccinia virus Western Reserve (VACV-WR) strain was evaluated. The binding and neutralizing-antibody titers increased in a concentration-dependent manner in the second inoculation, which increased the neutralizing-antibody titer compared to those after the single injection. In contrast, the T-cell immune response (interferon-gamma positive cells) increased after the second inoculation compared to that of CJ-50300 after the first inoculation. Neutralizing-antibody titers and antigen-specific IgG levels were comparable in all groups administered KVAC103 intramuscularly, subcutaneously, and intradermally. In a protective immunity test using the VACV-WR strain, all mice vaccinated with CJ-50300 or KVAC103 showed 100% survival. KVAC103 could be a potent smallpox vaccine that efficiently induces humoral and cellular immune responses to protect mice against the VACV-WR strain.


Asunto(s)
Vacuna contra Viruela , Viruela , Virus de la Viruela , Animales , Ratones , Humanos , Viruela/prevención & control , Vacunas Atenuadas , Estudios Prospectivos , Virus Vaccinia/genética , Inmunidad Celular , Antígenos Virales , Anticuerpos Antivirales , Ratones Endogámicos BALB C
11.
mBio ; 15(2): e0295823, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38231557

RESUMEN

Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes severe diarrhea in neonatal piglets, which is associated with a high mortality rate. Thus, developing effective and safe vaccines remains a top priority for controlling PEDV infection. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines encoding either the full-length PEDV spike (S) protein or a multiepitope chimeric spike (Sm) protein. We found that the S mRNA-LNP vaccine was superior to the Sm mRNA-LNP vaccine at inducing antibody and cellular immune responses in mice. Evaluation of the immunogenicity and efficacy of the S mRNA vaccine in piglets confirmed that it induced robust PEDV-specific humoral and cellular immune responses in vivo. Importantly, the S mRNA-LNP vaccine not only protected actively immunized piglets against PEDV but also equipped neonatal piglets with effective passive anti-PEDV immunity in the form of colostrum-derived antibodies after the immunization of sows. Our findings suggest that the PEDV-S mRNA-LNP vaccine is a promising candidate for combating PEDV infection.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) continues to harm the global swine industry. It is important to develop a highly effective vaccine to control PEDV infection. Here, we report a PEDV spike (S) mRNA vaccine that primes a potent antibody response and antigen-specific T-cell responses in immunized piglets. Active and passive immunization can protect piglets against PED following the virus challenge. This study highlights the efficiency of the PEDV-S mRNA vaccine and represents a viable approach for developing an efficient PEDV vaccine.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Femenino , Ratones , Anticuerpos Antivirales , Vacunas de ARNm , Virus de la Diarrea Epidémica Porcina/genética , Vacunas Virales/genética , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Glicoproteína de la Espiga del Coronavirus/genética , Diarrea , ARN Mensajero/genética , Enfermedades de los Porcinos/prevención & control
12.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203765

RESUMEN

Classical swine fever virus (CSFV) is a highly contagious pathogen causing significant economic losses in the swine industry. Conventional inactivated or attenuated live vaccines for classical swine fever (CSF) are effective but face biosafety concerns and cannot distinguish vaccinated animals from those infected with the field virus, complicating CSF eradication efforts. It is noteworthy that nanoparticle (NP)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. In this study, we developed an innovative vaccine delivery scaffold utilizing self-assembled mi3 NPs, which form stable structures carrying the CSFV E2 glycoprotein. The expressed yeast E2-fused protein (E2-mi3 NPs) exhibited robust thermostability (25 to 70 °C) and long-term storage stability at room temperature (25 °C). Interestingly, E2-mi3 NPs made with this technology elicited enhanced antigen uptake by RAW264.7 cells. In a rabbit model, the E2-mi3 NP vaccine against CSFV markedly increased CSFV-specific neutralizing antibody titers. Importantly, it conferred complete protection in rabbits challenged with the C-strain of CSFV. Furthermore, we also found that the E2-mi3 NP vaccines triggered stronger cellular (T-lymphocyte proliferation, CD8+ T-lymphocytes, IFN-γ, IL-2, and IL-12p70) and humoral (CSFV-specific neutralizing antibodies, CD4+ T-lymphocytes, and IL-4) immune responses in pigs than the E2 vaccines. To sum up, these structure-based, self-assembled mi3 NPs provide valuable insights for novel antiviral strategies against the constantly infectious agents.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Lagomorpha , Nanopartículas , Animales , Conejos , Porcinos , Nanovacunas , Peste Porcina Clásica/prevención & control , Vacunas Atenuadas , Proteínas Fúngicas
13.
Immunology ; 171(2): 155-169, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37712243

RESUMEN

Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Vacunas Virales , Animales , Humanos , Virus Nipah/genética , Infecciones por Henipavirus/prevención & control , Australia , Antivirales
14.
Annu Rev Pathol ; 19: 69-97, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37738512

RESUMEN

As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Anticuerpos , Vacunación
15.
Small ; 20(15): e2307066, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009518

RESUMEN

A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.


Asunto(s)
Lípido A/análogos & derivados , Vacuna contra la Peste , Peste , Yersinia pestis , Ratones , Animales , Yersinia , Peste/prevención & control , Antígenos Bacterianos
16.
Parasitol Res ; 123(1): 20, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38072876

RESUMEN

Baylisascaris schroederi is among the most severe intestinal nematodes affecting giant pandas. Developing effective and secure vaccines can be used as a novel strategy for controlling repeated roundworm infection and addressing drug resistance. In our previous study, three recombinant antigens (rBsHP2, rBsGAL, and rBsUP) exhibited promising effects against B. schroederi infection in the mice model. This study extends the findings by formulating four-form cocktail vaccines (GAL+UP, HP2+UP, GAL+HP2, and GAL+HP2+UP) using three B. schroederi recombinant antigens to improve protection in mice further. Additionally, the protective differences after immunizing mice with different doses of cocktail antigens (150 µg, 100 µg, and 50 µg) were analyzed. Administration of rBs(GAL+UP), rBs(HP2+UP), rBs(GAL+HP2), and rBs(GAL+HP2+UP) significantly reduced liver and lung lesions, along with a decrease in L3 larvae by 83.7%, 82.1%, 76.4%, and 75.1%, respectively. These vaccines induced a Th1/Th2 mixed immunity, evidenced by elevated serum antibody levels (IgG, IgG1, IgG2a, IgE, and IgA) and splenocyte cytokines [interferon gamma (IFN-γ), interleukin (IL)-5, and IL-10]. Furthermore, varying cocktail vaccine dosages did not significantly affect protection. The results confirm that a 50 µg rBs(GAL+UP) dosage holds promise as a better candidate vaccine combination against B. schroederi infection, providing a basis for developing the B. schroederi vaccine.


Asunto(s)
Ascaridoidea , Vacunas , Animales , Ratones , Proteínas Recombinantes , Antígenos Helmínticos/genética , Ascaridoidea/genética , Ratones Endogámicos BALB C
17.
Vaccines (Basel) ; 11(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38140215

RESUMEN

Group B Streptococcus (Streptococcus agalactiae or GBS) is the leading infectious cause of neonatal mortality, causing roughly 150,000 infant deaths and stillbirths annually across the globe. Approximately 20% of pregnant women are asymptomatically colonized by GBS, which is a major risk factor for severe fetal and neonatal infections as well as preterm birth, low birth weight, and neurodevelopmental abnormalities. Current clinical interventions for GBS infection are limited to antibiotics, and no vaccine is available. We previously described VAX-A1 as a highly effective conjugate vaccine against group A Streptococcus that is formulated with three antigens, SpyAD, streptolysin O, and C5a peptidase (ScpA). ScpA is a surface-expressed, well-characterized GAS virulence factor that shares nearly identical sequences with the lesser studied GBS homolog ScpB. Here, we show that GBS C5a peptidase ScpB cleaves human complement factor C5a and contributes to disease severity in the murine models of pneumonia and sepsis. Furthermore, antibodies elicited by GAS C5a peptidase bind to GBS in an ScpB-dependent manner, and VAX-A1 immunization protects mice against lethal GBS heterologous challenge. These findings support the contribution of ScpB to GBS virulence and underscore the importance of choosing vaccine antigens; a universal GAS vaccine such as VAX-A1 whose formulation includes GAS C5a peptidase may have additional benefits through some measure of cross-protection against GBS infections.

18.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38006015

RESUMEN

Objectives: We aimed to analyse the incidence and severity of breakthrough infections (BIs) in rheumatoid arthritis (RA) patients after a COronaVIrus Disease 2019 (COVID-19) vaccination booster dose. Methods: We enrolled 194 RA patients and 1002 healthcare workers (HCWs) as controls. Clinical, lifestyle and demographic factors were collected at the time of the third dose, and immunogenicity analyses were carried out in a subgroup of patients at 4-6 weeks after the third dose. Results: BIs were experienced by 42% patients (82/194) with a median time since the last vaccination of 176 days. Older age (>50 years; aHR 0.38, 95% CI: 0.20-0.74), receiving conventional synthetic disease modifying antirheumatic drugs (csDMARDs) (aHR 0.52, 95%CI: 0.30-0.90) and having a titre of neutralising antibodies >20 (aHR 0.36, 95% CI: 0.12-1.07) were identified as protective factors. Conversely, anti-IL6R treatment and anti-CD20 therapy increased BI probability. BIs were mostly pauci-symptomatic, but the hospitalisation incidence was significantly higher than in HCWs (8.5% vs. 0.19%); the main risk factor was anti-CD20 therapy. Conclusions: Being older than 50 years and receiving csDMARDs were shown to be protective factors for BI, whereas anti-IL6R or anti-CD20 therapy increased the risk. Higher neutralising antibody titres were associated with a lower probability of BI. If confirmed in a larger population, the identification of a protective cut-off would allow a personalised risk-benefit therapeutic management of RA patients.

19.
Vaccines (Basel) ; 11(11)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38006024

RESUMEN

Porcine parvovirus 1 (PPV1) is one of the most prevalent pathogens that can cause reproductive disorder in sows. The VP2 protein of PPV1 is the most important immunogenic protein that induces neutralizing antibodies and protective immunity. Thus, VP2 is considered an ideal target antigen for the development of a genetically engineered PPV1 vaccine. In this study, the baculovirus transfer vector carrying the HR5-P10-VP2 expression cassette was successfully constructed with the aim of increasing the expression levels of the VP2 protein. The VP2 protein was confirmed using SDS‒PAGE and Western blot analyses. Electronic microscope analysis showed that the recombinant VP2 proteins were capable of self-assembling into VLPs with a diameter of approximately 25 nm. The immunogenicity of the VP2 subunit vaccine was evaluated in pigs. The results showed that VP2 protein emulsified with ISA 201VG adjuvant induced higher levels of HI antibodies and neutralizing antibodies than VP2 protein emulsified with IMS 1313VG adjuvant. Furthermore, the gilts immunized with the ISA 201VG 20 µg subunit vaccine acquired complete protection against PPV1 HN2019 infection. In contrast, the commercial inactivated vaccine provided incomplete protection in gilts. Therefore, the VP2 subunit vaccine is a promising genetically engineered vaccine for the prevention and control of PPV1.

20.
Front Cell Infect Microbiol ; 13: 1236130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029261

RESUMEN

Background: Toxoplasma gondii can cause congenital infection and abortion in humans and warm-blooded animals. T. gondii dense granule proteins, GRA35, GRA42, and GRA43, play a critical role in the establishment of chronic infection. However, their potential to induce protective immunity against T. gondii infection remains unexplored. Objective: This study aimed to test the efficacy of a DNA vaccine encompassing GRA35, GRA42, and GRA43 in inducing protective immunity against the highly virulent T. gondii RH strain (type I) and the brain cyst-forming PRU strain (type II). Methods: The eukaryotic plasmids pVAX-GRA35, pVAX-GRA42, and pVAX-GRA43 were constructed and formulated into two- or three-gene cocktail DNA vaccines. The indirect immunofluorescence assay (IFA) was used to analyze their expression and immunogenicity. Mice were immunized with a single-gene, two-genes, or multicomponent eukaryotic plasmid, intramuscularly. We assessed antibody levels, cytotoxic T-cell (CTL) responses, cytokines, and lymphocyte surface markers by using flow cytometry. Additionally, mouse survival and cyst numbers in the brain of mice challenged 1 to 2 months postvaccination were determined. Results: Specific humoral and cellular immune responses were elicited in mice immunized with single-, two-, or three-gene cocktail DNA vaccine, as indicated by significant increases in serum antibody concentrations of total IgG, IgG2a/IgG1 ratio, cytokine levels (IFN-γ, IL-2, IL-12, IL-4, and IL-10), lymphocyte proliferation, lymphocyte populations (CD4+ and CD8+ T lymphocytes), CTL activities, and survival, as well as decreased brain cysts, in comparison with control mice. Moreover, compared with pVAX-GRA35 + pVAX-GRA42, pVAX-GRA42 + pVAX-GRA43, or pVAX-GRA35 + pVAX-GRA43, multicomponent DNA vaccine with three genes (pVAX-GRA35 + pVAX-GRA42 + pVAX-GRA43) induced the higher humoral and cellular immune responses, including serum antibody concentrations, cytokine levels, lymphocyte proliferation, lymphocyte populations, CTL activities and survival, resulting in prolonged survival time and reduced brain cyst loads. Furthermore, mice immunized with pVAX-GRA35 + pVAX-GRA42, pVAX-GRA42 + pVAX-GRA43, or pVAX-GRA35 + pVAX-GRA43 showed greater Th1 immune responses and protective efficacy than the single-gene-vaccinated groups. Conclusion: These results demonstrate that TgGRA35, TgGRA42, or TgGRA43 are vaccine candidates against T. gondii infection, and the three-gene DNA vaccine cocktail conferred the strongest protection against T. gondii infection.


Asunto(s)
Vacunas Antiprotozoos , Toxoplasma , Toxoplasmosis , Vacunas de ADN , Ratones , Humanos , Animales , Proteínas Protozoarias/genética , Toxoplasma/genética , Citocinas , Vacunas Antiprotozoos/genética , Anticuerpos Antiprotozoarios , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA