Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Cureus ; 16(8): e66218, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39233928

RESUMEN

Brachytherapy is a critical component of locally advanced cervical cancer treatment, and patients ineligible for brachytherapy historically have poor outcomes. Delivery of boost with stereotactic body radiation therapy (SBRT) has been studied, though toxicity is a concern. Recent case reports have explored adaptive radiation boost, which can adjust plans for inter-fraction motion using magnetic resonance guidance. Herein, we report the first patient with locally advanced cervical cancer ineligible for brachytherapy who was treated with a cone-beam computed tomography (CBCT)-guided adaptive boost following completion of chemoradiation. A 71-year-old female with locally advanced cervical cancer was treated with chemoradiation and was deemed ineligible for a brachytherapy boost due to tumor size, geometry, and a fistula with a tumor in the bladder. She was prescribed a boost to the primary tumor of 25 Gy in five fractions using CBCT-guided adaptive radiation following the completion of chemoradiation. A simulation was performed using a non-contrast CT fused with a mid-chemoradiation magnetic resonance imaging (MRI) scan to create an initial plan. For each treatment fraction, kilovoltage CBCTs were acquired, contours of organs at risk (OARs) were adjusted to reflect anatomy-of-the-day, and an adapted plan was generated. The initial and adapted plans were compared using dose-volume histogram objectives, and the adapted plan was used if it resolved OAR constraint violations or improved target coverage. The use of the initial treatment plan would have resulted in constraint violations for the rectum, sigmoid, and bladder in all fractions. The adapted plans achieved hard constraints in all fractions for all four critical OARs. The mean total treatment time across all five fractions was 58 minutes. This case demonstrates the feasibility of a CBCT-guided adaptive boost approach and the dosimetric benefits of plan adaptation in this setting. Though larger-scale and longer-term data are needed, CBCT-guided adaptive radiation may present a feasible alternative modality to deliver boost doses for brachytherapy-ineligible patients.

2.
Cureus ; 16(8): e66552, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39252725

RESUMEN

Cervical cancer is one of the most frequent malignant tumors in females. Concurrent chemoradiotherapy is one of the treatment options for cervical cancer. The treatment time of conventional radiotherapy is long. Moderately hypofractionated radiotherapy (MHRT) offers the advantage of shortening the overall treatment duration and enhancing the radiobiological effects on tumors. MHRT shortens the overall treatment duration while enhancing the radiobiological effects on tumors. Previous studies have reported that MHRT of cervical cancer has relatively high toxicity. Daily online adaptive radiation therapy (oART) showed improvements in dosimetry and a decrease in toxicity. To the best of our knowledge, this case was the first reported case of moderated hypofractionated oART used in a cervical cancer patient to date in a prospective clinical trial (NCT05994300). This case serves as a critical reminder that cervical cancer is a potential tumor that may be in MHRT with iterative cone beam computed tomography-guided oART. Further data are needed to confirm the toxicity and efficacy of this technique.

3.
J Gastrointest Oncol ; 15(4): 1893-1907, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39279945

RESUMEN

Background and Objective: Magnetic resonance guided radiotherapy (MRgRT) is an emerging technological innovation with more and more institutions gaining clinical experience in this new field of radiation oncology. The ability to better visualize both tumors and healthy tissues due to excellent soft tissue contrast combined with new possibilities regarding motion management and the capability of online adaptive radiotherapy might increase tumor control rates while potentially reducing the risk of radiation-induced toxicities. As conventional computed tomography (CT)-based image guidance methods are insufficient for adaptive workflows in abdominal tumors, MRgRT appears to be an optimal method for this tumor site. The aim of this narrative review is to outline the opportunities and challenges in magnetic resonance guided radiation therapy in gastrointestinal cancers. Methods: We searched for studies, reviews and conceptual articles, including the general technique of MRgRT and the specific utilization in gastrointestinal cancers, focusing on pancreatic cancer, liver metastases and primary liver cancer, rectal cancer and esophageal cancer. Key Content and Findings: This review is highlighting the innovative approach of MRgRT in gastrointestinal cancer and gives an overview of the currently available literature with regard to clinical experiences and theoretical background. Conclusions: MRgRT is a promising new tool in radiation oncology, which can play off several of its beneficial features in the specific field of gastrointestinal cancers. However, clinical data is still scarce. Nevertheless, the available literature points out large potential for improvements regarding dose coverage and escalation as well as the reduction of dose exposure to critical organs at risk (OAR). Further prospective studies are needed to demonstrate the role of this innovative technology in gastrointestinal cancer management, in particular trials that randomly compare MRgRT with conventional CT-based image-guided radiotherapy (IGRT) would be of high value.

4.
Cureus ; 16(8): e66993, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280408

RESUMEN

Muscle invasive bladder cancer (MIBC) is an aggressive disease with a high risk of metastasis. Bladder preservation with trimodality therapy (TMT) is an option for well-selected patients or poor cystectomy candidates. Cone beam computed tomography (CBCT)-guided online adaptive radiotherapy (oART) shows promise in improving the dose to treatment targets while better sparing organs at risk (OARs). The following series presents two cases in which the capabilities of a CBCT-guided oART platform were leveraged to meet clinical challenges. The first case describes a patient with synchronous MIBC and high-risk prostate cancer with challenging target-OAR interfaces. The second recounts the case of a patient with a history of low dose rate (LDR) brachytherapy to the prostate who was later diagnosed with MIBC and successfully treated with CBCT-guided oART with reduced high-dose volume bladder targeting. To date, both patients report minimal side effects and are without disease recurrence. These cases illustrate how CBCT-guided online adaptive systems may efficiently aid radiation oncologists in treating patients with more complex clinical scenarios who desire bladder-sparing therapy.

5.
Cureus ; 16(8): e66877, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280455

RESUMEN

Management of oligometastatic non-small cell lung cancer (OM-NSCLC) has changed considerably in recent years, as these patients were found to have better survival with systemic therapy followed by consolidative radiation. Stereotactic body radiotherapy (SBRT), characterized by high doses of radiation delivered in a limited number of fractions, has been shown to have improved local control compared to conventionally fractionated radiation in early-stage lung cancer, but its use in large tumors, ultra-central tumors, or mediastinal nodal regions is limited due to concerns of toxicity to nearby serial mediastinal structures. Recent improvements in image guidance and fast replanning allow adaptive radiotherapy to be used to personalize treatment to the patient's daily anatomy and ensure accurate dose delivery to the tumor while minimizing dose and toxicity to normal. Adaptive SBRT can expand its use into ultra-central tumors that otherwise may not be amenable to SBRT or enable alternative fractionation schedules such as personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) with one-month intervals between fractions. In this case, we report a patient initially presenting with bulky OM-NSCLC of the left lung and mediastinum with an isolated left femur metastasis who was referred for consolidative radiotherapy after systemic therapy. We demonstrate how CT-guided online adaptive radiotherapy to the lung and mediastinum can be used despite the long time interval between treatments. In addition, adaptive plans lead to a substantial decrease in the heart dose, with moderate decreases in other organs compared to non-adaptive plans. This case demonstrates the feasibility of using adaptive radiotherapy for PULSAR of ultra-central OM-NSCLC.

6.
Cureus ; 16(8): e66943, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280544

RESUMEN

This study explores the dosimetric benefits of cone-beam computed tomography (CBCT)-based online adaptive radiation therapy (oART) for a non-small-cell lung cancer (NSCLC) patient exhibiting significant tumor shrinkage during ChemoRT. The patient was prescribed 60 Gray (Gy) in 30 fractions and was initially treated with conventional RT. After the delivery of the first four treatment fractions, the patient's treatment course was converted to oART due to tumor shrinkage seen on CBCT. Current oART dose calculations use a synthetic CT (sCT) image derived from deformable image registration (DIR) of the planning CT to the daily CBCT, and, as the tumor regressed, the discrepancy between the CBCT and the sCT increased, leading to a re-simulation after the delivery of the ninth fraction. In this case report, we first investigated dosimetric differences leveraged by converting this patient from conventional RT to oART. With oART using sCT, the patient's target coverage remained consistent with the reference plan while simultaneously changing lung V20 by 7.8 ± 1.4% and heart mean by 3.4 ± 1.5 Gy. Then, using this new simulation CT and comparing it with iterative CBCT (iCBCT) images acquired with the new HyperSight™ (HS) (Varian Medical Systems, Inc., Palo Alto, CA, USA) imaging system on the Ethos, we investigated the impact of direct dose calculation on HS-iCBCT as compared to sCT. The HS-iCBCT generated a dose distribution similar to the CT reference, achieving a 96.01% gamma passing rate using Task Group-218 (TG-218) criteria. Results indicate that HS-iCBCT has the potential to better reflect daily anatomical changes, resulting in improved dosimetric accuracy. This study highlights the advantages of oART in the presence of tumor response to therapy and underscores HS-iCBCT's potential to provide CT-level dose calculation accuracy in oART for NSCLC patients.

7.
Phys Med Biol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39293489

RESUMEN

OBJECTIVE: This study presents the first clinical implementation of an efficient online daily adaptive proton therapy workflow (DAPT). Approach: The DAPT workflow includes a pre-treatment phase, where a template and a fallback plan are optimized on the planning CT. In the online phase, the adapted plan is re-optimized on daily images from an in-room CT. Daily structures are rigidly propagated from the planning CT. Automated quality assurance (QA) involves geometric, sanity checks and an independent dose calculation from the machine files. Differences from the template plan are analyzed field-by-field, and clinical plan is assessed by reviewing the achieved clinical goals using a traffic light protocol. If the daily adapted plan fails any QA or clinical goals, the fallback plan is used. In the offline phase the delivered dose is recalculated from log-files onto the daily CT, and a gamma analysis is performed (3%/3mm). The DAPT workflow has been applied to selected adult patients treated in rigid anatomy for the last serie of the treatment between October 2023 and April 2024. Main Results: DAPT treatment sessions averaged around 23 minutes [range: 15-30 min] and did not exceed the typical 30-minute time slot. Treatment adaptation, including QA and clinical plan assessment, averaged just under 7 minutes [range: 3:30-16 min] per fraction. All plans passed the online QAs steps. In the offline phase a good agreement with the log-files reconstructed dose was achieved (minimum gamma pass rate of 97.5 %). The online adapted plan was delivered for > 85% of the fractions. In 92% of total fractions, adapted plans exhibited improved individual dose metrics to the targets and/or organs at risk. Significance: This study demonstrates the successful implementation of an online daily DAPT workflow. Notably, the duration of a DAPT session did not exceed the time slot typically allocated for non-DAPT treatment. As far as we are aware, this is a first clinical implementation of daily online adaptive proton therapy. .

8.
Strahlenther Onkol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138806

RESUMEN

Radiation therapy (RT) is a highly digitized field relying heavily on computational methods and, as such, has a high affinity for the automation potential afforded by modern artificial intelligence (AI). This is particularly relevant where imaging is concerned and is especially so during image-guided RT (IGRT). With the advent of online adaptive RT (ART) workflows at magnetic resonance (MR) linear accelerators (linacs) and at cone-beam computed tomography (CBCT) linacs, the need for automation is further increased. AI as applied to modern IGRT is thus one area of RT where we can expect important developments in the near future. In this review article, after outlining modern IGRT and online ART workflows, we cover the role of AI in CBCT and MRI correction for dose calculation, auto-segmentation on IGRT imaging, motion management, and response assessment based on in-room imaging.

9.
Radiol Phys Technol ; 17(3): 581-595, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39028438

RESUMEN

In this study, we aimed to conduct a survey on the current clinical practice of, staffing for, commissioning of, and staff training for online adaptive radiotherapy (oART) in the institutions that installed commercial oART systems in Japan, and to share the information with institutions that will implement oART systems in future. A web-based questionnaire, containing 107 questions, was distributed to nine institutions in Japan. Data were collected from November to December 2023. Three institutions each with the MRIdian (ViewRay, Oakwood Village, OH, USA), Unity (Elekta AB, Stockholm, Sweden), and Ethos (Varian Medical Systems, Palo Alto, CA, USA) systems completed the questionnaire. One institution (MRIdian) had not performed oART by the response deadline. Each institution had installed only one oART system. Hypofractionation, and moderate hypofractionation or conventional fractionation were employed in the MRIdian/Unity and Ethos systems, respectively. The elapsed time for the oART process was faster with the Ethos than with the other systems. All institutions added additional staff for oART. Commissioning periods differed among the oART systems owing to provision of beam data from the vendors. Chambers used during commissioning measurements differed among the institutions. Institutional training was provided by all nine institutions. To the best of our knowledge, this was the first survey about oART performed using commercial systems in Japan. We believe that this study will provide useful information to institutions that installed, are installing, or are planning to install oART systems.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Japón , Encuestas y Cuestionarios , Humanos , Radioterapia Asistida por Computador , Radioterapia/instrumentación
10.
Phys Med Biol ; 69(16)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39008989

RESUMEN

Objective.To assess the viability of a physics-based, deterministic and adjoint-capable algorithm for performing treatment planning system independent dose calculations and for computing dosimetric differences caused by anatomical changes.Approach.A semi-numerical approach is employed to solve two partial differential equations for the proton phase-space density which determines the deposited dose. Lateral hetereogeneities are accounted for by an optimized (Gaussian) beam splitting scheme. Adjoint theory is applied to approximate the change in the deposited dose caused by a new underlying patient anatomy.Main results.The dose engine's accuracy was benchmarked through three-dimensional gamma index comparisons against Monte Carlo simulations done in TOPAS. For a lung test case, the worst passing rate with (1 mm, 1%, 10% dose cut-off) criteria is 94.55%. The effect of delivering treatment plans on repeat CTs was also tested. For non-robustly optimized plans the adjoint component was accurate to 5.7% while for a robustly optimized plan it was accurate to 4.8%.Significance.Yet anOther Dose Algorithm is capable of accurate dose computations in both single and multi spot irradiations when compared to TOPAS. Moreover, it is able to compute dosimetric differences due to anatomical changes with small to moderate errors thereby facilitating its use for patient-specific quality assurance in online adaptive proton therapy.


Asunto(s)
Algoritmos , Dosis de Radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Método de Montecarlo , Radiometría/métodos , Terapia de Protones/métodos , Neoplasias Pulmonares/radioterapia
11.
Phys Med Biol ; 69(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39025115

RESUMEN

Objective.To experimentally validate two online adaptive proton therapy (APT) workflows using Gafchromic EBT3 films and optically stimulated luminescent dosimeters (OSLDs) in an anthropomorphic head-and-neck phantom.Approach.A three-field proton plan was optimized on the planning CT of the head-and-neck phantom with 2.0 Gy(RBE) per fraction prescribed to the clinical target volume. Four fractions were simulated by varying the internal anatomy of the phantom. Three distinct methods were delivered: daily APT researched by the Paul Scherrer Institute (DAPTPSI), online adaptation researched by the Massachusetts General Hospital (OAMGH), and a non-adaptive (NA) workflow. All methods were implemented and measured at PSI. DAPTPSIperformed full online replanning based on analytical dose calculation, optimizing to the same objectives as the initial treatment plan. OAMGHperformed Monte-Carlo-based online plan adaptation by only changing the fluences of a subset of proton beamlets, mimicking the planned dose distribution. NA delivered the initial plan with a couch-shift correction based on in-room imaging. For all 12 deliveries, two films and two sets of OSLDs were placed at different locations in the phantom.Main results.Both adaptive methods showed improved dosimetric results compared to NA. For film measurements in the presence of anatomical variations, the [min-max] gamma pass rates (3%/3 mm) between measured and clinically approved doses were [91.5%-96.1%], [94.0%-95.8%], and [67.2%-93.1%] for DAPTPSI, OAMGH, and NA, respectively. The OSLDs confirmed the dose calculations in terms of absolute dosimetry. Between the two adaptive workflows, OAMGHshowed improved target coverage, while DAPTPSIshowed improved normal tissue sparing, particularly relevant for the brainstem.Significance.This is the first multi-institutional study to experimentally validate two different concepts with respect to online APT workflows. It highlights their respective dosimetric advantages, particularly in managing interfractional variations in patient anatomy that cannot be addressed by non-adaptive methods, such as internal anatomy changes.


Asunto(s)
Fantasmas de Imagen , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Flujo de Trabajo , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Dosificación Radioterapéutica , Método de Montecarlo , Radiometría
12.
Cureus ; 16(6): e62906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39040774

RESUMEN

Stereotactic body radiotherapy (SBRT) to the central and ultra-central thorax is associated with infrequent but potentially serious adverse events. Adaptive SBRT, which provides more precise treatment planning and inter-fraction motion management, may allow the delivery of ablative doses to ultra-central tumors with effective local control and improved toxicity profiles. Herein, we describe the first reported case of cone beam computed tomography (CBCT)-guided stereotactic adaptive radiotherapy (CT-STAR) in the treatment of ultra-central non-small cell lung cancer (NSCLC) in a prospective clinical trial (NCT05785845). An 80-year-old man with radiographically diagnosed early-stage NSCLC presented for definitive management of an enlarging ultra-central lung nodule. He was prescribed 55 Gy in five fractions with CT-STAR. A simulation was performed using four-dimensional CT, and patients were planned for treatment at end-exhale breath-hold. Treatment plans were generated using a strict isotoxicity approach, which prioritized organ at risk (OAR) constraints over target coverage. During treatment, daily CBCTs were acquired and used to generate adapted contours and treatment plans based on the patient's anatomy-of-the-day, all while the patient was on the treatment table. The initial and adapted plans were compared using dose-volume histograms, and the superior plan was selected for treatment. The adapted plan was deemed superior and used for treatment in three out of five fractions. The adapted plan provided improved target coverage in two fractions and resolved an OAR hard constraint violation in one fraction. We report the successful treatment of a patient with ultra-central NSCLC utilizing CT-STAR. This case report builds on previously published in silico data to support the viability and dosimetric advantages of CT-STAR in the ablative treatment of this challenging tumor location. Further data are needed to confirm the toxicity and efficacy of this technique.

13.
Phys Imaging Radiat Oncol ; 31: 100597, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39006756

RESUMEN

Current online adaptive radiotherapy (oART) workflows require dedicated equipment. Our aim was to develop and implement an oART workflow for a C-arm linac which can be performed using standard clinically available tools. A workflow was successfully developed and implemented. Three patients receiving palliative radiotherapy for bladder cancer were treated, with 33 of 35 total fractions being delivered with the cone-beam computed tomography (CBCT)-guided oART workflow. Average oART fraction duration was 24 min from start of CBCT acquisition to end of beam on. This work shows how oART could be performed without dedicated equipment, broadening oART availability for application at existing treatment machines.

14.
J Med Imaging Radiat Sci ; 55(4): 101719, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39084157

RESUMEN

INTRODUCTION: The aim of this study was to assess the results of the local pre-treatment verifications of online adaptive prostate SBRT plans performed by dosimetrists METHODS AND MATERIALS: Prostate SBRT treatments are planned in our department using an online adaptive method developed and validated by our group. The adaptive plans were computed on the daily CBCT scan using the Acuros XB v. 16.1 algorithm of the Varian Eclipse treatment planning system. Adaptive plans consisted of a single VMAT with 6 MV flattening-filter-free (FFF) energy performed on a Varian TrueBeam linac. Pre-treatment verification of the adaptive "plan-of-the-day" (POD) created in each treatment session was performed using the Mobius 3D v. 3.1 secondary dose calculation program (M3D). Commissioning of M3D included the tuning of the dosimetric leaf gap correction (DLGc) parameter. Generic and specific DLGc values were then derived using a set of plans for typical sites (prostate, head and neck, brain, lung and bone palliative) and another set were determined for specific online SBRT PODs (gDLGc and sDLGc, respectively). The first 50 prostate patients treated with the PACE-B schedule (5 × 7.25 Gy) were included, i.e., 250 adaptive SBRT PODs were collected in this study. For each online adaptive POD, a global 3D gamma comparison between the Eclipse 3D dose and the M3D dose in the patient CBCT was performed. Gamma passing rates (GPRs) for the whole external patient contour (Body) and the PTV were recorded, using the 5 % global /3 mm criteria. The target mean dose and target coverage differences between the Eclipse and M3D doses were also analyzed (ΔDmean and ΔD90 %, respectively). The accuracy of M3D was assessed against PRIMO Monte Carlo software. Twenty-five online prostate SBRT PODs were randomly selected from the set of 250 adaptive plans and simulated with PRIMO. RESULTS: Values of -1 mm and -0.14 mm were found as optimal gDLGc and sDLGc, respectively. Over the 250 online adaptive PODs, excellent GPR values ∼ 100 % were obtained for the Body and PTV structures, regardless the type of DLGc used. The use of the sDLGc instead of the gDLGc provided better results for ΔDmean (0.1 % ± 0.5% vs. -1.9 ± 0.7 %) and ΔD90 % (-1.0 % ± 0.5 %. vs. -3.5 % ± 0.8 %). This issue was also observed when M3D calculations were compared to PRIMO simulations. CONCLUSIONS: M3D can be effectively used for independent pre-treatment verifications of online adaptive prostate SBRT plans. The use of a specific DLGc value is advised for this SBRT online adaptive technique.

15.
Med Phys ; 51(8): 5572-5581, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837396

RESUMEN

BACKGROUND: The accuracy of intensity-modulated proton therapy (IMPT) is greatly affected by anatomy variations that might occur during the treatment course. Online plan adaptations have been proposed as a solution to intervene promptly during a treatment session once the anatomy changes are detected. The implementation of online-adaptive proton therapy (OAPT) is still hindered by time-consuming tasks in the workflow. PURPOSE: The study introduces the novel concept of partial adaptation and aims at investigating its feasibility as a potential solution to parallelize tasks during an OAPT workflow for saving valuable in-room time. METHODS: The proof-of-principle simulation study includes datasets from six head and neck cancer (HNC) patients, each consisting of one planning CT (pCT) and three contoured control CTs (cCTs). Robust 3-field normo-fractionated initial IMPT plans were generated on the pCTs with a standardized field configuration, delivering 66 Gy and 54 Gy to the high-risk and low-risk clinical target volume (CTVHigh and CTVLow), respectively. For each cCT, a dose-mimicking-based partial adaptation was applied: two fields were adapted on the current anatomy taking into account the background dose of the first non-adapted field supposedly delivered in the meantime. Fraction doses on the cCTs resulting from partially adapted plans with different first (non-adapted) field assignments were compared against those from non-adapted and fully adapted plans regarding target coverage and organs at risk (OARs) sparing. The robustness of partially adapted plans was also evaluated. RESULTS: Partially adapted plans showed comparable results to fully adapted plans and were superior to non-adapted plans for both target coverage and OAR sparing. Target coverage degradation in the non-adapted plans (median D98%: 95.9% and 97.5% for CTVLow and CTVHigh, respectively) was recovered by both partial (98.0% and 98.5%) and full adaptation (98.2% and 98.7%) in comparison to the initial plans (98.7% and 98.8%). The initial hotspot dose for the CTVHigh (median D2%: 101.8%) increased in the non-adapted plans (102.9%) and was recovered by the adaptive strategies (partial: 102.5%, full: 101.9%). The near-maximum dose (D0.01cc) to brainstem and spinal cord was within clinical constraints for all investigated dose distributions, but clearly increased for no adaptation and improved in the (both partially and fully) adapted plans with respect to the non-adapted ones. The parotids' median doses (D50) were mainly patient-specific depending on the proximity to the target region, but anyway lower for the partially and fully adapted plans compared to the non-adapted ones. OAR sparing was furthermore improved for the partially adapted plans in comparison to full adaptation. Robustness of the target dose metrics was preserved in all evaluated scenarios. CONCLUSIONS: For OAPT of HNC patients, partial adaptation is able to generate plans of superior conformity to non-adapted plans and of comparable conformity as fully adapted plans, while having the potential to speed up the online-adaptive workflows. Thus, partial adaptation represents an intermediate approach until fast online adaptation workflows become available. Furthermore, it can be applied in workflows where online treatment verification stops the delivery and triggers an online adaptation for the remaining fraction.


Asunto(s)
Neoplasias de Cabeza y Cuello , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Humanos , Terapia de Protones/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Prueba de Estudio Conceptual , Radioterapia de Intensidad Modulada , Dosificación Radioterapéutica , Órganos en Riesgo/efectos de la radiación , Tomografía Computarizada por Rayos X
16.
J Radiat Res ; 65(4): 507-511, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38934659

RESUMEN

The aim of this study was to investigate planning target volume (PTV) margin in online adaptive radiation therapy (oART) for gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Four consecutive patients with gastric MALT lymphoma who received oART (30 Gy in 15 fractions) on the oART system were included in this study. One hundred and twenty cone-beam computed tomography (CBCT) scans acquired pre- and post-treatment of 60 fractions for all patients were used to evaluate intra- and interfractional motions. Patients were instructed on breath-holding at exhalation during image acquisition. To assess the intrafraction gastric motion, different PTVs were created by isotropically extending the CTV contoured on a pre-CBCT image (CTVpre) at1 mm intervals. Intrafraction motion was defined as the amount of expansion covering the contoured CTV on post-CBCT images (CTVpost). Interfractional motion was defined as the amount of reference CTV expansion that could cover each CTVpre, as well as the evaluation of the intrafractional motion. PTV margins were estimated from the cumulative proportion of fraction covering the intra- and interfractional motions. The extent of expansion covering the CTVs in 90% of fractions was adopted as the PTV margin. The PTV margin for intrafractional gastric motion using the oART system with breath-holding was 14 mm. In contrast, the PTV margin for interfractional gastric organ motion without the oART system was 25 mm. These results indicated that the oART system can reduce the PTV margin by >10 mm. Our results could be valuable data for oART cases.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Linfoma de Células B de la Zona Marginal , Planificación de la Radioterapia Asistida por Computador , Neoplasias Gástricas , Humanos , Linfoma de Células B de la Zona Marginal/radioterapia , Linfoma de Células B de la Zona Marginal/diagnóstico por imagen , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Planificación de la Radioterapia Asistida por Computador/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Radioterapia Guiada por Imagen/métodos , Sistemas en Línea
17.
Z Med Phys ; 34(3): 397-407, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852003

RESUMEN

Cone-beam computed tomography (CBCT)-based online adaptation is increasingly being introduced into many clinics. Upon implementation of a new treatment technique, a prospective risk analysis is required and enhances workflow safety. We conducted a risk analysis using Failure Mode and Effects Analysis (FMEA) upon the introduction of an online adaptive treatment programme (Wegener et al., Z Med Phys. 2022). A prospective risk analysis, lacking in-depth clinical experience with a treatment modality or treatment machine, relies on imagination and estimates of the occurrence of different failure modes. Therefore, we systematically documented all irregularities during the first year of online adaptation, namely all cases in which quality assurance detected undesired states potentially leading to negative consequences. Additionally, the quality of automatic contouring was evaluated. Based on those quantitative data, the risk analysis was updated by an interprofessional team. Furthermore, a hypothetical radiation therapist-only workflow during adaptive sessions was included in the prospective analysis, as opposed to the involvement of an interprofessional team performing each adaptive treatment. A total of 126 irregularities were recorded during the first year. During that time period, many of the previously anticipated failure modes (almost) occurred, indicating that the initial prospective risk analysis captured relevant failure modes. However, some scenarios were not anticipated, emphasizing the limits of a prospective risk analysis. This underscores the need for regular updates to the risk analysis. The most critical failure modes are presented together with possible mitigation strategies. It was further noted that almost half of the reported irregularities applied to the non-adaptive treatments on this treatment machine, primarily due to a manual plan import step implemented in the institution's workflow.


Asunto(s)
Inteligencia Artificial , Tomografía Computarizada de Haz Cónico , Humanos , Estudios Prospectivos , Medición de Riesgo , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Análisis de Modo y Efecto de Fallas en la Atención de la Salud
18.
Phys Med Biol ; 69(12)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38729194

RESUMEN

Objective. Propose a highly automated treatment plan re-optimization strategy suitable for online adaptive proton therapy. The strategy includes a rapid re-optimization method that generates quality replans and a novel solution that efficiently addresses the planning constraint infeasibility issue that can significantly prolong the re-optimization process.Approach. We propose a systematic reference point method (RPM) model that minimizes the l-infinity norm from the initial treatment plan in the daily objective space for online re-optimization. This model minimizes the largest objective value deviation among the objectives of the daily replan from their reference values, leading to a daily replan similar to the initial plan. Whether a set of planning constraints is feasible with respect to the daily anatomy cannot be known before solving the corresponding optimization problem. The conventional trial-and-error-based relaxation process can cost a significant amount of time. To that end, we propose an optimization problem that first estimates the magnitude of daily violation of each planning constraint. Guided by the violation magnitude and clinical importance of the constraints, the constraints are then iteratively converted into objectives based on their priority until the infeasibility issue is solved.Main results.The proposed RPM-based strategy generated replans similar to the offline manual replans within the online time requirement for six head and neck and four breast patients. The average targetD95and relevant organ at risk sparing parameter differences between the RPM replans and clinical offline replans were -0.23, -1.62 Gy for head and neck cases and 0.29, -0.39 Gy for breast cases. The proposed constraint relaxation solution made the RPM problem feasible after one round of relaxation for all four patients who encountered the infeasibility issue.Significance. We proposed a novel RPM-based re-optimization strategy and demonstrated its effectiveness on complex cases, regardless of whether constraint infeasibility is encountered.


Asunto(s)
Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Neoplasias de Cabeza y Cuello/radioterapia
20.
Phys Med Biol ; 69(9)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38565128

RESUMEN

Objective. Radio-opaque markers are recommended for image-guided radiotherapy in liver stereotactic ablative radiotherapy (SABR), but their implantation is invasive. We evaluate in thisin-silicostudy the feasibility of cone-beam computed tomography-guided stereotactic online-adaptive radiotherapy (CBCT-STAR) to propagate the target volumes without implanting radio-opaque markers and assess its consequence on the margin that should be used in that context.Approach. An emulator of a CBCT-STAR-dedicated treatment planning system was used to generate plans for 32 liver SABR patients. Three target volume propagation strategies were compared, analysing the volume difference between the GTVPropagatedand the GTVConventional, the vector lengths between their centres of mass (lCoM), and the 95th percentile of the Hausdorff distance between these two volumes (HD95). These propagation strategies were: (1) structure-guided deformable registration with deformable GTV propagation; (2) rigid registration with rigid GTV propagation; and (3) image-guided deformable registration with rigid GTV propagation. Adaptive margin calculation integrated propagation errors, while interfraction position errors were removed. Scheduled plans (PlanNon-adaptive) and daily-adapted plans (PlanAdaptive) were compared for each treatment fraction.Main results.The image-guided deformable registration with rigid GTV propagation was the best propagation strategy regarding tolCoM(mean: 4.3 +/- 2.1 mm), HD95 (mean 4.8 +/- 3.2 mm) and volume preservation between GTVPropagatedand GTVConventional. This resulted in a planning target volume (PTV) margin increase (+69.1% in volume on average). Online adaptation (PlanAdaptive) reduced the violation rate of the most important dose constraints ('priority 1 constraints', 4.2 versus 0.9%, respectively;p< 0.001) and even improved target volume coverage compared to non-adaptive plans (PlanNon-adaptive).Significance. Markerless CBCT-STAR for liver tumours is feasible using Image-guided deformable registration with rigid GTV propagation. Despite the cost in terms of PTV volumes, daily adaptation reduces constraints violation and restores target volumes coverage.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Estudios de Factibilidad , Neoplasias Hepáticas , Hígado , Radiocirugia , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Hígado/diagnóstico por imagen , Hígado/efectos de la radiación , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA