Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Saudi Pharm J ; 30(8): 1170-1180, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36164573

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. The major challenge in managing HCC is the resistance to chemotherapy. Leptin hormone is associated with different oncogenic pathways implicated in drug resistance. Angiotensin II was found to decrease the production and secretion of leptin. Objective: This study investigated the potential role of an ACEI perindopril as a chemosensitizer agent to sorafenib. Method: HCC was induced in mice using a single dose of diethylnitrosamine DENA (200 mg/kg) followed by phenobarbital 0.05% in drinking water for 16 weeks. Mice were then treated with perindopril (1 mg/kg/day), Sorafenib (30 mg/kg/day), or both of them for another four weeks. Leptin, VEGF, MMP-9, Cyclin D1, EpCAM, and ß-catenin were measured using immunoassay while Wnt and ALDH1 were assayed using western blotting assay. Results: Perindopril whether alone or in combination with sorafenib decrease liver enzymes and preserve the liver architecture. Our study revealed that perindopril significantly increased the antineoplastic, antiangiogenic as well as anti-metastatic effects of sorafenib. This effect was correlated with the downregulation of the leptin / Wnt / ß-catenin pathway and overexpression of ALDH1 while downregulation of EpCAM. Conclusion: This study presents perindopril as a potential chemosensitizer agent that works through decreased expression of the leptin / Wnt / ß-catenin pathway.

3.
JACC Basic Transl Sci ; 7(5): 465-483, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35663630

RESUMEN

Heart failure (HF) is characterized by progressive fibrosis. Both fibroblasts and mesenchymal stem cells (MSCs) can differentiate into pro-fibrotic myofibroblasts. MSCs secrete and express platelet-derived growth factor (PDGF) and its receptors. We hypothesized that PDGF signaling in cardiac MSCs (cMSCs) promotes their myofibroblast differentiation and aggravates post-myocardial infarction left ventricular remodeling and fibrosis. We show that cMSCs from failing hearts post-myocardial infarction exhibit an altered phenotype. Inhibition of PDGF signaling in vitro inhibited cMSC-myofibroblast differentiation, whereas in vivo inhibition during established ischemic HF alleviated left ventricular remodeling and function, and decreased myocardial fibrosis, hypertrophy, and inflammation. Modulating cMSC PDGF receptor expression may thus represent a novel approach to limit pathologic cardiac fibrosis in HF.

4.
Matrix Biol Plus ; 13: 100101, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198964

RESUMEN

Increased remodeling of the extracellular matrix in malignant tumors has been shown to correlate with tumor aggressiveness and a poor prognosis. This remodeling involves degradation of the original extracellular matrix (ECM) and deposition of a new tumor-supporting ECM. The main constituent of the ECM is collagen and collagen turnover mainly occurs in a sequential manner, where initial proteolytic cleavage of the insoluble fibers is followed by cellular internalization of large well-defined collagen fragments for lysosomal degradation. However, despite extensive research in the field, a lack of consensus on which cell types within the tumor microenvironment express the involved proteases still exists. Furthermore, the relative contribution of different cell types to collagen internalization is not well-established. Here, we developed quantitative ex vivo collagen degradation assays and show that the proteases responsible for the initial collagen cleavage in two murine syngeneic tumor models are matrix metalloproteinases produced by cancer-associated fibroblasts and that collagen degradation fragments are endocytosed primarily by tumor-associated macrophages and cancer-associated fibroblasts from the tumor stroma. Using tumors from mannose receptor-deficient mice, we show that this receptor is essential for collagen-internalization by tumor-associated macrophages. Together, these findings identify the cell types responsible for the entire collagen degradation pathway, from initial cleavage to endocytosis of fragments for intracellular degradation.

5.
Acta Pharm Sin B ; 11(9): 2726-2737, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589393

RESUMEN

Integrins are transmembrane receptors that have been implicated in the biology of various human physiological and pathological processes. These molecules facilitate cell-extracellular matrix and cell-cell interactions, and they have been implicated in fibrosis, inflammation, thrombosis, and tumor metastasis. The role of integrins in tumor progression makes them promising targets for cancer treatment, and certain integrin antagonists, such as antibodies and synthetic peptides, have been effectively utilized in the clinic for cancer therapy. Here, we discuss the evidence and knowledge on the contribution of integrins to cancer biology. Furthermore, we summarize the clinical attempts targeting this family in anti-cancer therapy development.

6.
JACC Basic Transl Sci ; 5(9): 931-945, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015415

RESUMEN

Fibrotic remodeling of the heart in response to injury contributes to heart failure, yet therapies to treat fibrosis remain elusive. Yes-associated protein (YAP) is activated in cardiac fibroblasts by myocardial infarction, and genetic inhibition of fibroblast YAP attenuates myocardial infarction-induced cardiac dysfunction and fibrosis. YAP promotes myofibroblast differentiation and associated extracellular matrix gene expression through engagement of TEA domain transcription factor 1 and subsequent de novo expression of myocardin-related transcription factor A. Thus, fibroblast YAP is a promising therapeutic target to prevent fibrotic remodeling and heart failure.

7.
J Clin Exp Hepatol ; 9(5): 588-596, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695249

RESUMEN

Hepatocellular carcinoma (HCC) incidence and mortality have shown an unfavorable upward trend over the last two decades, especially in developed countries. More than one-sixth of the patients have advanced HCC at presentation. Systemic therapy remains the treatment of choice for these patients. Current options include tyrosine kinase inhibitors (TKIs) and immunotherapy. This review aims to summarize current knowledge on the rapidly evolving field of systemic therapy with several newly approved medications over the last year. Sorafenib remains one of the first-line treatment choices for patients with hepatitis C etiology, intermediate to advanced HCC stage, and Child-Pugh class A. Lenvatinib is the other first-line drug that might have better efficacy in non-hepatitis C etiologies and advanced HCC without portal vein thrombosis. Patients intolerant to first-line therapy might benefit from immunotherapy with nivolumab or pembrolizumab. In those who fail first-line therapy, the choice should be based on the side effects related to previous treatment, performance status, and underlying liver dysfunction. Ongoing studies are investigating immunotherapy alone or immunotherapy in combination with TKIs as first-line therapy. Several second-line options for combination systemic therapy and systemic plus local-regional treatment are under investigation. Future studies should focus on identifying reliable biomarkers to predict response to therapy and to better stratify patients at high risk for progression. Multidisciplinary approach is pivotal for successful outcomes in patients with advanced HCC.

8.
J Clin Exp Hepatol ; 9(2): 221-232, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024205

RESUMEN

Hepatocellular carcinoma (HCC) is swiftly increasing in prevalence globally with a high mortality rate. The progression of HCC in patients is induced with advanced fibrosis, mainly cirrhosis, and hepatitis. The absence of proper preventive or curative treatment methods encouraged extensive research against HCC to develop new therapeutic strategies. The Food and Drug Administration-approved Nexavar (sorafenib) is used in the treatment of patients with unresectable HCC. In 2017, Stivarga (regorafenib) and Opdivo (nivolumab) got approved for patients with HCC after being treated with sorafenib, and in 2018, Lenvima (lenvatinib) got approved for patients with unresectable HCC. But, owing to the rapid drug resistance development and toxicities, these treatment options are not completely satisfactory. Therefore, there is an urgent need for new systemic combination therapies that target different signaling mechanisms, thereby decreasing the prospect of cancer cells developing resistance to treatment. In this review, HCC etiology and new therapeutic strategies that include currently approved drugs and other potential candidates of HCC such as Milciclib, palbociclib, galunisertib, ipafricept, and ramucirumab are evaluated.

9.
JAAD Case Rep ; 4(1): 55-57, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29387749
10.
JACC Basic Transl Sci ; 3(6): 744-762, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30623134

RESUMEN

Concentric lung vascular wall thickening due to enhanced proliferation of pulmonary arterial smooth muscle cells is an important pathological cause for the elevated pulmonary vascular resistance reported in patients with pulmonary arterial hypertension. We identified a differential role of mammalian target of rapamycin (mTOR) complex 1 and complex 2, two functionally distinct mTOR complexes, in the development of pulmonary hypertension (PH). Inhibition of mTOR complex 1 attenuated the development of PH; however, inhibition of mTOR complex 2 caused spontaneous PH, potentially due to up-regulation of platelet-derived growth factor receptors in pulmonary arterial smooth muscle cells, and compromised the therapeutic effect of the mTOR inhibitors on PH. In addition, we describe a promising therapeutic strategy using combination treatment with the mTOR inhibitors and the platelet-derived growth factor receptor inhibitors on PH and right ventricular hypertrophy. The data from this study provide an important mechanism-based perspective for developing novel therapies for patients with pulmonary arterial hypertension and right heart failure.

12.
Cancer Biol Ther ; 16(2): 233-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25482928

RESUMEN

Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa B/antagonistas & inhibidores , Compuestos de Bifenilo/farmacología , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Glioma/metabolismo , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Nitrofenoles/farmacología , Sulfonamidas/farmacología , Triterpenos/farmacología , Astrocitos/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Genotipo , Glioma/genética , Glioma/patología , Humanos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Survivin , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Cell Adh Migr ; 8(4): 366-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482636

RESUMEN

Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRß and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Efrina-B2/metabolismo , Receptor EphB4/metabolismo , Transducción de Señal , Animales , Endocitosis , Células Endoteliales/fisiología , Fibrosis , Humanos , Riñón/patología , Ratones , Morfogénesis , Neovascularización Patológica , Neovascularización Fisiológica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
14.
Cancer Biol Ther ; 15(11): 1552-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482941

RESUMEN

BNC105 is a tubulin targeting compound that selectively disrupts vasculature within solid tumors. The severe tumor hypoxia and necrosis that ensues translates to short term tumor growth inhibition. We sought to identify the molecular and cellular events activated following BNC105 treatment that drives tumor recovery. We investigated tumor adaptation to BNC105-induced hypoxia in animal models of breast and renal cancer. HIF-1α and GLUT-1 were found to be strongly upregulated by BNC105 as was the VEGF signaling axis. Phosphorylation of mTOR, 4E-BP-1 and elF2α were upregulated, consistent with increased protein synthesis and increased expression of VEGF-A. We sought to investigate the potential therapeutic utility of combining BNC105 with agents targeting VEGF and mTOR signaling. Bevacizumab and pazopanib target the VEGF axis and have been approved for first line use in renal cancer. Everolimus targets mTOR and is currently approved in second line therapy of renal and particular breast cancers. We combined these agents with BNC105 to explore the effects on tumor vasculature, tumor growth inhibition and animal survival. Bevacizumab hindered tumor vascular recovery following BNC105 treatment leading to greater tumor growth inhibition in a breast cancer model. Consistent with this, addition of BNC105 to pazopanib treatment resulted in a significant increase in survival in an orthotopic renal cancer model. Combination treatment of BNC105 with everolimus also increased tumor growth inhibition. BNC105 is currently being evaluated in a randomized phase II clinical trial in combination with everolimus in renal cancer.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Anisoles/farmacología , Antineoplásicos/farmacología , Benzofuranos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias Renales/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Anisoles/administración & dosificación , Antineoplásicos/administración & dosificación , Benzofuranos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/mortalidad , Neoplasias Renales/patología , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Int J Mol Sci ; 9(6): 1034-1049, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19325845

RESUMEN

Tea is one of the most popular beverages consumed worldwide. Epidemiologic studies show an inverse relationship between consumption of tea, especially green tea, and development of cancers. Numerous in vivo and in vitro studies indicate strong chemopreventive effects for green tea and its constituents against cancers of various organs. (-)-Epigallocatechin-3-gallate (EGCG), the major catechin in green tea, appears to be the most biologically active constituent in tea with respect to inhibiting cell proliferation and inducing apoptosis in cancer cells. Recent studies indicate that the receptor tyrosine kinases (RTKs) are one of the critical targets of EGCG to inhibit cancer cell growth. EGCG inhibits the activation of EGFR (erbB1), HER2 (neu/erbB2) and also HER3 (neu/erbB3), which belong to subclass I of the RTK superfamily, in various types of human cancer cells. The activation of IGF-1 and VEGF receptors, the other members of RTK family, is also inhibited by EGCG. In addition, EGCG alters membrane lipid organization and thus inhibits the dimerization and activation of EGFR. Therefore, EGCG inhibits the Ras/MAPK and PI3K/Akt signaling pathways, which are RTK-related cell signaling pathways, as well as the activation of AP-1 and NF-kappaB, thereby modulating the expression of target genes which are associated with induction of apoptosis and cell cycle arrest in cancer cells. These findings are significant because abnormalities in the expression and function of RTKs and their downstream effectors play a critical role in the development of several types of human malignancies. In this paper we review evidence indicating that EGCG exerts anticancer effects, at least in part, through inhibition of activation of the specific RTKs and conclude that targeting RTKs and related signaling pathway by tea catechins might be a promising strategy for the prevention of human cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA