Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Talanta ; 281: 126843, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39277930

RESUMEN

As a promising liquid biopsy biomarker, exosomes have demonstrated great potential and advantages in the noninvasive tumor diagnosis. However, an accurate and sensitive method for tumors-associated exosomes detection is scarce. Herein, we presented an easy-operation aptasensor which simultaneously detect multiple exosomal proteins by using multicolor fluorescent DNA nanoassemblies (FDNs) and CD63 aptamer-modified magnetic beads (MNPs-AptCD63). In this system, the FDNs were firstly constructed by encapsulating different quantum dots (QDs) into rolling circle amplification (RCA) products that contained different aptamer sequences. Thus, the FDNs could selectively recognize the different exosomal proteins captured by the MNPs-AptCD63, and achieve the multiplex and sensitive detection according to the fluorescence of QDs. Benefiting from the signal amplification capacity and high selectivity of FDNs, this aptasensor not only could detect exosomes as low as 650 particles/µL, but also showed accurate analysis in clinical samples. In addition, we can also achieve point-of-care testing (POCT) due to the simple analysis steps and naked-eye observable fluorescence of QDs under the ultraviolet irradiation. We believe that our aptasensor could provide a promising platform for exosomes-based personalized diagnosis and precise monitoring of human health.

2.
Int J Biol Macromol ; 279(Pt 4): 135411, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245099

RESUMEN

Lung carcinoma, particularly non-small-cell lung cancer (NSCLC), accounts for a significant portion of cancer-related deaths, with a fatality rate of approximately 19 %. Niclosamide (NIC), originally an anthelmintic drug, has attracted attention for its potential in disrupting cancer cells through various intracellular signaling pathways. However, its effectiveness is hampered by limited solubility, reducing its bioavailability. This study investigates the efficacy of NIC against lung cancer using inhalable hybrid nano-assemblies with chitosan-functionalized Poly (ε-caprolactone) (PCL) as a carrier for pulmonary delivery. The evaluation encompasses various aspects such as aerodynamic and physicochemical properties, drug release kinetics, cellular uptake, biocompatibility, cell migration, autophagic flux, and apoptotic cell death in A549 lung cancer cells. Increasing NIC dosage correlates with enhanced inhibition of cell proliferation, showing a dose-dependent profile (approximately 75 % inhibition efficiency at 20 µg/mL of NIC). Optimization of inhaled dosage and efficacy is conducted in a murine model of NNK-induced tumor-bearing lung cancer. Following inhalation, NIC-CS-PCL-NA demonstrates significant lung deposition, retention, and metabolic stability. Inhalable nano-assemblies promote autophagy flux and induce apoptotic cell death. Preclinical trials reveal substantial tumor regression with minimal adverse effects, underscoring the potential of inhalable NIC-based nano-formulation as a potent therapeutic approach for NSCLC, offering effective tumor targeting and killing capabilities.

3.
J Control Release ; 375: 47-59, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39222794

RESUMEN

In the prodrug-based self-assembled nanoassemblies, prodrugs usually consist of drug modules, response modules, and modification modules. Modification modules play a critical role in regulating the nano-assembly ability of the prodrugs. Herein, we carried out a "fatty alcoholization" strategy and chose various lengths of aliphatic alcohol chains (AC) as modification modules to construct disulfide bond bridged paclitaxel (PTX) prodrug nanoassemblies. The PTX-AC prodrugs would self-assemble into nanoassemblies (PTX-AC PNs) with higher drug loading, stability, and tumor selectivity than commercial preparations. After comprehensive exploration, we found the chain length (AC12, AC16, AC20, AC24) of modification modules affected the assembly of PTX-AC PNs, further leading to disparate in vivo fate and antitumor efficacy. With the increase of the chain length of the modification modules (from AC12 to AC20), the assembly ability of the nanoassemblies was improved, attributed to the appropriate enhancement of hydrophobic force. When the chain length was further increased to AC24, the excessive hydrophobic force will lead to the aggregation of prodrugs and weaken the assembly ability. Therefore, PTX-AC20 PNs with proper chain length may solve the paradox of efficacy and tolerance in 4 T1 breast tumor owing to their optimal nano-assembly stability and modest redox-sensitivity. In short, this work highlighted the importance of screening optimal modification modules in developing prodrug nanoassemblies.

4.
ACS Appl Bio Mater ; 7(8): 5771-5779, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39110771

RESUMEN

Nanomaterials with photoresponsivity have garnered attention due to their fluorescence imaging, photodynamic, and photothermal therapeutic properties. In this study, a photoresponsivity nanoassembly was developed by using photosensitizers and carbon dots (CDs). Due to their multiple excitation peaks and multicolor fluorescence emission, especially their membrane-permeating properties, these nanoassemblies can label cells with multiple colors and track cell imaging in real time. Additionally, the incorporation of photosensitizers and CDs provides the nanoassemblies with the potential for photodynamic therapy (PDT) and photothermal therapy (PTT). The nanoassemblies effectively suppressed the activity of Escherichia coli and Staphylococcus aureus through PDT and PTT. Moreover, the nanoassemblies exhibited a high affinity for E. coli and S. aureus. These distinct features confer broad-spectrum antibacterial properties to the nanoassemblies. As a photoresponsivity nanoplatform, these nanoassemblies have demonstrated potential applications in the fields of bioimaging and antimicrobial.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Escherichia coli , Ensayo de Materiales , Tamaño de la Partícula , Fármacos Fotosensibilizantes , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Pruebas de Sensibilidad Microbiana , Humanos , Puntos Cuánticos/química , Nanoestructuras/química , Carbono/química , Carbono/farmacología , Imagen Óptica , Fotoquimioterapia , Supervivencia Celular/efectos de los fármacos
5.
Macromol Rapid Commun ; : e2400511, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154350

RESUMEN

Nanomedicines loaded in macrophages (MAs) can actively target tumors without dominantly relying on the enhanced permeability and retention (EPR) effect, making them effective for treating EPR-deficient malignancies. Herein, copper-crosslinked carbon dot clusters (CDCs) are synthesized with both photodynamic and chemodynamic functions to manipulate MAs, aiming to direct the MA-mediated tumor targeting. First, green fluorescent CDs (g-CDs) are prepared by a one-step hydrothermal method. Subsequently, the g-CDs are complexed with divalent copper ions to form copper-crosslinked CDCs (g-CDCs/Cu), which are incubated with MAs for their manipulation. Experimental results revealed that the prepared g-CDCs/Cu displayed good aqueous dispersibility and fluorescent emission properties. The nanoassemblies can be activated to deplete the overexpressed glutathione (GSH) and generate reactive oxygen species (ROS) in the presence of laser irradiation through the combined Cu-mediated chemodynamic therapy and CD-mediated photodynamic therapy. Furthermore, the ROS produced in MAs enabled polarization of MAs to antitumor M1 phenotype, suggesting the future potential use to reverse the immunosuppressive tumor microenvironment. These results obtained from the current study suggest a significant potential to develop g-CDCs/Cu for GSH depletion, ROS generation, and MA M1 polarization as a theransotic agent to tackle cancer.

6.
J Colloid Interface Sci ; 677(Pt A): 941-952, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39128288

RESUMEN

Prodrug nanoassemblies combine the advantages of prodrug strategies and nanotechnology have been widely utilized for delivering antitumor drugs. These prodrugs typically comprise active drug modules, response modules, and modification modules. Among them, the modification modules play a critical factor in improving the self-assembly ability of the parent drug. However, the impact of the specific structure of the modification modules on prodrug self-assembly remains elusive. In this study, two gemcitabine (GEM) prodrugs are developed using 2-octyl-1-dodecanol (OD) as flexible modification modules and cholesterol (CLS) as rigid modification modules. Interestingly, the differences in the chemical structure of modification modules significantly affect the assembly performance, drug release, cytotoxicity, tumor accumulation, and antitumor efficacy of prodrug nanoassemblies. It is noteworthy that the prodrug nanoassemblies constructed with flexible modifying chains (OD) exhibit improved stability, faster drug release, and enhanced antitumor effects. Our findings elucidate the significant impact of modification modules on the construction of prodrug nanoassemblies.

7.
Colloids Surf B Biointerfaces ; 244: 114182, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39216441

RESUMEN

Abnormal amyloid ß-protein (Aß42) fibrillation is a key event in Alzheimer's disease (AD), and photodynamic therapy (PDT) possesses great potential in modulating Aß42 self-assembly. However, the poor blood-brain barrier (BBB) penetration, low biocompatibility, and limited tissue penetration depth of existing photosensitizers limit the progress of photo-oxidation strategies. In this paper, novel indocyanine green-modified graphene quantum dot nano-assemblies (NBGQDs-ICGs) were synthesized based on a molecular assembly strategy of electrostatic interactions for PDT inhibition of Aß42 self-assembly process and decomposition of preformed fibrils under near-infrared light. Combining the small-size structure of graphene quantum dots and the near-infrared light-responsive properties of ICGs, the NBGQDs-ICGs could achieve BBB penetration under 808 nm irradiation. More importantly, the neuroprotective mechanism of NBGQDs-ICG was studied for the first time by AFM, which effectively weakened the adhesion of Aß42 aggregates to the cell surface by blocking the interaction between Aß42 and the cell membrane, and restored the mechanical stability and adhesion of the neuron membrane. Meanwhile, NBGQDs-ICG promoted phagocytosis of Aß42 by microglia. In addition, the good biocompatibility and stability ensured the biosafety of NBGQDs-ICG in future clinical applications. We anticipate that such multifunctional nanocomponents may provide promising avenues for the development of novel AD inhibitors.


Asunto(s)
Péptidos beta-Amiloides , Barrera Hematoencefálica , Puntos Cuánticos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Puntos Cuánticos/química , Humanos , Animales , Grafito/química , Grafito/farmacología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Tamaño de la Partícula , Verde de Indocianina/química , Verde de Indocianina/farmacología , Fagocitosis/efectos de los fármacos , Carbono/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Propiedades de Superficie
8.
ACS Nano ; 18(32): 21268-21287, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39083438

RESUMEN

Cancer stem cells (CSCs) are promising targets for improving anticancer treatment outcomes while eliminating recurrence, but their treatment remains a major challenge. Here, we report a nanointegrative strategy to realize CSC-targeted ferroptosis-immunotherapy through spatiotemporally controlled reprogramming of STAT3-regulated signaling circuits. Specifically, STAT3 inhibitor niclosamide (Ni) and an experimental ferroptosis drug (1S, 3R)-RSL3 (RSL3) are integrated into hyaluronic acid-modified amorphous calcium phosphate (ACP) nanounits through biomineralization (CaP-PEG-HA@Ni/RSL3), which could be recognized by CD44-overexpressing CSCs and released in a synchronized manner. Ni inhibits the CSC-intrinsic STAT3-PD-L1 axis to stimulate adaptive immunity and enhance interferon gamma (IFNγ) secretion by CD8+ T cells to downregulate SLC7A11 and SLC3A2 for blocking glutathione biosynthesis. Meanwhile, Ni-dependent STAT3 inhibition also upregulates ACSL4 through downstream signaling and IFNγ feedback. These effects cooperate with RSL3-mediated GPX4 deactivation to induce pronounced ferroptosis. Furthermore, CaP-PEG-HA@Ni/RSL3 also impairs the immunosuppressive M2-like tumor-associated macrophages, while Ca2+ ions released from degraded ACP could chelate with lipid peroxides in ferroptotic CSCs to avoid CD8+ T-cell inhibition, thus boosting the effector function of activated CD8+ T cells. This study offers a cooperative ferroptosis-immunotherapeutic approach for the treatment of refractory cancer.


Asunto(s)
Ferroptosis , Inmunoterapia , Células Madre Neoplásicas , Factor de Transcripción STAT3 , Transducción de Señal , Ferroptosis/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Humanos , Animales , Factor de Transcripción STAT3/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Nanopartículas/química , Niclosamida/farmacología , Niclosamida/química , Ratones Endogámicos C57BL , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Ácido Hialurónico/química
9.
Int J Pharm ; 662: 124496, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39033943

RESUMEN

Chemo-photodynamic synergistic therapy (CPST) holds tremendous promise for treating cancers. Unfortunately, existing CPST applications suffer from complex synthetic procedures, low drug co-loading efficiency, and carrier-related toxicity. To address these issues, we have developed a supramolecular carrier-free self-sensitized nanoassemblies by co-assembling podophyllotoxin (PTOX) and chlorin e6 (Ce6) to enhance CPST efficiency against tumors. The nanoassemblies show stable co-assembly performance in simulative vivo neural environment (∼150 nm), with high co-loading ability for PTOX (72.2 wt%) and Ce6 (27.8 wt%). In vivo, the nanoassemblies demonstrate a remarkable ability to accumulate at tumor sites by leveraging the enhanced permeability and retention (EPR) effect. The disintegration of nanoassemblies following photosensitizer bioactivation triggered by the acidic tumor environment effectively resolves the challenge of aggregation-caused quenching (ACQ) effect. Upon exposure to external light stimulation, the disintegrated nanoassemblies not only illuminate cancer cells synergistically but also exert a more potent antitumor effect when compared with PTOX and Ce6 administered alone. This self-sensitized strategy represents a significant step forward in CPST, offering a unique co-delivery paradigm for clinic cancer treatment.


Asunto(s)
Clorofilidas , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Podofilotoxina , Porfirinas , Fotoquimioterapia/métodos , Porfirinas/administración & dosificación , Porfirinas/química , Animales , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Humanos , Línea Celular Tumoral , Nanopartículas/química , Podofilotoxina/administración & dosificación , Podofilotoxina/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Femenino
10.
Regen Biomater ; 11: rbae071, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966400

RESUMEN

Atherosclerosis, a chronic and progressive condition characterized by the accumulation of inflammatory cells and lipids within artery walls, remains a leading cause of cardiovascular diseases globally. Despite considerable advancements in drug therapeutic strategies aimed at managing atherosclerosis, more effective treatment options for atherosclerosis are still warranted. In this pursuit, the emergence of ß-cyclodextrin (ß-CD) as a promising therapeutic agent offers a novel therapeutic approach to drug delivery targeting atherosclerosis. The hydrophobic cavity of ß-CD facilitates its role as a carrier, enabling the encapsulation and delivery of various therapeutic compounds to affected sites within the vasculature. Notably, ß-CD-based nanoassemblies possess the ability to reduce cholesterol levels, mitigate inflammation, solubilize hydrophobic drugs and deliver drugs to affected tissues, making these nanocomponents promising candidates for atherosclerosis management. This review focuses on three major classes of ß-CD-based nanoassemblies, including ß-CD derivatives-based, ß-CD/polymer conjugates-based and polymer ß-CD-based nanoassemblies, highlighting a variety of formulations and assembly methods to improve drug delivery and therapeutic efficacy. These ß-CD-based nanoassemblies exhibit a variety of therapeutic mechanisms for atherosclerosis and offer systematic strategies for overcoming barriers to drug delivery. Finally, we discuss the present obstacles and potential opportunities in the development and application of ß-CD-based nanoassemblies as novel therapeutics for managing atherosclerosis and addressing cardiovascular diseases.

11.
Adv Drug Deliv Rev ; 211: 115354, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857762

RESUMEN

One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.


Asunto(s)
Núcleo Celular , Humanos , Núcleo Celular/metabolismo , Animales , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Péptidos/química , Péptidos/administración & dosificación , Polímeros/química , Transporte Activo de Núcleo Celular , Portadores de Fármacos/química , Señales de Localización Nuclear
12.
Acta Biomater ; 184: 368-382, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908417

RESUMEN

Starvation therapy aims to "starve" tumor cells by cutting off their nutritional supply. However, due to the complex and varied energy metabolism of tumors, targeting a single nutrient supply often fails to yield significant therapeutic benefits. This study proposes a tumor energy cocktail therapy that combines metformin, an oxidative phosphorylation inhibitor, with 2-deoxy-d-glucose (2-DG), a glycolysis inhibitor, to target tumor cells. To minimize the dosage of both drugs, we have developed a drug delivery strategy that prepared metformin as a nanoderivative, denoted as MA-dots. These MA-dots not only preserve the antitumor properties of metformin but also serve as a targeted delivery platform for 2-DG, ensuring its direct reach to the tumor site. Upon reaching the acidic tumor environment, the composite disintegrates, releasing 2-DG to inhibit glycolysis by targeting hexokinase 2 (HK2), the key enzyme in glycolysis, while MA-dots inhibit mitochondrial OXPHOS. This dual action significantly reduces ATP production in tumor cells, leading to apoptosis. In human lung tumor cells, the half-maximal inhibitory concentration (IC50) of 2-DG@MA-dots was significantly lower than that of either metformin or 2-DG alone, showing a nearly 100-fold and 30-fold reduction in IC50 values to 11.78 µg mL-1, from 1159 µg mL-1 and 351.20 µg mL-1, respectively. In studies with A549 tumor-bearing mice, the combination of low-dose 2-DG and metformin did not impede tumor growth, whereas 2-DG@MA-dots markedly decreased tumor volume, with the mean final tumor volume in the combination treatment group being approximately 89 times greater than that in the 2-DG@MA-dot group. STATEMENT OF SIGNIFICANCE: Metformin is a promising antitumor agent capable of modulating mitochondrial oxidative phosphorylation to inhibit cancer growth. However, its antitumor efficacy is limited when used alone due to compensatory energy mechanisms. Hence, we introduced glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to inhibit an alternative tumor energy pathway. In our study, we developed a drug delivery strategy using metformin-derived nanomedicine (MA-dots) to load 2-DG. This approach enables the co-delivery of both drugs and their synergistic effect at the tumor site, disrupting both energy pathways and introducing an innovative "energy cocktail therapy".


Asunto(s)
Desoxiglucosa , Metformina , Humanos , Desoxiglucosa/farmacología , Metformina/farmacología , Metformina/uso terapéutico , Animales , Ratones , Ratones Desnudos , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Hexoquinasa/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/química
13.
ACS Nano ; 18(26): 16967-16981, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888082

RESUMEN

Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.


Asunto(s)
Inmunoterapia , Estrés Oxidativo , Piroptosis , Especies de Nitrógeno Reactivo , Microambiente Tumoral , Piroptosis/efectos de los fármacos , Animales , Especies de Nitrógeno Reactivo/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Melanoma Experimental/patología
14.
Nano Lett ; 24(26): 8198-8207, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904269

RESUMEN

Responsive luminescent materials that reversibly react to external stimuli have emerged as prospective platforms for information encryption applications. Despite brilliant achievements, the existing fluorescent materials usually have low information density and experience inevitable information loss when subjected to mechanical damage. Here, inspired by the hierarchical nanostructure of fluorescent proteins in jellyfish, we propose a self-healable, photoresponsive luminescent elastomer based on dynamic interface-anchored borate nanoassemblies for smart dual-model encryption. The rigid cyclodextrin molecule restricts the movement of the guest fluorescent molecules, enabling long room-temperature phosphorescence (0.37 s) and excitation wavelength-responsive fluorescence. The building of reversible interfacial bonding between nanoassemblies and polymer matrix together with their nanoconfinement effect endows the nanocomposites with excellent mechanical performances (tensile strength of 15.8 MPa) and superior mechanical and functional recovery capacities after damage. Such supramolecular nanoassemblies with dynamic nanoconfinement and interfaces enable simultaneous material functionalization and self-healing, paving the way for the development of advanced functional materials.

15.
ACS Nano ; 18(18): 11665-11674, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38661485

RESUMEN

On-surface synthesis is a powerful method that has emerged recently to fabricate a large variety of atomically precise nanomaterials on surfaces based on polymerization. It is very successful for thermally activated reactions within the framework of heterogeneous catalysis. As a result, it often lacks selectivity. We propose to use selective activation of specific bonds as a crucial ingredient to synthesize desired molecules with high selectivity. In this approach, thermally nonaccessible products are expected to arise in photolytically activated on-surface reactions with high selectivity. We demonstrate for assembled 2,2'-dibromo biphenyl clusters on Cu(111) that the thermal and photolytic activations yield distinctly different products, combining submolecular resolution of individual product molecules in real-space imaging by scanning tunneling microscopy with chemical identification in X-ray photoelectron spectroscopy and supported by ab initio calculations. The photolytically activated Ullmann coupling of 2,2'-dibromo biphenyl is highly selective, with only one identified product. It starkly contrasts the thermal reaction, which yields various products because alternate pathways are activated at the reaction temperature. Our study extends on-surface synthesis to a directed formation of thermally inaccessible products by direct bond activation. It promises tailored reactions of nanomaterials within the framework of on-surface synthesis based on the photolytic activation of specific bonds.

16.
Acta Pharm Sin B ; 14(3): 1400-1411, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486988

RESUMEN

The self-assembly prodrugs are usually consisted of drug modules, activation modules, and assembly modules. Keeping the balance between efficacy and safety by selecting suitable modules remains a challenge for developing prodrug nanoassemblies. This study designed four docetaxel (DTX) prodrugs using disulfide bonds as activation modules and different lengths of branched-chain fatty alcohols as assembly modules (C16, C18, C20, and C24). The lengths of the assembly modules determined the self-assembly ability of prodrugs and affected the activation modules' sensitivity. The extension of the carbon chains improved the prodrugs' self-assembly ability and pharmacokinetic behavior while reducing the cytotoxicity and increased cumulative toxicity. The use of C20 can balance efficacy and safety. These results provide a great reference for the rational design of prodrug nanoassemblies.

17.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474550

RESUMEN

The global antibiotic resistance crisis has drawn attention to the development of treatment methods less prone to inducing drug resistance, such as antimicrobial photodynamic therapy (aPDT). However, there is an increasing demand for new photosensitizers capable of efficiently absorbing in the near-infrared (NIR) region, enabling antibacterial treatment in deeper sites. Additionally, advanced strategies need to be developed to avert drug resistance stemming from prolonged exposure. Herein, we have designed a conjugated oligoelectrolyte, namely TTQAd, with a donor-acceptor-donor (D-A-D) backbone, enabling the generation of reactive oxygen species (ROS) under NIR light irradiation, and cationic adamantaneammonium groups on the side chains, enabling the host-guest interaction with curcubit[7]uril (CB7). Due to the amphiphilic nature of TTQAd, it could spontaneously form nanoassemblies in aqueous solution. Upon CB7 treatment, the positive charge of the cationic adamantaneammonium group was largely shielded by CB7, leading to a further aggregation of the nanoassemblies and a reduced antibacterial efficacy of TTQAd. Subsequent treatment with competitor guests enables the release of TTQAd and restores its antibacterial effect. The reversible supramolecular switch for regulating the antibacterial effect offers the potential for the controlled release of active photosensitizers, thereby showing promise in preventing the emergence of drug-resistant bacteria.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Sistemas de Liberación de Medicamentos , Farmacorresistencia Microbiana , Antibacterianos/farmacología
18.
Prog Polym Sci ; 1482024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38476148

RESUMEN

Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.

19.
Nano Lett ; 24(12): 3759-3767, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478977

RESUMEN

Prodrug nanoassemblies are emerging as a novel drug delivery system for chemotherapy, comprising four fundamental modules: a drug module, a modification module, a response module, and a surface functionalization module. Among these modules, surface functionalization is an essential process to enhance the biocompatibility and stability of the nanoassemblies. Here, we selected mitoxantrone (MTO) as the drug module and DSPE-PEG2K as surface functionalization module to develop MTO prodrug nanoassemblies. We systematically evaluated the effect of surface functionalization module ratios (10%, 20%, 40%, and 60% of prodrug, WDSPE-mPEG2000/Wprodrug) on the prodrug nanoassemblies. The results indicated that 40% NPs significantly improved the self-assembly stability and cellular uptake of prodrug nanoassemblies. Compared with MTO solution, 40% NPs showed better tumor specificity and pharmacokinetics, resulting in potent antitumor activity with a good safety profile. These findings highlighted the pivotal role of the surface functionalization module in regulating the performance of mitoxantrone prodrug nanoassemblies for cancer treatment.


Asunto(s)
Antineoplásicos , Nanopartículas , Profármacos , Mitoxantrona , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos
20.
Macromol Rapid Commun ; 45(12): e2400097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499007

RESUMEN

Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage. The authors explore the synthesis and aqueous micellization of well-defined poly(ethylene glycol)-based block copolymer bearing BzAA linkage covalently attached to a polymethacrylate block for the formation of colloidally-stable nanoassemblies with BzAA groups at core/corona interfaces. Promisingly, the investigation on acid-catalyzed hydrolysis and disassembly shows that the formed nanoassemblies meet the criteria for acid-degradable shell-sheddable nanoassemblies: slow degradation at tumoral pH = 6.5 and rapid disassembly at endo/lysosomal pH = 5.0, while colloidal stability at physiological pH = 7.4. This work guides the design principle of acid-degradable shell-sheddable nanoassemblies bearing BzAA at interfaces, thus offering the promise to address the PEG dilemma and improve endocytosis in tumor-targeting drug delivery.


Asunto(s)
Acetales , Benzaldehídos , Acetales/química , Benzaldehídos/química , Concentración de Iones de Hidrógeno , Hidrólisis , Polímeros/química , Polímeros/síntesis química , Polietilenglicoles/química , Humanos , Estructura Molecular , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA