Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nutrients ; 16(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39275198

RESUMEN

Particulate matter (PM2.5) containing polycyclic aromatic hydrocarbons (PAHs) is of considerable environmental importance worldwide due to its adverse effects on human health, which are associated with neurodegenerative diseases (NDDs). Areca catechu L. (AC) fruit is known to possess various pharmacological properties; however, the anti-neuroinflammatory roles of AC on the suppression of PAH-induced neuroinflammation are still limited. Thus, we focused on the effects and related signaling cascades of AC and its active compounds against anthracene-induced toxicity and inflammation in mouse microglial BV-2 cells. Phytochemicals in the ethanolic extract of AC (ACEE) were identified using LC-MS, and molecular docking was conducted to screen the interaction between compounds and target proteins. Significant bioactive compounds in ACEE such as arecoline, (-)-epicatechin, and syringic acid were evinced through the LC-MS spectrum. The docking study revealed that (-)-epicatechin showed the highest binding affinities against NF-κB. For cell-based approaches, anthracene induced intracellular ROS, mRNA levels of TNF-α, IL-1ß, and IL-6, and the release of TNF-α through enhancing JNK, p38, and NF-κB signaling pathways. However, the co-treatment of cells with ACEE or (-)-epicatechin could reverse those anthracene-induced changes. The overall study suggested that ACEE-derived bioactive compounds such as (-)-epicatechin may be developed as a potential anti-neuroinflammatory agent by preventing inflammation-mediated NDDs.


Asunto(s)
Antracenos , Antiinflamatorios , Areca , Microglía , Simulación del Acoplamiento Molecular , Extractos Vegetales , Microglía/efectos de los fármacos , Microglía/metabolismo , Animales , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antracenos/farmacología , Antiinflamatorios/farmacología , Línea Celular , Areca/química , Fitoquímicos/farmacología , Nueces/química , Transducción de Señal/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , FN-kappa B/metabolismo
2.
Immunopharmacol Immunotoxicol ; : 1-10, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39279139

RESUMEN

CONTEXT: Inflammasome NLR family pyrin domain-containing 3 (NLRP3) is associated with neurological disorders. Neuroinflammation can be suppressed by inhibiting NLRP3 inflammasome activation, decreasing neurodegenerative disorder progression. We devised a therapeutic technique that can reduce neuroinflammation induced by microglial activation, avoiding neurodegeneration. We aimed to investigate the mechanisms underlying the pharmacological effects of galantamine and wedelolactone by evaluating the response of the nuclear factor kappa B (NF-κB) signaling pathway and NLRP3 inflammasome in lipopolysaccharide (LPS)-activated N9 microglia. METHODS: LPS and adenosine triphosphate were used to activate the NLRP3 inflammasome in N9 microglial cells, which were pretreated with galantamine and wedelolactone. Caspase-1, NLRP3, NF-κB, and interleukin (IL)-1ß levels were measured using RT-qPCR and immunostaining. RESULTS: Combined administration of galantamine and wedelolactone rescued microglial cells from LPS-induced cell death. Furthermore, treatment with galantamine and wedelolactone led to the suppression of NF-κB expression. NLRP3, caspase-1, and IL-1ß levels were decreased by the combined treatment. DISCUSSION AND CONCLUSION: The concurrent administration of galantamine and wedelolactone effectively suppresses the production of inflammatory cytokines and NLRP3 inflammasome activation in microglia. This inhibitory effect is likely linked to the NF-κB signaling pathway modulation. Therefore, this combined treatment is a potential therapeutic approach for neuroinflammatory diseases.

3.
Mater Today Bio ; 28: 101213, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39280110

RESUMEN

An increasing number of medications have been explored to treat the progressive and irreversible Alzheimer's disease (AD) that stands as the predominant form of dementia among neurodegenerative ailments. However, assertions about toxic side effects of these drugs are a significant hurdle to overcome, calling for drug-free nanotherapeutics. Herein, a new therapeutic strategy devoid of conventional drugs or other cytotoxic species was developed. The constructed superparamagnetic iron oxide nanoparticles (SPIONs) nanospinners can accrete neurotoxic ß-amyloid 42 oligomers (oAß42) into aggregated magnetic plaques (mpAß) by mechanical rotating force via remote interaction between nanoparticles and the applied magnetic field. While the cellular uptake of mpAß attained from the magnetic stirring treatment by neuronal cells is severely limited, the facile phagocytic uptake of mpAß by microglial cells leads to the polarization of the brain macrophages to M2 phenotype and thus the increased anti-inflammatory responses to the treatment. The SPION stirring treatment protects the AD mice from memory deterioration and maintain cognitive ability as evidenced from both nesting and Barnes maze tests. The examination of the oAß42 injected brain tissues with the stirring treatment showed significant amelioration of functional impairment of neurons, microglia, astrocytes and oligodendrocytes alongside no obvious tissue damage caused by stirring meanwhile complete degradation of SPION was observed at day 7 after the treatment. The in vitro and animal data of this work strongly corroborate that this new modality of undruggable stirring treatment with SPIONs provides a new feasible strategy for developing novel AD treatments.

4.
J Dent Sci ; 19(3): 1434-1442, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035337

RESUMEN

Background/purpose: Periodontitis is associated with various systemic diseases, potentially facilitated by the passage of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs). Several recent studies have suggested a connection between Pg-OMVs and neuroinflammation and neurodegeneration, but the precise causal relationship remains unclear. This study aimed to investigate the mechanisms underlying these associations using in vitro models. Materials and methods: Isolated Pg-OMVs were characterized by morphology, size, and gingipain activity. We exposed SH-SY5Y neuroblastoma cells and BV-2 microglial cells to various concentrations of Pg-OMVs. Cell morphology, a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, an enzyme-linked immunosorbent assay, and Western blot analysis were used to evaluate the cellular mechanism underlying Pg-OMV-induced neurotoxicity in neuronal cells and inflammatory responses in microglial cells. Results: Exposure to Pg-OMVs induced neurotoxicity in SH-SY5Y cells, as evidenced by cellular shrinkage, reduced viability, activation of apoptotic pathways, and diminished neuronal differentiation markers. Gingipain inhibition mitigated these effects, suggesting that gingipain mediates Pg-OMVs-induced neurotoxicity in SH-SY5Y cells. Our research on neuroinflammation suggests that upon endocytosis of Pg-OMVs by BV-2 cells, lipopolysaccharide (LPS) can modulate the production of inducible nitric oxide synthase and tumor necrosis factor-alpha by activating pathways that involve phosphorylated AKT and the phosphorylated JNK pathway. Conclusion: Our study demonstrated that following the endocytosis of Pg-OMVs, gingipain can induce neurotoxicity in SH-SY5Y cells. Furthermore, the Pg-OMVs-associated LPS can trigger neuroinflammation via AKT and JNK signaling pathways in BV-2 cells.

5.
Front Mol Biosci ; 11: 1405339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756532

RESUMEN

Heat shock protein 90 (Hsp90) is a family of chaperone proteins that consists of four isoforms: Hsp90α, Hsp90ß, glucose-regulated protein 94 (Grp94), and tumor necrosis factor type 1 receptor-associated protein (TRAP1). They are involved in modulating the folding, maturation, and activation of their client proteins to regulate numerous intracellular signaling pathways. Previous studies demonstrated that pan-Hsp90 inhibitors reduce inflammatory signaling pathways resulting in a reduction of inflammation and pain but show toxicities in cancer-related clinical trials. Further, the role of Hsp90 isoforms in inflammation remains poorly understood. This study aimed to determine anti-inflammatory activities of Hsp90 isoforms selective inhibitors on the lipopolysaccharide (LPS)-induced inflammation in BV-2 cells, a murine microglial cell line. The production of inflammatory mediators such as nitric oxide (NO), interleukin 1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α) was measured. We also investigated the impact of Hsp90 isoform inhibitors on the activation of nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinases (MAPKs). We found that selective inhibitors of Hsp90ß reduced the LPS-induced production of NO, IL-1ß, and TNF-α via diminishing the activation of NF-κB and Extracellular signal-regulated kinases (ERK) MAPK. The Hsp90α, Grp94, TRAP1 inhibitors had limited effect on the production of inflammatory mediators. These findings suggest that Hsp90ß is the key player in LPS-induced neuroinflammation. Thereby providing a more selective drug target for development of medications involved in pain management that can potentially contribute to the reduction of adverse side effects associated with Hsp90 pan inhibitors.

6.
Cytokine ; 180: 156609, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38781871

RESUMEN

BACKGROUND: We aim to deal with the Hub-genes and signalling pathways connected with Sepsis-associated encephalopathy (SAE). METHODS: The raw datasets were acquired from the Gene Expression Omnibus (GEO) database (GSE198861 and GSE167610). R software filtered the differentially expressed genes (DEGs) for hub genes exploited for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Hub genes were identified from the intersection of DEGs via protein-protein interaction (PPI) network. And the single-cell dataset (GSE101901) was used to authenticate where the hub genes express in hippocampus cells. Cell-cell interaction analysis and Gene Set Variation Analysis (GSVA) analysis of the whole transcriptome validated the interactions between hippocampal cells. RESULTS: A total of 161 DEGs were revealed in GSE198861 and GSE167610 datasets. Biological function analysis showed that the DEGs were primarily involved in the phagosome pathway and significantly enriched. The PPI network extracted 10 Hub genes. The M2 Macrophage cell decreased significantly during the acute period, and the hub gene may play a role in this biological process. The hippocampal variation pathway was associated with the MAPK signaling pathway. CONCLUSION: Hub genes (Pecam1, Cdh5, Fcgr, C1qa, Vwf, Vegfa, C1qb, C1qc, Fcgr4 and Fcgr2b) may paticipate in the biological process of SAE.


Asunto(s)
Mapas de Interacción de Proteínas , Encefalopatía Asociada a la Sepsis , Humanos , Encefalopatía Asociada a la Sepsis/genética , Encefalopatía Asociada a la Sepsis/metabolismo , Mapas de Interacción de Proteínas/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hipocampo/metabolismo , Transducción de Señal/genética , Transcriptoma/genética , Animales , Sepsis/genética , Sepsis/metabolismo
7.
Front Psychiatry ; 15: 1364201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666091

RESUMEN

Background: Microglia, brain resident macrophages, play multiple roles in maintaining homeostasis, including immunity, surveillance, and protecting the central nervous system through their distinct activation processes. Identifying all types of microglia-driven populations is crucial due to the presence of various phenotypes that differ based on developmental stages or activation states. During embryonic development, the E8.5 yolk sac contains erythromyeloid progenitors that go through different growth phases, eventually resulting in the formation of microglia. In addition, microglia are present in neurological diseases as a diverse population. So far, no individual biomarker for microglia has been discovered that can accurately identify and monitor their development and attributes. Summary: Here, we highlight the newly defined biomarker of mouse microglia, UGT1A7C, which exhibits superior stability in expression during microglia development and activation compared to other known microglia biomarkers. The UGT1A7C sensing chemical probe labels all microglia in the 3xTG AD mouse model. The expression of Ugt1a7c is stable during development, with only a 4-fold variation, while other microglia biomarkers, such as Csf1r and Cx3cr1, exhibit at least a 10-fold difference. The UGT1A7C expression remains constant throughout its lifespan. In addition, the expression and activity of UGT1A7C are the same in response to different types of inflammatory activators' treatment in vitro. Conclusion: We propose employing UGT1A7C as the representative biomarker for microglia, irrespective of their developmental state, age, or activation status. Using UGT1A7C can reduce the requirement for using multiple biomarkers, enhance the precision of microglia analysis, and even be utilized as a standard for gene/protein expression.

8.
Ecotoxicol Environ Saf ; 277: 116386, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657455

RESUMEN

Exposure to ambient PM2.5 is associated with neurodegenerative disorders, in which microglia activation plays a critical role. Thus far, the underlying mechanisms for PM2.5-induced microglia activation have not been well elucidated. In this study, a human microglial cell line (HMC3) was used as the in vitro model to examine the inflammatory effect (hall marker of microglia activation) of PM2.5 and regulatory pathways. The expression of inflammatory mediators including interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) as well as the brain derived neurotrophic factor (BDNF) were determined by ELISA and/or real-time PCR, respectively. Flow cytometry was used to measure the production of intracellular reactive oxygen species (ROS). Western blot was used to measure protein levels of Toll-like receptor 4 (TLR4), NF-κB inhibitor α (IκBα) and COX-2. It was shown that PM2.5 stimulation increased IL-6 and COX-2 expression but decreased BDNF expression in a dose-dependent manner. Further studies showed that PM2.5 triggered the formation of ROS and pre-treatment with the ROS scavenger acetylcysteine (NAC) significantly suppressed PM2.5-induced IL-6 and COX-2 expression. Moreover, the nuclear factor kappa B (NF-κB) inhibitor BAY11-7085 or the TLR4 neutralizing antibody markedly blocked PM2.5-induced IL-6 and COX-2 expression. However, NAC or BAY11-7085 exhibited minimal effect on PM2.5-induced BDNF down-regulation. In addition, pre-treatment with BAY11-7085 or TLR4 neutralizing antibody reduced ROS production induced by PM2.5, and NAC pre-treatment inhibited TLR4 expression and NF-κB activation induced by PM2.5. Collectively, PM2.5 treatment induced IL-6 and COX-2 but suppressed BDNF expression. PM2.5-induced IL-6 and COX-2 expression was mediated by interactive oxidative stress and TLR4/NF-κB pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ciclooxigenasa 2 , Interleucina-6 , Microglía , Estrés Oxidativo , Material Particulado , Especies Reactivas de Oxígeno , Humanos , Contaminantes Atmosféricos/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Ciclooxigenasa 2/metabolismo , Interleucina-6/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba/efectos de los fármacos
9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1021956

RESUMEN

BACKGROUND:Indolepropionic acid has been shown to reduce diabetes-induced central nervous system inflammation.However,there is a lack of research on whether to inhibit microglia M1 polarization for the treatment of spinal cord injury. OBJECTIVE:To investigate the mechanism of indolepropionic acid inhibition of microglial cell M1 polarization for the treatment of spinal cord injury through cell and animal experiments. METHODS:(1)In vitro experiments:BV2 cell viability was assessed using the CCK-8 assay to determine optimal concentrations of indolepropionic acid.Subsequently,BV2 cells were categorized into control group,administration group(50 μmol/L indolepropionic acid),lipopolysaccharide group(100 ng/mL lipopolysaccharide),and treatment group(100 ng/mL lipopolysaccharide + 50 μmol/L indolepropionic acid).Nitric oxide content was quantified using the Griess method.Real-time quantitative PCR and western blot assay were employed to measure mRNA and protein levels of pro-inflammatory factors.Cell immunofluorescence staining was conducted to assess inducible nitric oxide synthase expression.The Seahorse assay was employed to assess glycolytic stress levels in BV2 cells.(2)In vivo experiments:30 SD rats were randomly divided into three groups:sham surgery group,spinal cord injury group,and indolepropionic acid group.Motor function recovery in rats after spinal cord injury was assessed using BBB scoring and the inclined plane test.Immunofluorescence staining of spinal cord tissue was conducted to evaluate the expression of inducible nitric oxide synthase in microglial cells.ELISA was employed to measure protein expression levels of the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α in spinal cord tissue. RESULTS AND CONCLUSION:(1)In vitro experiments:Indolepropionic acid exhibited significant suppression of BV2 cell viability when its concentration exceeded 50 μmol/L.Indolepropionic acid achieved this by inhibiting the activation of the nuclear factor κB signaling pathway,thereby suppressing the mRNA and protein expression levels of pro-inflammatory cytokines(interleukin-1β and tumor necrosis factor-α),as well as the M1 polarization marker,inducible nitric oxide synthase,in BV2 cells.Additionally,indolepropionic acid notably reduced the glycolytic level in BV2 cells induced by lipopolysaccharides.(2)In vivo experiments:Following indolepropionic acid intervention in spinal cord injury rats,there was a noticeable increase in BBB scores and the inclined plane test angle.There was also a significant decrease in the number of M1-polarized microglial cells in spinal cord tissue,accompanied by a marked reduction in the protein expression levels of pro-inflammatory cytokines(interleukin-1β and tumor necrosis factor-α).(3)These results conclude that indolepropionic acid promotes functional recovery after spinal cord injury by improving the inflammatory microenvironment through inhibition of microglia M1 polarization.

10.
J Neuroinflammation ; 20(1): 285, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037097

RESUMEN

BACKGROUND AND PURPOSE: Cerebral ischemia‒reperfusion injury causes significant harm to human health and is a major contributor to stroke-related deaths worldwide. Current treatments are limited, and new, more effective prevention and treatment strategies that target multiple cell components are urgently needed. Leucine-rich alpha-2 glycoprotein 1 (Lrg1) appears to be associated with the progression of cerebral ischemia‒reperfusion injury, but the exact mechanism of it is unknown. METHODS: Wild-type (WT) and Lrg1 knockout (Lrg1-/-) mice were used to investigate the role of Lrg1 after cerebral ischemia‒reperfusion injury. The effects of Lrg1 knockout on brain infarct volume, blood‒brain barrier permeability, and neurological score (based on 2,3,5-triphenyl tetrazolium chloride, evans blue dye, hematoxylin, and eosin staining) were assessed. Single-cell RNA sequencing (scRNA-seq), immunofluorescence, and microvascular albumin leakage tests were utilized to investigate alterations in various cell components in brain tissue after Lrg1 knockout. RESULTS: Lrg1 expression was increased in various cell types of brain tissue after cerebral ischemia‒reperfusion injury. Lrg1 knockout reduced cerebral edema and infarct size and improved neurological function after cerebral ischemia‒reperfusion injury. Single-cell RNA sequencing analysis of WT and Lrg1-/- mouse brain tissues after cerebral ischemia‒reperfusion injury revealed that Lrg1 knockout enhances blood‒brain barrier (BBB) by upregulating claudin 11, integrin ß5, protocadherin 9, and annexin A2. Lrg1 knockout also promoted an anti-inflammatory and tissue-repairing phenotype in microglia and macrophages while reducing neuron and oligodendrocyte cell death. CONCLUSIONS: Our results has shown that Lrg1 mediates numerous pathological processes involved in cerebral ischemia‒reperfusion injury by altering the functional states of various cell types, thereby rendering it a promising therapeutic target for cerebral ischemia‒reperfusion injury.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Humanos , Ratones , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Daño por Reperfusión/metabolismo , Análisis de Secuencia de ARN
11.
Biomed Pharmacother ; 168: 115808, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922650

RESUMEN

The active compound, 4-methoxycinnamyl p-coumarate (MCC), derived from the rhizome of Etlingera pavieana (Pierre ex Gagnep) R.M.Sm., has been shown to exert anti-inflammatory effects in several inflammatory models. However, its effects on microglial cells remain elusive. In the current study, we aimed to investigate the anti-neuroinflammatory activities of MCC and determine the potential mechanisms underlying its action on lipopolysaccharide (LPS)-induced BV2 microglial cells. Our results revealed that MCC significantly reduced the secretion of nitric oxide (NO) and prostaglandin E2, concomitantly inhibiting the expression levels of inducible NO synthase and cyclooxygenase-2 mRNA and proteins. Additionally, MCC effectively decreased the production of reactive oxygen species in LPS-induced BV2 microglial cells. MCC also attenuates the activation of NF-κB by suppressing the phosphorylation of IκBα and NF-κB p65 subunits and by blocking the nuclear translocation of NF-κB p65 subunits. Furthermore, MCC significantly reduced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and protein kinase B (Akt)/glycogen synthase kinase-3ß (GSK-3ß). In addition, MCC markedly increased the expression of heme oxygenase-1 (HO-1) by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Collectively, our findings suggest that the anti-inflammatory activities of MCC could be attributed to its ability to suppress the activation of NF-κB, MAPK, and Akt/GSK-3ß while enhancing that of Nrf2-mediated HO-1. Accordingly, MCC has promising therapeutic potential to treat neuroinflammation-related diseases.


Asunto(s)
FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Humanos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Microglía , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades Neuroinflamatorias , Hemo-Oxigenasa 1/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo
12.
PeerJ ; 11: e16359, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025715

RESUMEN

Objective: This study aimed to explore the effects of bone marrow mesenchymal stem cell (BMSC)-derived exosomal miR-146a-5p on microglial polarization and the potential underlying mechanisms in oxygen-glucose deprivation (OGD)-exposed microglial cells. Methods: Exosomes were isolated from BMSCs, and their characteristics were examined. The effects of BMSC-derived exosomes on microglial polarization were investigated in OGD-exposed BV-2 cells. Differentially expressed miRNAs were identified and their biological function was explored using enrichment analyses. The regulatory role of miR-146a-5p in microglial polarization was studied via flow cytometry. Finally, the downstream target gene Traf6 was validated, and the role of the miR-146a-5p/Traf6 axis in modulating microglial polarization was investigated in OGD-exposed BV-2 cells. Results: BMSC-derived exosomes were successfully isolated and characterized. A total of 10 upregulated and 33 downregulated miRNAs were identified. Exosomal treatment resulted in significant changes in microglial polarization markers. miR-146a-5p was found to be significantly downregulated in OGD-exposed microglial cells treated with exosomes. Manipulation of miR-146a-5p expression modulated microglial polarization. Moreover, the miR-146a-5p/Traf6 axis regulated microglial polarization. Conclusion: Our findings demonstrate that BMSC-derived exosomal via miR-146a-5p modulates microglial polarization by targeting Traf6, providing a potential thermal target for the treatment of neurological diseases involving microglial activation.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , MicroARNs/genética , Microglía/metabolismo , Factor 6 Asociado a Receptor de TNF/genética
13.
Phytochemistry ; 215: 113859, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37709158

RESUMEN

Fifteen undescribed lindenane-type sesquiterpenoid dimers, designated chloranholides F-T (1-15), together with twenty-five known analogs (16-40), were isolated from the whole plants of Chloranthus holostegius. The isolate structures were elucidated by analysis of spectroscopic data and chemical methods, and their absolute configurations were determined by X-ray crystallography and electronic circular dichroism spectra. In anti-neuroinflammatory assays, all isolates were evaluated by examination of their inhibitory effect on nitric oxide (NO) in LPS-stimulated BV-2 cells, and the results showed that 21-24, 26, 30, 32 and 36 significantly inhibited the production of the inflammatory mediator NO, with IC50 values ranging from 3.18 to 11.46 µM, which was better than that of quercetin. Structure-activity relationship analysis revealed that two essential functional groups played an indispensable role in the anti-inflammatory effects. Moreover, 22 and 24 inhibited the LPS-induced upregulation of iNOS and COX-2 enzymes in BV-2 microglia at the protein level.


Asunto(s)
Magnoliopsida , Sesquiterpenos , Microglía/metabolismo , Lipopolisacáridos/farmacología , Magnoliopsida/química , Relación Estructura-Actividad , Sesquiterpenos/química , Óxido Nítrico , Estructura Molecular
14.
J Neurochem ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37694813

RESUMEN

Familial hypercholesterolemia (FH) is caused by mutations in the gene that encodes the low-density lipoprotein (LDL) receptor, which leads to an excessive increase in plasma LDL cholesterol levels. Previous studies have shown that FH is associated with gliosis, blood-brain barrier dysfunction, and memory impairment, but the mechanisms associated with these events are still not fully understood. Therefore, we aimed to investigate the role of microgliosis in the neurochemical and behavioral changes associated with FH using LDL receptor knockout (LDLr-/- ) mice. We noticed that microgliosis was more severe in the hippocampus of middle-aged LDLr-/- mice, which was accompanied by microglial morphological changes and alterations in the immunocontent of synaptic protein markers. At three months of age, the LDLr-/- mice already showed increased microgliosis and decreased immunocontent of claudin-5 in the prefrontal cortex (PFC). Subsequently, 6-month-old male C57BL/6 wild-type and LDLr-/- mice were treated once daily for 30 days with minocycline (a pharmacological inhibitor of microglial cell reactivity) or vehicle (saline). Adult LDLr-/- mice displayed significant hippocampal memory impairment, which was ameliorated by minocycline treatment. Non-treated LDLr-/- mice showed increased microglial density in all hippocampal regions analyzed, a process that was not altered by minocycline treatment. Region-specific microglial morphological analysis revealed different effects of genotype or minocycline treatment on microglial morphology, depending on the hippocampal subregion analyzed. Moreover, 6-month-old LDLr-/- mice exhibited a slight but not significant increase in IBA-1 immunoreactivity in the PFC, which was reduced by minocycline treatment without altering microglial morphology. Minocycline treatment also reduced the presence of microglia within the perivascular area in both the PFC and hippocampus of LDLr-/- mice. However, no significant effects of either genotype or minocycline treatment were observed regarding the phagocytic activity of microglia in the PFC and hippocampus. Our results demonstrate that hippocampal microgliosis, microglial morphological changes, and the presence of these glial cells in the perivascular area, but not increased microglial phagocytic activity, are associated with cognitive deficits in a mouse model of FH.

15.
J Alzheimers Dis ; 94(4): 1549-1561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37458040

RESUMEN

BACKGROUND: Neuroinflammation and the activation of microglial cells are among the earliest events in Alzheimer's disease (AD). However, direct observation of microglia in living people is not currently possible. Here, we indexed the heritable propensity for neuroinflammation with polygenic risk scores (PRS), using results from a recent genome-wide analysis of a validated post-mortem measure of morphological microglial activation. OBJECTIVE: We sought to determine whether a PRS for microglial activation (PRSmic) could augment the predictive performance of existing AD PRSs for late-life cognitive impairment. METHODS: First, PRSmic were calculated and optimized in a calibration cohort (Alzheimer's Disease Neuroimaging Initiative (ADNI), n = 450), with resampling. Second, predictive performance of optimal PRSmic was assessed in two independent, population-based cohorts (total n = 212,237). Finally, we explored associations of PRSmic with a comprehensive set of imaging and fluid AD biomarkers in ADNI. RESULTS: Our PRSmic showed no significant improvement in predictive power for either AD diagnosis or cognitive performance in either external cohort. Some nominal associations were found in ADNI, but with inconsistent effect directions. CONCLUSION: While genetic scores capable of indexing risk for neuroinflammatory processes in aging are highly desirable, more well-powered genome-wide studies of microglial activation are required. Further, biobank-scale studies would benefit from phenotyping of proximal neuroinflammatory processes to improve the PRS development phase.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Microglía , Enfermedades Neuroinflamatorias , Factores de Riesgo , Envejecimiento/genética
16.
Biosci Microbiota Food Health ; 42(3): 172-179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404570

RESUMEN

Turmeronols (A and B), bisabolane-type sesquiterpenoids found in turmeric, reduce inflammation outside the brain in animals; however, their effects on neuroinflammation, a common pathology of various neurodegenerative diseases, are not understood. Inflammatory mediators produced by microglial cells play a key role in neuroinflammation, so this study evaluated the anti-inflammatory effects of turmeronols in BV-2 microglial cells stimulated with lipopolysaccharide (LPS). Pretreatment with turmeronol A or B significantly inhibited LPS-induced nitric oxide (NO) production; mRNA expression of inducible NO synthase; production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor α and upregulation of their mRNA expression; phosphorylation of nuclear factor-κB (NF-κB) p65 proteins and inhibitor of NF-κB kinase (IKK); and nuclear translocation of NF-κB. These results suggest that these turmeronols may prevent the production of inflammatory mediators by inhibiting the IKK/NF-κB signaling pathway in activated microglial cells and can potentially treat neuroinflammation associated with microglial activation.

17.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298510

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. In AD patients, amyloid-ß (Aß) peptide-mediated degeneration of the cholinergic system utilizing acetylcholine (ACh) for memory acquisition is observed. Since AD therapy using acetylcholinesterase (AChE) inhibitors are only palliative for memory deficits without reversing disease progress, there is a need for effective therapies, and cell-based therapeutic approaches should fulfil this requirement. We established F3.ChAT human neural stem cells (NSCs) encoding the choline acetyltransferase (ChAT) gene, an ACh-synthesizing enzyme, HMO6.NEP human microglial cells encoding the neprilysin (NEP) gene, an Aß-degrading enzyme, and HMO6.SRA cells encoding the scavenger receptor A (SRA) gene, an Aß-uptaking receptor. For the efficacy evaluation of the cells, first, we established an appropriate animal model based on Aß accumulation and cognitive dysfunction. Among various AD models, intracerebroventricular (ICV) injection of ethylcholine mustard azirinium ion (AF64A) induced the most severe Aß accumulation and memory dysfunction. Established NSCs and HMO6 cells were transplanted ICV to mice showing memory loss induced by AF64A challenge, and brain Aß accumulation, ACh concentration and cognitive function were analyzed. All the transplanted F3.ChAT, HMO6.NEP and HMO6.SRA cells were found to survive up to 4 weeks in the mouse brain and expressed their functional genes. Combinational treatment with the NSCs (F3.ChAT) and microglial cells encoding each functional gene (HMO6.NEP or HMO6.SRA) synergistically restored the learning and memory function of AF64A-challenged mice by eliminating Aß deposits and recovering ACh level. The cells also attenuated inflammatory astrocytic (glial fibrillary acidic protein) response by reducing Aß accumulation. Taken together, it is expected that NSCs and microglial cells over-expressing ChAT, NEP or SRA genes could be strategies for replacement cell therapy of AD.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Acetilcolinesterasa/metabolismo , Células-Madre Neurales/metabolismo , Péptidos beta-Amiloides/metabolismo , Trastornos de la Memoria/metabolismo , Neprilisina/metabolismo , Acetilcolina/metabolismo , Modelos Animales de Enfermedad
18.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37108515

RESUMEN

Liver dysfunction is the main cause of hepatic encephalopathy. However, histopathological changes in the brain associated with hepatic encephalopathy remain unclear. Therefore, we investigated pathological changes in the liver and brain using an acute hepatic encephalopathy mouse model. After administering ammonium acetate, a transient increase in the blood ammonia level was observed, which returned to normal levels after 24 h. Consciousness and motor levels also returned to normal. It was revealed that hepatocyte swelling, and cytoplasmic vacuolization progressed over time in the liver tissue. Blood biochemistry also suggested hepatocyte dysfunction. In the brain, histopathological changes, such as perivascular astrocyte swelling, were observed 3 h after ammonium acetate administration. Abnormalities in neuronal organelles, especially mitochondria and rough endoplasmic reticulum, were also observed. Additionally, neuronal cell death was observed 24 h post-ammonia treatment when blood ammonia levels had returned to normal. Activation of reactive microglia and increased expression of inducible nitric oxide synthase (iNOS) were also observed seven days after a transient increase in blood ammonia. These results suggest that delayed neuronal atrophy could be iNOS-mediated cell death due to activation of reactive microglia. The findings also suggest that severe acute hepatic encephalopathy causes continued delayed brain cytotoxicity even after consciousness recovery.


Asunto(s)
Edema Encefálico , Encefalopatía Hepática , Ratones , Animales , Encefalopatía Hepática/metabolismo , Edema Encefálico/patología , Amoníaco/metabolismo , Edema/patología , Hepatocitos/metabolismo , Astrocitos/metabolismo
19.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834515

RESUMEN

The ketogenic diet (KD), a diet high in fat and protein but low in carbohydrates, is gaining much interest due to its positive effects, especially in neurodegenerative diseases. Beta-hydroxybutyrate (BHB), the major ketone body produced during the carbohydrate deprivation that occurs in KD, is assumed to have neuroprotective effects, although the molecular mechanisms responsible for these effects are still unclear. Microglial cell activation plays a key role in the development of neurodegenerative diseases, resulting in the production of several proinflammatory secondary metabolites. The following study aimed to investigate the mechanisms by which BHB determines the activation processes of BV2 microglial cells, such as polarization, cell migration and expression of pro- and anti-inflammatory cytokines, in the absence or in the presence of lipopolysaccharide (LPS) as a proinflammatory stimulus. The results showed that BHB has a neuroprotective effect in BV2 cells, inducing both microglial polarization towards an M2 anti-inflammatory phenotype and reducing migratory capacity following LPS stimulation. Furthermore, BHB significantly reduced expression levels of the proinflammatory cytokine IL-17 and increased levels of the anti-inflammatory cytokine IL-10. From this study, it can be concluded that BHB, and consequently the KD, has a fundamental role in neuroprotection and prevention in neurodegenerative diseases, presenting new therapeutic targets.


Asunto(s)
Dieta Cetogénica , Fármacos Neuroprotectores , Humanos , Ácido 3-Hidroxibutírico/farmacología , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Citocinas/metabolismo , Fármacos Neuroprotectores/farmacología
20.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675286

RESUMEN

Microglial cells (MGs), originally derived from progenitor cells in a yolk sac during early development, are glial cells located in a physiological and pathological brain. Since the brain contains various cell types, MGs could frequently interact with different cells, such as astrocytes (ACs), pericytes (PCs), and endothelial cells (ECs). However, how microglial traits are regulated via cell-cell interactions by ACs, PCs, or ECs and how they are different depending on the contacted cell types is unclear. This study aimed to clarify these questions by coculturing MGs with ACs, PCs, or ECs using mouse brain-derived cells, and microglial phenotypic changes were investigated under culture conditions that enabled direct cell-cell contact. Our results showed that ACs or PCs dose-dependently increased the number of MG, while ECs decreased it. Microarray and gene ontology analysis showed that cell fate-related genes (e.g., cell cycle, proliferation, growth, death, and apoptosis) of MGs were altered after a cell-cell contact with ACs, PCs, and ECs. Notably, microarray analysis showed that several genes, such as gap junction protein alpha 1 (Gja1), were prominently upregulated in MGs after coincubation with ACs, PCs, or ECs, regardless of cell types. Similarly, immunohistochemistry showed that an increased Gja1 expression was observed in MGs after coincubation with ACs, PCs, or ECs. Immunofluorescent and fluorescence-activated cell sorting analysis also showed that calcein-AM was transferred into MGs after coincubation with ACs, PCs, or ECs, confirming that intercellular interactions occurred between these cells. However, while Gja1 inhibition reduced the number of MGs after coincubation with ACs and PCs, this was increased after coincubation with ECs; this indicates that ACs and PCs positively regulate microglial numbers via Gja1, while ECs decrease it. Results show that ACs, PCs, or ECs exert both common and specific cell type-dependent effects on MGs through intercellular interactions. These findings also suggest that brain microglial phenotypes are different depending on their surrounding cell types, such as ACs, PCs, or ECs.


Asunto(s)
Células Endoteliales , Microglía , Ratones , Animales , Células Endoteliales/metabolismo , Encéfalo , Células Cultivadas , Astrocitos/metabolismo , Pericitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA