Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Pharm Dev Technol ; 29(7): 762-775, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39143894

RESUMEN

Thermoresponsive nanoparticles are exploited as drug-delivery vehicles that release their payload upon increment in temperature. We prepared and characterized thermoresponsive lipid-anchored folic acid engineered magnetic nanoparticles (LP-HP-FANPs) that combine receptor-based targeting and thermoresponsive sustained release of hesperidin (HP) in response to endogenous inflammation site temperature. The progressive surface engineering of NPs was validated by FTIR analysis. Our LP-HP-FANPs had a particle size of 100.5 ± 1.76 nm and a zeta potential of 14.6 ± 2.65 mV. The HP encapsulation effectiveness of LP-HP-FANPs is around 91 ± 0.78%. AFM scans indicated that our modified nanoparticles were spherical. LP-HP-FANPs exhibit increased drug release (85.8% at pH 4.0, 50.9% at pH 7.0) at 40 °C. Animal studies showed no toxicity from nanoparticles. Compared to conventional drugs and HP, LP-HP-FANPs effectively decreased paw edema, cytokine levels, and total cell recruitment in thioglycollate-induced peritonitis (p < 0.05). LP-HP-FANPs substantially decreased cytokines compared to HP, HP-FA-NPs, and the standard medication (p < 0.05, p < 0.01, and p < 0.001). These findings imply that the synthesized HP-loaded formulation (LP-HP-FANPs) may be a potential anti-inflammatory formulation for clinical development.


Asunto(s)
Liberación de Fármacos , Hesperidina , Inflamación , Nanopartículas de Magnetita , Hesperidina/administración & dosificación , Hesperidina/química , Animales , Inflamación/tratamiento farmacológico , Nanopartículas de Magnetita/química , Lípidos/química , Masculino , Temperatura , Sistemas de Liberación de Medicamentos/métodos , Modelos Animales de Enfermedad , Ratones , Ácido Fólico/química , Tamaño de la Partícula , Preparaciones de Acción Retardada , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Portadores de Fármacos/química , Ratas
2.
Artículo en Inglés | MEDLINE | ID: mdl-39082166

RESUMEN

INTRODUCTION: This research aims to create a gel formulation of Brassica juncea leaf extract and assess its anti-inflammatory properties using an in silico study. The anti-inflamma-tory activity has been compared with Diclofenac molecules in PDB id: 4Z69. Further, the Ab-sorption, Distribution, Metabolism, Excretion, and Toxicity analysis has been performed to en-sure the therapeutic potential and safety of the drug development process. The Quality by De-sign tool has been applied to optimize formulation development. METHODS: The extracted gel is characterized by performing Fourier transformer infrared, zeta potential, particle size, Scanning Electron Microscope, and entrapment efficiency. Further, the formulation is evaluated by examining its viscosity, spreadability, and pH measurement. An In-vitro study of all nine extract suspensions was conducted to determine the drug contents at 276 nm. RESULTS: The optimized suspension has shown the maximum percentage of drug release (82%) in 10 hours of study. Animal study for anti-inflammatory activity was performed, and results of all five groups of animals compared the % inhibition of paw edema at three hours; gel (56.70 %), standard (47.86 %), and (39.72 %) were found. CONCLUSION: The research could conclude that the anti-inflammatory activity of gel formulation is high compared to extract, and a molecular docking study validates the anti-inflammatory ther-apeutic effects. ADMET analysis ensures the therapeutic effects and their safety.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38887090

RESUMEN

OBJECTIVE: The present study was aimed at investigating the antinociceptive and anti-inflammatory activities of the solvent fractions of the roots of Echinops kebericho Mesfin in rodent models of pain and inflammation. METHODS: Successive maceration was used as a method of extraction using solvents of increasing polarity: methanol and water. Ethyl acetate, chloroform and distilled water were used as solvents of the fraction process. Swiss albino mice models were used in acetic acid induced writhing, hot plate, carrageenan induced paw edema and cotton pellet granuloma to assess the analgesic and anti-inflammatory activities. The test groups received different doses (100 mg/kg, 200 mg/kg and 400 mg/kg) of the three fractions (chloroform, ethyl acetate and aqueous). The positive control groups received ASA (150 mg/kg) for the writing test, morphine (10 mg/kg) for the hot plate method, diclofenac Na for carrageenan-induced paw edema, and dexamethasone (10 mg/kg) for granuloma, while the negative control group received distilled water. RESULTS: EA fraction at all test doses employed (100 mg/kg, 200 mg/kg, and 400 mg/kg) showed statistically significant (p<0.05, p<0.01, p<0.001 respectively) analgesic and anti-inflammatory activities in a dose-dependent manner. The AQ fraction on the other hand produced statistically significant (p<0.05, p<0.012) analgesic and anti-inflammatory activities at the doses of 200 mg/kg and 400 mg/kg, while the CH fraction exhibited statistically significant (p<0.05) analgesic and anti-inflammatory activity at the dose of 400 mg/kg. CONCLUSIONS: In general, the data obtained from the present study elucidated that the solvent fractions of the study plant possessed significant analgesic and anti-inflammatory activities and were recommended for further investigations.

4.
Chem Biodivers ; 21(7): e202302065, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768437

RESUMEN

Grape pomace (GP), a by-product of wine production, contains bioactive polyphenols with potential health benefits. This study investigates the anti-inflammatory properties of a polyphenolic fraction derived from GP, obtained by ultrasound-microwave hybrid extraction and purified using ion-exchange chromatography. In the inflammation model, mice were divided into six groups: intact, carrageenan, indomethacin, and three GP polyphenols treatment groups. Paw edema was induced by subplantar injection of carrageenan, and the GP polyphenols were administered intraperitoneally at doses of 10, 20, and 40 mg/kg. The anti-inflammatory effect was evaluated by measuring paw volume, and expression of inflammatory markers: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), and cytokines (IL-1ß and IL-6), along with lipid peroxidation levels. The GP polyphenols significantly reduced paw edema and expression levels of COX-2, MPO, and cytokines in a dose-dependent manner effect, with the highest dose showing the greatest reduction. Additionally, lipid peroxidation levels were also decreased by GP polyphenols treatment at doses of 10 and 20 mg/kg. These findings suggest that ultrasound-microwave extraction combined with amberlite purification proved to be effective in obtaining a polyphenolic-rich fraction from GP. Thus, GP polyphenols may serve as a natural anti-inflammatory and antioxidant agent for treating inflammation and oxidative stress-related diseases.


Asunto(s)
Carragenina , Modelos Animales de Enfermedad , Edema , Inflamación , Polifenoles , Vitis , Animales , Polifenoles/farmacología , Polifenoles/aislamiento & purificación , Polifenoles/química , Ratones , Vitis/química , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Edema/tratamiento farmacológico , Edema/inducido químicamente , Peroxidación de Lípido/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Relación Dosis-Respuesta a Droga , Peroxidasa/metabolismo , Citocinas/metabolismo
5.
Inflammopharmacology ; 32(4): 2493-2503, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38695971

RESUMEN

Garcinia pedunculata, a tropical plant found abundantly in the north-east region of India, has been used by many traditional healers for various gastrointestinal ailments. Studies are being carried out for the proper pharmacological identification of the compounds as well as the mode of action for the treatment of various diseases. In this study, phytochemistry of the fruit was evaluated, followed by a quantitative analysis of the total phenolic and flavonoid content of the methanolic crude extract as well as different fractions (n-hexane, chloroform, ethyl acetate, and n-butanol). The fraction with the most potent flavonoid and phenolic content was evaluated for its anti-inflammatory activity using both in vitro and in vivo assays. The chloroform fraction of G. pedunculata fruit extract was found to have a substantial amount of phenols and flavonoids. This fraction inhibited the denaturation of BSA and significantly stabilized human RBC membrane compared to the standard drug Diclofenac sodium. The fraction also significantly reduced the formaldehyde-induced paw edema in mice and normalized the blood parameters. This study provides evidence that G. pedunculata fruit extract plays a critical role in anti-inflammatory activity, indicating that it can be a potential candidate for further investigation in the treatment of inflammation-related diseases.


Asunto(s)
Antiinflamatorios , Edema , Flavonoides , Frutas , Garcinia , Fenoles , Extractos Vegetales , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Ratones , Garcinia/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Fenoles/farmacología , Fenoles/aislamiento & purificación , Humanos , Edema/tratamiento farmacológico , Frutas/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Masculino , Inflamación/tratamiento farmacológico , Formaldehído , Membrana Eritrocítica/efectos de los fármacos
6.
Front Chem ; 12: 1366844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690012

RESUMEN

Introduction: D-pinitol, a naturally occurring inositol, has diverse biological activities like antioxidant, antimicrobial and anticancer activities. This study aimed to evaluate anti-inflammatory effect of d-pinitol in a chick model. Additionally, in silico studies were performed to evaluate the molecular interactions with cyclooxygenase-2 (COX-2). Methods: The tested groups received d-pinitol (12.5, 25, and 50 mg/kg) and the standard drugs celecoxib and ketoprofen (42 mg/kg) via oral gavage prior to formalin injection. Then, the number of licks was counted for the first 10 min, and the paw edema diameter was measured at 60, 90, and 120 min. Results and Discussion: The d-pinitol groups significantly (p < 0.05) reduced the number of paw licks and paw edema diameters, compared to negative control. When d-pinitol was combined with celecoxib, it reduced inflammatory parameters more effectively than the individual groups. The in silico study showed a promising binding capacity of d-pinitol with COX-2. Taken together, d-pinitol exerted anti-inflammatory effects in a dose-dependent manner, possibly through COX-2 interaction pathway.

7.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791434

RESUMEN

Extracts from medicinal plants are widely used in the treatment and prevention of different diseases. Micromeria frivaldszkyana is a Balkan endemic species with reported antioxidant and antimicrobial characteristics; however, its phytochemical composition is not well defined. Here, we examined the metabolome of M. frivaldszkyana by chromatography-mass spectrometry (GC-MS), ultra-performance liquid chromatography-mass spectrometry (UPLC-MS-MS), and inductively coupled plasma mass spectrometry (ICP-MS). Amino acids, organic acids, sugars, and sugar alcohols were the primary metabolites with the highest levels in the plant extract. Detailed analysis of the sugar content identified high levels of sucrose, glucose, mannose, and fructose. Lipids are primary plant metabolites, and the analysis revealed triacylglycerols as the most abundant lipid group. Potassium (K), magnesium (Mg), zinc (Zn), and calcium (Ca) were the elements with the highest content. The results showed linarin, 3-caffeoil-quinic acid, and rosmarinic acid, as well as a number of polyphenols, as the most abundant secondary metabolites. Among the flavonoids and polyphenols with a high presence were eupatorin, kaempferol, and apigenin-compounds widely known for their bioactive properties. Further, the acute toxicity and potential anti-inflammatory activity of the methanolic extract were evaluated in Wistar rats. No toxic effects were registered after a single oral application of the extract in doses of between 200 and 5000 mg/kg bw. A fourteen-day pre-treatment with methanolic extract of M. frivaldszkyana in doses of 250, 400, and 500 mg/kg bw induced anti-inflammatory activity in the 1st, 2nd, and 3rd hours after carrageenan injection in a model of rat paw edema. This effect was also present in the 4th hour only in the group treated with a dose of 500 mg/kg. In conclusion, M. frivaldszkyana extract is particularly rich in linarin, rosmarinic acid, and flavonoids (eupatorin, kaempferol, and apigenin). Its methanolic extract induced no toxicity in male Wistar rats after oral application in doses of up to 5000 mg/kg bw. Additionally, treatment with the methanolic extract for 14 days revealed anti-inflammatory potential in a model of rat paw edema on the 1st, 2nd, and 3rd hours after the carrageenan injection. These results show the anti-inflammatory potential of the plant, which might be considered for further exploration and eventual application as a phytotherapeutic agent.


Asunto(s)
Antiinflamatorios , Extractos Vegetales , Ratas Wistar , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ratas , Metanol/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Sapotaceae/química , Metaboloma/efectos de los fármacos
8.
Molecules ; 29(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542945

RESUMEN

COX-2 plays a key role in converting arachidonic acid into prostaglandins. This makes it a significant target for treating inflammation. Selective COX-2 inhibitors have marked a new phase in inflammatory treatment, providing significant effectiveness while reducing negative side effects. Herein, we aimed at the design and synthesis of new anti-inflammatory agents 5a-f, 7a-b, 10a-f, and 13a-b with expected selective inhibition for COX-2. Compounds 5d-f, 7b, and 10c-f showed significant COX-2 inhibition with IC50 in the range of 0.06-0.09 µM, indicating powerful pharmacological potential. In light of this, eight compounds were selected for further testing in vivo to assess their selectivity toward COX-1/COX-2 enzymes with the ability to reduce paw thickness. Compounds 5f and 7b showed significant anti-inflammatory effects without causing stomach ulcers, as they showed significant in vivo inhibition for paw thickness at 63.35% and 46.51%, as well as paw weight at 68.26% and 64.84%. Additionally, the tested compounds lowered TNF-α by 61.04% and 64.88%, as well as PGE-2 by 60.58% and 57.07%, respectively. Furthermore, these potent compounds were thoroughly analyzed for their pain-relieving effects, histological changes, and toxicological properties. Assessing renal and stomach function, as well as measuring liver enzymes AST and ALT, together with kidney indicators creatinine and urea, offered valuable information on their safety profiles. Molecular modeling studies explain the complex ways in which the strong interacts with the COX-2 enzyme. This comprehensive strategy emphasizes the therapeutic potential and safety profiling of these new analogues for managing inflammation.


Asunto(s)
Antiinflamatorios , Inhibidores de la Ciclooxigenasa 2 , Humanos , Antiinflamatorios/uso terapéutico , Ciclooxigenasa 2/metabolismo , Ácido Acético , Simulación del Acoplamiento Molecular , Inflamación/tratamiento farmacológico , Edema/tratamiento farmacológico , Relación Estructura-Actividad , Diseño de Fármacos , Antiinflamatorios no Esteroideos/farmacología
9.
Saudi Pharm J ; 32(3): 101925, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38348290

RESUMEN

The series of newer salicylate derivatives incorporating nitroxy functionality were synthesized and evaluated for their potential effect in gastrointestinal (GI) related toxicity produced by aspirin. The synthesized compounds (5a-j) were subjected to %NO (nitric oxide) release study, in-vitro anti-inflammatory potential, % inhibition of carrageenan-induced paw edema and the obtained results were validated by in-silico studies including molecular docking, MD simulations and in-silico ADME (absorption, distribution, metabolism, and elimination) calculations. Compounds 5a (20.86 %) and 5g (18.20 %) displayed the highest percentage of NO release in all the tested compounds. Similarly, 5a and 5h were found to have (77.11 % and 79.53 %) &(78.56 % and 66.10 %) inhibition in carrageenan induced paw edema in animal mode which were relatively higher than ibuprofen (standard used). The obtained results were validated by molecular docking and MD simulations studies. The molecular docking study of 5a and 5h revealed that docking scores were also obtained in very close proximity of -8.35, -9.67 and -8.48 for ibuprofen, 5g and 5h respectively. In MD simulations studies, the calculated lower RMSD (root mean square deviation) values 2.8 Å and 5.6 Å for 5g and 5h, respectively indicated the stability of ligand-protein complexes. Similarly lower RSMF (root mean square fluctuation) values indicated the molecules remained in the active pocket throughout the entire MD simulations run. Further, in-silico ADME calculations were determined and all compounds obey the Lipinski's rule of five and it was predicted that these molecules would be orally active without any serious toxic effect.

10.
Inflammopharmacology ; 32(2): 1621-1631, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38319475

RESUMEN

Aframomum melegueta K Schum (A. melegueta), an herbaceous plant renowned for its medicinal seeds, was investigated for its potential immunomodulatory effects in vitro and in vivo using ethanolic and methanolic extracts. The immunomodulatory effect was evaluated by measuring antibody titers using the agglutination technique, while anti-inflammatory activity was assessed in a carrageenan-induced mouse paw edema model. In vitro immunomodulatory activity was measured by lysozyme release from neutrophils. Additionally, white blood cell counts were analyzed post-extracts treatment. The MTT assay was employed to determine cytotoxicity, and the biochemical parameters of liver toxicity were evaluated. Remarkably, both extracts exhibited a dose-dependent reduction in paw edema (p < 0.001), with the most significant reduction observed at 1 g/kg (78.13 and 74.27% for ethanolic and methanolic extracts, respectively). Neutrophil degranulation was significantly inhibited in a dose-dependent manner (p < 0.003), reaching maximal inhibition at 100 µg/mg (60.78 and 39.7% for ethanolic and methanolic extracts, respectively). In comparison to the control group, both antibody production and white blood cell counts were reduced. Neither of the extracts showcased any cytotoxicity or toxicity. These findings suggest that A. melegueta extracts exhibit immunosuppressive and anti-inflammatory activities due to the presence of various biomolecules.


Asunto(s)
Extractos Vegetales , Zingiberaceae , Ratones , Animales , Extractos Vegetales/química , Semillas/química , Antiinflamatorios/farmacología , Metanol , Etanol , Zingiberaceae/química , Edema
11.
BMC Complement Med Ther ; 24(1): 57, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273280

RESUMEN

BACKGROUND: With the emergence of many side effects from synthetic drugs, there is an urgent need to find a natural alternative to these products. Therefore, our primary aim was to evaluate the anti-inflammatory activity of Tamarix aphylla (TA) and investigate the potential mechanism underlying this action. METHODS: Initially, to ensure the safety of the extract and for dose selection, we performed an acute oral toxicity Assay through the oral administration of graded doses up to 4 g\kg in Wistar rats. then, we used the carrageenan-induced edema model to elucidate the anti-inflammatory activity. Using specific ELISA kits, we measured the levels of TNF-α, IL-1ß, COX-2 and NO inside the inflamed paw tissue. Finally, for the in-vitro anti-inflammatory experiment, we used the erythrocyte membrane stability test. RESULTS: Based on the acute oral toxicity assay, T. aphylla was considered generally safe and three different doses of 100, 200, and 400 mg/kg were chosen for further experiments. Additionally, TA expressed a significant (P < 0.05) anti-inflammatory activity, showing the maximum inhibition percentage at the fifth hour of measurement at 53.47% and 70.06%, at doses of 200 and 400 mg/kg respectively, compared to 63.81% for the standard drug. Similarly, we found that TA effectively reduced the levels of TNF-α and IL-1ß at all tested doses (100-200-400 mg/kg) to a greater extent than the standard drug. Moreover, at 400 mg/kg, TA was able to significantly lower the levels of COX-2 and NO inside the inflamed tissue to a level comparable (P < 0.05) with that measured inside the paw tissue of normal rats. Finally, Tamarix aphylla at 100, 200 and 400 mg/kg doses significantly (P < 0.05) inhibited the heat-induced hemolysis of RBCs membrane by 67.78, 74.82 and 82.08%, respectively, compared to 83.89% produced by Aspirin. CONCLUSION: T. aphylla produced a significant (P < 0.05) anti-inflammatory activity compared to the standard drugs either through the reduction of pro-inflammatory mediators or the protection of the lysosomal membrane.


Asunto(s)
Tamaricaceae , Factor de Necrosis Tumoral alfa , Ratas , Animales , Ratas Wistar , Ciclooxigenasa 2 , Extractos Vegetales/uso terapéutico , Antiinflamatorios/uso terapéutico
12.
J Inflamm (Lond) ; 21(1): 2, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267952

RESUMEN

4R is a tobacco cembranoid that binds to and modulates cholinergic receptors and exhibits neuroprotective and anti-inflammatory activity. Given the established function of the cholinergic system in pain and inflammation, we propose that 4R is also analgesic. Here, we tested the hypothesis that systemic 4R treatment decreases pain-related behaviors and peripheral inflammation via modulation of the alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in a mouse model of inflammatory pain. We elicited inflammation by injecting Complete Freund's Adjuvant (CFA) into the hind paw of male and female mice. We then assessed inflammation-induced hypersensitivity to cold, heat, and tactile stimulation using the Acetone, Hargreaves, and von Frey tests, respectively, before and at different time points (2.5 h - 8d) after a single systemic 4R (or vehicle) administration. We evaluated the contribution of α7 nAChRs 4R-mediated analgesia by pre-treating mice with a selective antagonist of α7 nAChRs followed by 4R (or vehicle) administration prior to behavioral tests. We assessed CFA-induced paw edema and inflammation by measuring paw thickness and quantifying immune cell infiltration in the injected hind paw using hematoxylin and eosin staining. Lastly, we performed immunohistochemical and flow cytometric analyses of paw skin in α7 nAChR-cre::Ai9 mice to measure the expression of α7 nAChRs on immune subsets. Our experiments show that systemic administration of 4R decreases inflammation-induced peripheral hypersensitivity in male and female mice and inflammation-induced paw edema in male but not female mice. Notably, 4R-mediated analgesia and anti-inflammatory effects lasted up to 8d after a single systemic administration on day 1. Pretreatment with an α7 nAChR-selective antagonist prevented 4R-mediated analgesia and anti-inflammatory effects, demonstrating that 4R effects are via modulation of α7 nAChRs. We further show that a subset of immune cells in the hind paw expresses α7 nAChRs. However, the number of α7 nAChR-expressing immune cells is unaltered by CFA or 4R treatment, suggesting that 4R effects are independent of α7 nAChR-expressing immune cells. Together, our findings identify a novel function of the 4R tobacco cembranoid as an analgesic agent in both male and female mice that reduces peripheral inflammation in a sex-dependent manner, further supporting the pharmacological targeting of the cholinergic system for pain treatment.

13.
BMC Complement Med Ther ; 23(1): 437, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049800

RESUMEN

CONTEXT: Inflammation has been identified as a key factor contributing to the development of numerous diseases. Several anti-inflammatory drugs have been developed to treat inflammation-related diseases. However, some of such drugs are associated with varying degrees of side effects. Therefore, it is imperative to develop new anti-inflammatory drugs with reducing side effects for the treatment of inflammation-related diseases. Natural anti-inflammatory drugs have emerged as an important area of research in recent years. The study was to determine the anti-inflammatory mechanism of Paridis rhizoma extract (PRE) in rat models of acute inflammation induced by carrageenan and RAW264.7 cells models induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: PRE was investigated using the carrageenan-induced paw oedema model on rats in vivo. Histopathology examined the extent of inflammatory infiltration and tissue damage. The effect of PRE on the levels of specific cytokines was determined using enzyme-linked immunosorbent assay (ELISA). The Cell Counting Kit (CCK)-8 assay evaluated the cytotoxic effects of PRE on Raw264.7 cells. The mRNA expression levels of cytokines were quantified using quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Western blot measured TNF-α, IL6, TLR4, p-P65, p-IKB, HO1, SOD1 and SOD2. Fluorescence measured the cellular levels of reactive oxygen species (ROS). RESULTS: PRE treatment reduced interstitial edema and structural damage in a dose-dependent manner in vivo. PRE inhibited inflammatory responses in vivo and in vitro, as evidenced by the decreased expression of inflammatory factors, production of ROS, and increased expression of SOD1, SOD2, and HO1. Moreover, PRE inhibited the activity of the nuclear factor kappa B (NF-kB) pathway. CONCLUSION: The anti-inflammatory activity and potential mechanism of PRE were demonstrated according to the results. PRE reduced LPS-induced inflammation in RAW264.7 cells by inhibiting the NF-KB signaling pathway and ROS production in vitro. PRE alleviated interstitial edema and structural damage in the carrageenan-induced paw edema model on rats in vivo. This study provided an idea for future development of PR-based anti-inflammatory drugs.


Asunto(s)
FN-kappa B , Extractos Vegetales , Ratas , Animales , Carragenina/efectos adversos , Extractos Vegetales/uso terapéutico , FN-kappa B/metabolismo , Etanol/química , Especies Reactivas de Oxígeno , Lipopolisacáridos/efectos adversos , Superóxido Dismutasa-1/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Edema/tratamiento farmacológico , Edema/inducido químicamente
14.
J Exp Pharmacol ; 15: 437-447, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026230

RESUMEN

Background: Even though it is a protective reaction, inflammation continues to be one of the most challenging medical disorders. The current conventional anti-inflammatory drugs have many undesirable health effects and are in need of newer drugs. The purpose of this study was to evaluate the anti-inflammatory effects of an aqueous methanol crude extract of Premna schimperi leaves. Methods: Premna schimperi leaf was extracted with 80% methanol and concentrated; the concentrated extract was used to evaluate the acute toxicity and anti-inflammatory effects. For the acute toxicity study, a single dose of Premna schimperi extract at a dose of 2000 mg/kg was administered and observed for 14 days. Acute, sub-acute, and chronic anti-inflammatory models were employed to evaluate the anti-inflammatory effect of the extract compared to the standard drug. Data were analyzed with SPSS V. 27, and the significance was established with a one-way ANOVA followed by a post hoc Tukey's test. Results: Acute oral toxicity testing at a dose of 2000 mg/kg did not show any sign of toxicity. According to the phytochemical study, the plants contained flavonoids, terpenoids, tannins, cardiac glycosides, steroids, phenolics, and anthraquinones. The extract doses of 200 mg/kg, 400 mg/kg, and 800 mg/kg of extracts effectively (p<0.001) reduced paw edema in the acute and sub-acute models of inflammation. When compared to the negative control group, all tested doses in the chronic model significantly (p<0.05) decreased the production of exudates and the amount of granuloma tissue. Conclusion: Premna schimperi displayed significant anti-inflammatory activity. The tested doses inhibit the formation of edema, granulomas, and exudates.

15.
Pharmaceutics ; 15(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37896270

RESUMEN

This research primarily focuses on the development of innovative topical nanoemulsions for etodolac, aimed at surmounting its inherent limitations. The preparation of etodolac nanoemulsions is accomplished through a combination of high shear homogenization and ultrasonication methods. The optimization of the formulation components is systematically conducted using the design of experiments methodology. The droplet size (DS), polydispersity index (PDI), and zeta potential (ZP) of the optimized formulation were assessed using the differential light scattering (DLS) technique. Surface morphology examinations were conducted using electron microscopy, while interactions between excipients and the drug were analyzed through FTIR analysis. Additionally, in vitro release and ex vivo permeability studies were carried out. Furthermore, anti-inflammatory activity was evaluated in the context of a carrageenan-induced paw edema model in rats. The DS, PDI, and ZP of the optimal formulation were 163.5 nm, 0.141, and -33.1 mV, respectively. The in vitro release profile was assessed as a sustained release by following a non-Fickian drug transport. The flux of etodolac nanoemulsions and coarse dispersions were 165.7 ± 11.7 µg/cm2 h and 59.7 ± 15.2 µg/cm2 h, respectively. Enhanced edema inhibition was observed at 13.4%, 36.5%, and 50.65% for the 6th, 8th, and 24th hours, respectively. Taken together, these results confirmed that nanoemulsions are promising carriers for the topical delivery of etodolac.

16.
Biomedicines ; 11(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37760952

RESUMEN

Fucoidans are sulfated polysaccharides detected mainly in the cell walls of brown seaweeds. Here, we examined the effects of single doses of fucoidan derived from Ericaria crinita (formerly Cystoseira crinita) on carrageenan-induced paw inflammation in rats. The serum levels of TNF-α, IL-1ß, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment were also evaluated. Subchronic treatment with fucoidan from E. crinita attenuated the inflammation during the late phase of the degraded carrageenan-induced paw edema (3rd to 5th hour after carrageenan injection) with peak activity at the 3rd hour after the application. Both doses of fucoidan from E. crinita (25 and 50 mg/kg bw) significantly decreased the levels of all tested pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6) in the serum of rats with a model of system inflammation but had no effect on the anti-inflammatory cytokine IL-10. The results showed that the repeated application of fucoidan has a more prominent effect on the levels of some pro-inflammatory cytokines in serum in comparison to a single dose of the sulfated polysaccharide. This reveals the potential of E. crinita fucoidan as an anti-inflammatory agent. Furthermore, E. crinita fucoidan exhibited in vitro antioxidant capacity, determined by 2,2-diphenyl-1-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays as follows: IC50 = 412 µg/mL and 118.72 µM Trolox equivalent/g, respectively.

17.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569490

RESUMEN

Almond skins are known for their antioxidative and anti-inflammatory properties, which are mainly due to the presence of polyphenols. The aim of the present study was to evaluate the antioxidant and anti-inflammatory effects of almond skin extract (ASE) obtained from the Sicilian cultivar "Fascionello" and to evaluate the possible mechanisms of action using an in vitro model of human monocytic U937 cells as well as an in vivo model of carrageenan (CAR)-induced paw edema. The in vitro studies demonstrated that pretreatment with ASE inhibited the formation of ROS and apoptosis. The in vivo studies showed that ASE restored the CAR-induced tissue changes; restored the activity of endogenous antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione; and decreased neutrophil infiltration, lipid peroxidation, and the release of proinflammatory mediators. The anti-inflammatory and antioxidant effects of ASE could be associated with the inhibition of the pro-inflammatory nuclear NF-κB and the activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) antioxidant pathways. In conclusion, almond skin could reduce the levels of inflammation and oxidative stress and could be beneficial in the treatment of several disorders.


Asunto(s)
Antioxidantes , Prunus dulcis , Humanos , Antioxidantes/metabolismo , Carragenina/efectos adversos , Extractos Vegetales/uso terapéutico , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo , Estrés Oxidativo , FN-kappa B/metabolismo , Edema/tratamiento farmacológico
18.
Inflamm Res ; 72(8): 1649-1664, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37498393

RESUMEN

BACKGROUND, OBJECTIVES AND DESIGN: Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS: Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS: In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION: The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Colitis , Humanos , Ratones , Femenino , Animales , Ratones Transgénicos , Adyuvante de Freund , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/uso terapéutico , Dextranos/efectos adversos , Dextranos/metabolismo , Ratones Endogámicos C57BL , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Antiinflamatorios/farmacología , Ratones Noqueados , Edema/inducido químicamente , Edema/genética , Edema/metabolismo , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Modelos Animales de Enfermedad
19.
Artículo en Inglés | MEDLINE | ID: mdl-37518998

RESUMEN

AIM: The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale. METHOD: In the current research, silver nanoparticles were synthesized using Trillium govanianum aqueous extract. Characterizations were done using UV-Visible spectrophotometer, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. In vivo biological activities such as acute dermal toxicity, wound healing, and anti-inflammatory were done on Balb C mice. Absorbance at 295 nm corresponds to the out-of-plane quadrupole Plasmon-resonance while at 350 nm corresponds to in-plane dipole resonance. SEM images showed the morphology of TGAgNPs is not exactly spherical while XRD analysis shows that highly crystalline TGAgNPs with an average size of 27.94 nm. The FTIR spectrum represents sharp peaks of aldehyde, amide I, aromatic rings, and polysaccharides. The microscopic assessment did not find any epidermal and dermal layer abnormalities in Blab C mice when exposed to TGAgNPs during acute dermal toxicity. RESULT & DISCUSSION: Results revealed that 1000 mg/kg is not a lethal dose. In the wound healing activity, no mortality and no abnormal signs were observed when petroleum jelly, Nitrofuranose, TGaqu, and TGAgNPs-based ointments were applied. Enhanced epithelization was recorded in TGaqu and TGAgNPs treated mice (p≤0.001). The wound contraction percentage was higher in nitrofuranose-treated mice (74%) followed by TGAgNPs (71%), and TGaqu (69%) compared to vehicle-treated and open-wounded mice. The paw edema model proved the potential use of TGAgNPs and TGaqu as anti-inflammatory agents. CONCLUSION: Hence, the results proved that both TGaqu and TGAgNPs are not toxic and possessed strong anti-inflammatory and wound-healing effects due to the presence of phytochemical constituents and could be used in various drug production as a therapeutic agent.

20.
Molecules ; 28(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513248

RESUMEN

Diet can modulate the different stages of inflammation due to the presence of bioactive compounds such as polyphenols. Apples are a great source of phenolic compounds that show anti-inflammatory and antioxidant properties, and these might be used as a dietary supplement and/or functional element in the treatment of chronic inflammatory illnesses. The aim of our study was to evaluate the anti-inflammatory and antioxidant actions of thinned apple polyphenol (TAP) extracts in a model of paw edema. The experimental model was induced in rats via subplantar injections of 1% λ-Carrageenan (CAR) in the right hind leg, and TAP extract was administered via oral gavage 30 min before and 1 h after the CAR injection at doses of 5 mg/kg and 10 mg/kg, respectively. The inflammatory response is usually quantified by the increase in the size of the paw (edema), which is maximal about 5 h after the injection of CAR. CAR-induced inflammation generates the release of pro-inflammatory mediators and reactive oxygen species (ROS). Furthermore, the inflammatory state induces the pain that involves the peripheral nociceptors, but above all it acts centrally at the level of the spinal cord. Our results showed that the TAP extracts reduced paw histological changes, neutrophil infiltration, mast cell degranulation, and oxidative stress. Additionally, the oral administration of TAP extracts decreased thermal and mechanical hyperalgesia, along with a reduction in spinal microglia and the markers of nociception. In conclusion, we demonstrate that TAP extract is able to modulate inflammatory, oxidative, and painful processes, and is also useful in the treatment of the symptoms associated with paw edema.


Asunto(s)
Factor 2 Relacionado con NF-E2 , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/uso terapéutico , Polifenoles/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Carragenina/toxicidad , Inflamación/metabolismo , Extractos Vegetales/uso terapéutico , Dolor/tratamiento farmacológico , Transducción de Señal , Hiperalgesia/tratamiento farmacológico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA