Your browser doesn't support javascript.
loading
Interfacial Engineering of Nickel Oxide-Perovskite Interface with Amino Acid Complexed NiO to Improve Perovskite Solar Cell Performance.
Mann, Dilpreet Singh; Thakur, Sakshi; Sangale, Sushil S; Jeong, Kwang-Un; Kwon, Sung-Nam; Na, Seok-In.
Afiliación
  • Mann DS; Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea.
  • Thakur S; Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea.
  • Sangale SS; Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea.
  • Jeong KU; Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea.
  • Kwon SN; Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea.
  • Na SI; Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea.
Small ; : e2405953, 2024 Sep 20.
Article en En | MEDLINE | ID: mdl-39301996
ABSTRACT
The interface between NiO and perovskite in inverted perovskite solar cells (PSCs) is a major factor that can limit device performance due to defects and inappropriate redox reactions, which cause nonradiative recombination and decrease in open-circuit voltage (VOC). In the present study, a novel approach is used for the first time, where an amino acid (glycine (Gly), alanine (Ala), and aminobutyric acid (ABA))-complexed NiO are used as interface modifiers to eliminate defect sites and hydroxyl groups from the surface of NiO. The Ala-complexed NiO suppresses interfacial non-radiative recombination, improves the perovskite layer quality and better energy band alignment with the perovskite, resulting in improved charge transfer and reduced recombination. The incorporation of the Ala-complexed NiO leads to a PCE of 20.27% with enhanced stability under the conditions of ambient air, light soaking, and heating to 85 °C, as it retains over 82%, 85%, and 61% of its initial PCE after 1000, 500, and 350 h, respectively. The low-temperature technique also leads to the fabrication of a NiO thin film that is suitable for flexible PSCs. The Ala-complexed NiO is fabricated on the flexible substrate and achieved 17.12% efficiency while retaining 71% of initial PCE after 5,000 bending.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania