Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.693
Filtrar
1.
J Environ Sci (China) ; 150: 332-339, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306408

RESUMEN

NH3-SCR (SCR: Selective catalytic reduction) is an effective technology for the de-NOx process from both mobile and stationary pollution sources, and the most commonly used catalysts are the vanadia-based catalysts. An innovative V2O5-CeO2/TaTiOx catalyst for NOx removal was prepared in this study. The influences of Ce and Ta in the V2O5-CeO2/TaTiOx catalyst on the SCR performance and physicochemical properties were investigated. The V2O5-CeO2/TaTiOx catalyst not only exhibited excellent SCR activity in a wide temperature window, but also presented strong resistance to H2O and SO2 at 275 ℃. A series of characterization methods was used to study the catalysts, including H2-temperature programmed reduction, X-ray photoelectron spectroscopy, NH3-temperature programmed desorption, etc. It was discovered that a synergistic effect existed between Ce and Ta species. The introduction of Ce and Ta enlarged the specific surface area, increased the amount of acid sites and the ratio of Ce3+, (V3++V4+) and Oα, and strengthened the redox capability which were related to synergistic effect between Ce and Ta species, significantly improving the NH3-SCR activity.


Asunto(s)
Amoníaco , Cerio , Titanio , Compuestos de Vanadio , Catálisis , Cerio/química , Titanio/química , Amoníaco/química , Compuestos de Vanadio/química , Contaminantes Atmosféricos/química , Oxidación-Reducción , Contaminación del Aire/prevención & control
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124945, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163768

RESUMEN

Pd speciation induced by the combined effect of CO and water on Pd/SSZ-13 samples prepared by both impregnation and ion exchange was examined by FT-IR spectroscopy of CO adsorbed at room temperature and at liquid nitrogen temperature on anhydrous and hydrated samples. Starting from the literature findings related to the CO reducing effect on Pd cations, the present work gives precise spectroscopic evidences on how water is necessary in this process not only for compensating with H+ the zeolite exchange sites set free by Pd reduction, but also for mobilizing isolated Pd2+/Pd+ cations and making possible the reduction reactions. The aggregation of some Pd+ sites, just formed by the reduction and mobilized by the hydration, gives rise to the formation of Pd2O particles. Also, Pd0(100) sites are observed with CO on hydrated sample, formed by the aggregation and reduction of isolated Pd cations. Moreover, Pd0(111) sites are formed on the surface of PdOx particles during CO outgassing. The observation of the combined effect of water and CO allowed to define assignments of IR bands related to carbonyls of Pd in different oxidation states and coordination degrees.

3.
Food Chem ; 462: 140973, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208730

RESUMEN

High-pressure processing (HPP) of donor human milk (DM) minimally impacts the concentration and bioactivity of some important bioactive proteins including lactoferrin, and bile salt-stimulated lipase (BSSL) compared to Holder pasteurization (HoP), yet the impact of HPP and subsequent digestion on the full array of proteins detectable by proteomics remains unclear. We investigated how HPP impacts undigested proteins in DM post-processing and across digestion by proteomic analysis. Each pool of milk (n = 3) remained raw, or was treated by HPP (500 MPa, 10 min) or HoP (62.5 °C, 30 min), and underwent dynamic in vitro digestion simulating the preterm infant. In the meal, major proteins were minimally changed post-processing. HPP-treated milk proteins better resisted proximal digestion (except for immunoglobulins, jejunum 180 min) and the extent of undigested proteins after gastric digestion of major proteins in HPP-treated milk was more similar to raw (e.g., BSSL, lactoferrin, macrophage-receptor-1, CD14, complement-c3/c4, xanthine dehydrogenase) than HoP.


Asunto(s)
Digestión , Recien Nacido Prematuro , Proteínas de la Leche , Leche Humana , Pasteurización , Proteómica , Humanos , Leche Humana/química , Leche Humana/metabolismo , Proteínas de la Leche/metabolismo , Proteínas de la Leche/química , Proteínas de la Leche/análisis , Presión , Recién Nacido , Lactoferrina/análisis , Lactoferrina/metabolismo , Manipulación de Alimentos , Femenino , Lactante , Modelos Biológicos
4.
Plant Physiol Biochem ; 216: 109099, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39260265

RESUMEN

Lipids and Ca2+ are involved as intermediate messengers in temperature-sensing signaling pathways. Arbuscular mycorrhizal (AM) symbiosis is a mutualistic symbiosis between fungi and terrestrial plants that helps host plants cope with adverse environmental conditions. Nonetheless, the regulatory mechanisms of lipid- and Ca2+-mediated signaling pathways in mycorrhizal plants under cold and heat stress have not been determined. The present work focused on investigating the lipid- and Ca2+-mediated signaling pathways in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) roots under temperature stress and determining the role of Ca2+ levels in AM symbiosis and temperature stress tolerance in perennial ryegrass (Lolium perenne L.) Compared with NM plants, AM symbiosis increased phosphatidic acid (PA) and Ca2+ signaling in the roots of perennial ryegrass, increasing the expression of genes associated with low temperature (LT) stress, including LpICE1, LpCBF3, LpCOR27, LpCOR47, LpIRI, and LpAFP, and high temperature (HT) stress, including LpHSFC1b, LpHSFC2b, LpsHSP17.8, LpHSP22, LpHSP70, and LpHSP90, under LT and HT conditions. These effects result in modulated antioxidant enzyme activities, reduced lipid peroxidation, and suppressed growth inhibition caused by LT and HT stresses. Furthermore, exogenous Ca2+ application enhanced AM symbiosis, leading to the upregulation of Ca2+ signaling pathway genes in roots and ultimately promoting the growth of perennial ryegrass under LT and HT stresses. These findings shed light on lipid and Ca2+ signal transduction in AM-associated plants under LT and HT stresses, emphasizing that Ca2+ enhances cold and heat tolerance in mycorrhizal plants.

5.
Scand J Clin Lab Invest ; : 1-5, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263928

RESUMEN

Frozen saliva samples are often used for later determination of salivary glucocorticoids in research studies on stress and endocrine disorders. We studied the stability of cortisol and cortisone in saliva after six years of storage at -80 °C by repeated analysis of 153 stored aliquots, collected with Salivette®, using liquid chromatography tandem mass spectrometry. We found a very high agreement between the first and the repeated measurement after six years at -80 °C, for both cortisol and cortisone concentrations (rs= 0.96 and rs= 0.98, respectively). Passing-Bablok regression equations were y = 0.02 + 1.00x and y = 0.02 + 1.14x for cortisol and cortisone, respectively. We conclude that salivary cortisol and cortisone concentrations remain essentially unaltered after six years of storage at -80 °C.

6.
Small Methods ; : e2400865, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258337

RESUMEN

Realizing high performances of sodium-ion batteries (SIBs) working at low temperatures is a pressing need for the commercial applications of SIBs. In this work, nanodiamonds (NDs) are introduced in diglyme electrolytes (ND-Diglyme) to significantly improve the low-temperature performances of SIBs. The corresponding SIB achieves an initial reversible specific capacity of 324 mA h g-1 at -40 °C (slightly decreased from 357 mA h g-1 at 25 °C) and shows a capacity retention ratio of ≈82% after 100 cycles at 0.1 A g-1. Moreover, it shows a capacity as high as 40 mA h g-1 at 1 A g-1, nearly five times the date of the pure Diglyme electrolyte. Experimentally reveals that introducing NDs is helpful in inhibiting dendrite growth and improving the cyclic stability of anode at LT, because the ND with strong adsorption to sodium ions can not only assist in forming an effective solid electrolyte interface rich with NaF and Na2CO3 but also effectively reduce the activation energy (decreased from 426.68 to 370.51 meV) during the charge transfer processes. Hence, the proposed ND-assisted weakly ether electrolyte in this study presents a viable electrolyte additive solution to fulfill the rising low-temperature demands of SIBs.

7.
Angew Chem Int Ed Engl ; : e202412995, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222321

RESUMEN

Direct methane conversion and, in particular, the aerobic oxidation to acetic acid, remain an eminent challenge. Here, we reported a zeolite-supported Au-Fe catalyst (Au-Fe/ZSM-5) that converted methane to acetic acid with molecular oxygen as an oxidant in the presence of CO. Specifically, Au nanoparticles catalyzed the formation of hydroxyl species from the reaction of CO, O2, and H2O, meanwhile ZSM-5-supported atomically dispersed Fe species were responsible for the hydroxyl-mediated coupling of CH4 and CO to generate acetic acid. The reaction over 50 mg of Au-Fe/ZSM-5 under 62 bar (CH4: CO: O2 = 14: 14: 3) at 120 °C for 3.0 h yielded 5.7 millimoles of acetic acid per gram of the catalyst (mmol gcat-1) with the selectivity of 92%, outperformed most of reported catalysts. Significantly, the catalyst remained active even at 60 °C. We anticipate that this hydroxyl-mediated route may guide the design of optimized catalysts for the direct methane functionalization at low temperatures.

8.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1825-1832, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39233411

RESUMEN

In northern China, soil temperature slowly rises in spring, often subjecting apple roots to sub-low-temperature stress. Sugar acts as both a nutrient and signaling molecule in roots in response to low-temperature stress. To explore the effects of exogenous sugars on the growth and nutrient absorption of Malus baccata Borkh., we analyzed growth parameters, photosynthetic characteristics of leaves, and mineral element content in different tissues of M. baccata seedlings under five treatments, including control (CK), sub-low root zone temperature (L), sub-low root zone temperature + sucrose (LS), sub-low root zone temperature + fructose (LF), and sub-low root zone temperature + glucose (LG). The results showed that compared to CK, plant height, root growth parameters, aboveground biomass, leaf photosynthesis, fluorescence parameters, chlorophyll content, and the contents of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) in M. baccata seedlings were significantly decreased under the L treatment, and the content of Ca in roots was significantly increased. Compared to the L treatment without exogenous sugar, photosynthesis, functional parameters, chlorophyll content, and growth parameters increased to different degrees after exogenous sucrose, fructose, and glucose application. The N and P contents in roots were significantly increased. The N, P, and K contents significantly increased in stems while only the Ca content significantly increased in stems treated with sucrose. Leaf N, P, K, Ca, and Mg contents significantly increased after being treated with the three exogenous sugars. In conclusion, exogenous sugars can improve photosynthetic efficiency, promote mineral element absorption, and alleviate the inhibition of growth and development of M. baccata at sub-low root zone temperatures, and the effect of sucrose treatment was better than that of fructose and glucose treatments.


Asunto(s)
Frío , Malus , Raíces de Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Malus/crecimiento & desarrollo , Malus/metabolismo , Malus/efectos de los fármacos , Nutrientes/metabolismo , Fructosa/metabolismo , Glucosa/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , China
9.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1573-1582, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235015

RESUMEN

Low temperature (LT) in spring usually occurs at the booting of winter wheat, resulting in reduction of wheat yield. In this study, we used the LT-sensitive wheat cultivar 'Wanmai 52' and the LT-insensitive wheat cultivar 'Yannong 19' as experimental materials to conduct LT treatment (-2 ℃ and 0 ℃) at booting stage. After the LT treatment, we sprayed 6-benzylaminoadenine (6-BA) solutions with concentrations of 10, 20, and 30 mg·L-1 respectively, with equal mass distilled water as control to investigate the effects of spraying 6-BA on the physiological characteristics, yield and quality of wheat flag leaves after LT stress at booting stage. The results showed that compared with the control, young ear of wheat treated with exogenous spraying 6-BA was fuller, the floret morphology was improved, and the number of vascular bundles under the spike was increased. 6-BA application promoted the accumulation of soluble sugar, soluble protein, and proline in flag leaves. The activities of peroxidase and superoxide dismutase were increased, and the content of malondialdehyde was decreased. Exogenous 6-BA application decreased the number of degenerated spikes of wheat, increased the number of grains per spike and 1000-grain weight, as well as the contents of grain protein, wet gluten, and sedimentation value. In summary, exogenous 6-BA application could effectively alleviate the effects of LT stress on flag leaf and yield of wheat. Under the conditions of this experiment, the mitigation effect of spraying 6-BA solution on Yannong 19 was higher than that of Wanmai 52, and the mitigation effect of spraying 20 mg·L-1 6-BA solution on low temperature stress was the best.


Asunto(s)
Frío , Hojas de la Planta , Purinas , Estrés Fisiológico , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Purinas/farmacología , Biomasa , Reguladores del Crecimiento de las Plantas/farmacología , Control de Calidad , Compuestos de Bencilo
10.
Small ; : e2405953, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301996

RESUMEN

The interface between NiO and perovskite in inverted perovskite solar cells (PSCs) is a major factor that can limit device performance due to defects and inappropriate redox reactions, which cause nonradiative recombination and decrease in open-circuit voltage (VOC). In the present study, a novel approach is used for the first time, where an amino acid (glycine (Gly), alanine (Ala), and aminobutyric acid (ABA))-complexed NiO are used as interface modifiers to eliminate defect sites and hydroxyl groups from the surface of NiO. The Ala-complexed NiO suppresses interfacial non-radiative recombination, improves the perovskite layer quality and better energy band alignment with the perovskite, resulting in improved charge transfer and reduced recombination. The incorporation of the Ala-complexed NiO leads to a PCE of 20.27% with enhanced stability under the conditions of ambient air, light soaking, and heating to 85 °C, as it retains over 82%, 85%, and 61% of its initial PCE after 1000, 500, and 350 h, respectively. The low-temperature technique also leads to the fabrication of a NiO thin film that is suitable for flexible PSCs. The Ala-complexed NiO is fabricated on the flexible substrate and achieved 17.12% efficiency while retaining 71% of initial PCE after 5,000 bending.

11.
J Hazard Mater ; 480: 135831, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39303609

RESUMEN

Heavy metal pollution in the cold region is serious, affecting human health and aquatic ecology. This study investigated the ability of microalgae to remove heavy metals (HMs) and produce lipid at low temperature. The removal efficiency of different HMs (Cd2+, Cu2+, Cr3+ and Pb2+), cell growth and lipid synthesis of microalgae were analyzed at 15 °C. Moreover, addition of glycine betaine (GB) further enhanced the productivity of microalgae in treating HMs and lipid production, and simultaneously increased the antioxidant capacity of microalgae against environmental stresses. The results showed that the highest lipid productivity of 100.98 mg L-1 d-1 and the removal efficiency of 85.8 % were obtained under GB coupled with Cr3+. The highest glutathione content of 670.34 nmol g-1 fresh alga was achieved under GB coupled with Pb2+. In addition, lipidomics showed that GB was able to up-regulate the triglyceride and diglyceride content, influenced fatty acid composition to regulate the microalgal metabolism, and mediated lipid accumulation under 15 °C mainly through the regulation of glycerol ester metabolism. This study provided a new perspective on microalgal lipid production and the removal of HMs in cold regions and provided evidence for the use of phytohormones to improve the algal environmental resistance.

12.
Environ Technol ; : 1-13, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39306690

RESUMEN

With the increasing focus on environmental friendliness and sustainable development, extensive research has been conducted on the biodegradation of plastics. The non-hydrolyzable, highly hydrophobic, and high-molecular-weight properties of polyethylene (PE) pose challenges for cell interaction and biodegradation of PE substrates. To overcome these obstacles, PE films were treated with low-temperature plasma before biodegradation. The morphology, surface chemistry, molecular weight, and weight loss of PE films after plasma treatment and biodegradation were studied. The plasma treatment decreased the surface water contact angle, formed C-O and C = O groups, and decreased the molecular weight of PE films. With the increased pretreatment time, the biodegradation efficiency rose to 2.6% from 0.63% after 20 days of incubation. The mechanism was proposed that the surface oxygen-containing groups formed by plasma treatment can facilitate the bio-accessibility and be further decomposed and utilised by the microbes. This study provided an effective and rapid pretreatment strategy for improving biodegradation of PE.

13.
J Environ Manage ; 370: 122546, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299120

RESUMEN

To improve the treatment performance of constructed wetlands under low-temperature conditions, this study investigated the effects of plant species on wastewater treatment performance at low temperature and the associated microbiological characteristics in a subsurface vertical-flow constructed wetland (VFCW) with step-feeding. The results showed that the redox microenvironment in the VFCW filter with step-feeding could be restored and optimized by planting appropriate species that can tolerate low temperature, ensuring a high nitrification performance for the system. Correspondingly, the abundance and activity of three functional microbes (namely nitrifiers, denitrifiers, and anammox bacteria) increased to different degrees in the system, eventually ensuring ideal nitrogen removal by the VFCW. Compared with the VFCW planted with Phragmites australis and Acorus gramineus, the operation performance of the VFCW planted with Iris wilsonii could be recovered at low temperature, and its chemical oxygen demand, total phosphorus, total nitrogen, and ammonium nitrate removal rates could respectively reach 95.7%, 99.2%, 93.0%, and 94.4%, respectively. Moreover, nitrogen removal in the system relied on the nitrification/denitrification and partial denitrification - anaerobic ammonium oxidation processes. Nitrosomonas, Nitrospira, Thauera, and Candidatus Brocadia were the four dominant bacterial genera in the filter layer.

14.
J Hazard Mater ; 479: 135705, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39217933

RESUMEN

Aggregation is a crucial factor in bacterial biofilm formation, and comprehending its properties is vital for managing waterborne antibiotic-resistant bacteria. In this study, we examined Methicillin-resistant Staphylococcus aureus (MRSA) cell aggregation under varying conditions and assessed the inactivation efficiency of a novel disinfection method, micro-nano bubbles plasma-activated water via ultrasonic stirring cavitation (MPAW-US), on aggregated MRSA cells. Aggregation efficiency increased over time and at low salt concentrations but diminished at higher concentrations. Elevated MRSA cell aggregation in actual water samples represented significant real-life biohazard risks. Unlike conventional disinfection, MPAW-US treatment exhibited minimal change in the inactivation rate constant despite protective outer layers. Enhanced inactivation efficiency results from the synergistic effects of increased intracellular oxidative stress damage and extracellular substance disruption, triggered by ultrasound-activated micro-nano bubbles that improve PAW reactivity and applicability. This approach neither induced MRSA cross-resistance to unfavorable conditions nor increased toxicity or regrowth potential of aggregative MRSA, utilizing ATP levels as potential regrowth capability indicators. Ultimately, this energy-efficient disinfection technology functions effectively across diverse temperature ranges, showcasing exceptional sterilization and nutritional bean sprout production after cyclic filtering, thereby promoting wastewater sustainability amidst carbon emission concerns.


Asunto(s)
Desinfección , Staphylococcus aureus Resistente a Meticilina , Aguas Residuales , Aguas Residuales/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Desinfección/métodos , Antibacterianos/farmacología , Antibacterianos/química , Purificación del Agua/métodos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Gases em Plasma/farmacología
15.
Ultrason Sonochem ; 110: 107060, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39255593

RESUMEN

Low-temperature cooking causes flavor weakness while improving the texture and digestive properties of meat. To enhance the flavor of low-temperature cooked Tibetan pork, samples were cooked at low-temperature with or without ultrasound-assisted (UBTP, BTP) for different times (30 min, 90 min) and then analyzed using GC-MS and LC-MS. The results showed that ultrasound-assisted cooking caused a significant increase in lipid oxidation by 9.10% in the early stage of the treatment. Additionally, at the later stage of ultrasound-assisted processing, proteins were oxidized and degraded, which resulted in a remarkable rise in the protein carbonyl content by 6.84%. With prolonged effects of ultrasound and low-temperature cooking, the formation of phenylacetaldehyde in UBTP-90 sample originated from the degradation of phenylalanine through multivariate statistics and correlation analysis. Meanwhile, trans, cis-2,6-nonadienal and 1-octen-3-one originated from the degradation of linolenic acid and arachidonic acid. This study clarified the mechanism of ultrasound-assisted treatment improving the flavor of low-temperature-cooked Tibetan pork based on the perspective of lipids and proteins oxidation, providing theoretical supports for flavor enhancement in Tibetan pork-related products.


Asunto(s)
Culinaria , Oxidación-Reducción , Ondas Ultrasónicas , Porcinos , Animales , Frío , Lípidos/química , Proteínas/química , Volatilización
16.
Sci Total Environ ; 954: 176239, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277003

RESUMEN

Bacterial communication could affect their interactions, but whether this regulation has "intelligence" is still unknown. Here, we operated an anammox reactor under temperature gradient from 35 °C to 15 °C. As results, expression abundance of bacterial communication genes increased by 12 % significantly after temperature declined. Division of labor among distinct signal molecules was evidenced by complementary roles of acyl-homoserine lactones (AHLs) and diffusible signal factor (DSF) in affecting bacterial interactions and niche differentiation respectively. DSF based inter-and intra-communication helped bacteria match their investments and rewards during cross-feedings. When temperature was below 25 °C, transcription regulator Clp governed by DSF inclined to promote folate and molybdenum cofactor biosynthesis, which coincidentally benefited one anammox species more than another. Meanwhile, for the anammox species with lower benefits, Clp also inclined to decrease biosynthesis of costly tryptophan and vitamin B1 rewarding others. Interestingly, bacterial communication inclined to influence the bacteria with many cooperators in the community or with high capacity to export cofactors for cross-feedings when temperature decreased. As results, these bacteria were enriched which could lead to closer interactions in whole community to adapt to low temperatures. The discovered intelligence of bacterial communication opened another window for understanding bacterial sociobiology.

17.
Anim Cells Syst (Seoul) ; 28(1): 428-438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246418

RESUMEN

Burn injuries, affecting local skin disruption as well as inducing systemic inflammatory responses, are presented as a global public health problem. To enhance the effects of burn wound healing, treatment must simultaneously regulate both re-epithelialization and hyperinflammation. Extracts of Sargassum horneri (S. horneri) have shown a potential to enhance skin wound healing through antioxidative properties, immune enhancement, and modulation of inflammatory responses. However, despite its promising application for burn wound healing, specific investigation into S. horneri-derived compounds for enhancing wound healing has not yet been conducted. In this research, we investigated the burn wound-healing effect of the low-temperature pulverization-specific S. horneri extract (LPSHE), which could not be detected using the room-temperature grinding method. In a mouse burn model with third-degree burn injuries, LPSHE accelerated re-epithelialization by promoting the increase in F-actin formation and reduced burn-induced ROS levels. Additionally, LPSHE significantly regulated hyperinflammation by reducing pro-inflammatory cytokines. Further investigation into molecular mechanisms using HaCaT keratinocytes also demonstrated beneficial effects on burn wound healing. Taken together, our findings suggested that LPSHE is a promising therapeutic candidate for enhancing burn wound healing. Furthermore, this research underscored the importance of low-temperature pulverization in discovering novel natural compounds from marine organisms.

18.
Small Methods ; : e2400481, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252662

RESUMEN

Orthorhombic perovskite GdFeO3 nanostructures are promising materials with multiferroic properties. In this study, a new low-temperature plasma-assisted approach is developed via dual anodic dissolution of solid metallic precursors for the preparation of perovskite GdFeO3 nanoparticles (NPs) that can be collected both as colloids as well as deposited as a thin film on a substrate. Two solid metallic foils of Gd and Fe are used as precursors, adding to the simplicity and sustainability of the method. The formation of the orthorhombic perovskite GdFeO3 phase is supported by high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman measurements, while a uniform elemental distribution of Gd, Fe, and O is confirmed by energy dispersive X-ray spectroscopy, proving the successful preparation of ternary compound NPs. The magnetic properties of the NPs show zero remnant magnetization typical of antiferromagnetic materials, and saturation at high fields that can be caused by spin interaction between Gd and Fe magnetic sublattices. The formation mechanism of ternary compound NPs in this novel plasma-assisted method is also discussed. This method is also modified to demonstrate the direct one-step deposition of thin films, opening up opportunities for their future applications in the fabrication of magnetic memory devices and gas sensors.

19.
Int J Biol Macromol ; 279(Pt 3): 135331, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236964

RESUMEN

Low temperatures can seriously affect apple yield and can also cause chilling injury to apple fruit. γ-aminobutyric acid (GABA) plays an important role in improving plant stress resistance. Some studies have reported that GABA can improve cold resistance in plants, only through exogenous treatment; however, the molecular mechanism of its resistance to low temperature is still unknown. This result suggested that exogenous GABA treatment of both apple seedlings and fruit could improve the resistance of apple to low temperatures. MdGAD1, a key gene involved in GABA synthesis, was overexpressed in tomato plants and apple callus to improve their cold tolerance. Both yeast one-hybrid and luciferase assay showed that MdCBF3 could bind to the MdGAD1 promoter to activate its expression and promote GABA synthesis. These results revealed a molecular mechanism utilizing the MdCBF3-MdGAD1 regulatory module that can enhance cold resistance by increasing endogenous GABA synthesis in apple.

20.
Sci Rep ; 14(1): 20503, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227597

RESUMEN

2D transition metal oxides have created revolution in the field of supercapacitors due to their fabulous electrochemical performance and stability. Molybdenum trioxides (MoO3) are one of the most prominent solid-state materials employed in energy storage applications. In this present work, we report a non-laborious physical vapor deposition (PVD) and ultrasonic extraction (USE) followed by vacuum assisted solvothermal treatment (VST) route (DEST), to produce 2D MoO3 nanosheets, without any complex equipment requirements. Phase transition in MoO3 is often achieved at very high temperatures by other reported works. But our well-thought-out, robust approach led to a phase transition from one phase to another phase, for e.g., hexagonal (h-MoO3) to orthorhombic (α-MoO3) structure at very low temperature (90 °C), using a green solvent (H2O) and renewable energy. This was achieved by implementing the concept of oxygen vacancy defects and solvolysis. The synthesized 2D nanomaterials were investigated for electrochemical performance as supercapacitor electrode materials. The α-MoO3 electrode material has shown supreme capacitance (256 Fg-1) than its counterpart h-MoO3 and mixed phases (h and α) of MoO3 (< 50 Fg-1). Thus, this work opens up a new possibility to synthesize electrocapacitive 2D MoO3 nanosheets in an eco-friendly and energy efficient way; hence can contribute in renewable circular economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA